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Introduction

Cervical cancer is the second most common cancer among
women worldwide, with an estimated 493,000 new cases
and 274,000 deaths in the year 2002. It is much more
common in developing countries, where 83% of cases occur.
Cervical cancer accounts for 15% of female cancers, with the
risk before age 65 of 1.5%.1

In India, about 100,000 women are affected by cervical
cancer every year. The majority present with a locally
advanced stage of the disease, due to low socio-economic
status, illiteracy and a lack of screening procedures in India.

Development of cervical cancer is due mainly to human
papillomavirus (HPV) infection,2 but may also be associated
with other factors such as oral contraceptive use,3 poor
genital hygiene and low socio-economic status,4

malnutrition,5 smoking,6 age at first coitus7 and a large
number of sexual partners.4 However, studies show that
human cervical cancer due to HPV infection is the most
common form of the disease,8–10 as infection is accompanied
by damage to DNA and other constituents of the cell.11

Oxidative stress is potentially harmful to cells, and
reactive oxygen species (ROS) are involved in multistage
carcinogenesis, in initiation and promotion.12 Thus, ROS can
damage cellular components such as lipids, proteins and
DNA, affecting enzyme activity and membrane function.13

Free radicals are highly reactive compounds that activate
pro-carcinogens and alter the cellular antioxidant defence
system. This includes enzymic and non-enzymic
antioxidants such as superoxide dismutase (SOD), catalase
(CAT), reduced glutathione (GSH), glutathione peroxidase
(GPx), glutathione reductase (GR), glutathione-S-transferase
(GST), ascorbic acid (vitamin C) and α-tocopherol (vitamin
E). Under conditions of excessive oxidative stress, however,
cellular antioxidants are depleted.14

Enzymes such as SOD, CAT and GPx are considered to be
the primary antioxidant enzymes, as they are involved in the
direct elimination of active oxygen species. Secondary
antioxidant enzymes (e.g., GST and GR) help in the

detoxification of ROS by decreasing peroxide levels (GST) or
by maintaining a steady supply of metabolic intermediates
(GR) for the primary antioxidant enzymes. Antioxidants
have been shown to inhibit initiation and promotion in
carcinogenesis, and counteract cell immortalisation and
transformation.15

Moreover, the extent of ROS-induced oxidative damage
can be exacerbated by decreased efficiency of antioxidant
defence mechanisms.16,17 However, very few studies have
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addressed the effect of treatment on antioxidant levels in
patients with advanced cervical cancer.18,19

Although radiotherapy is the main form of treatment for
cervical cancer, this alone has not shown consistent
improvement in cure rates over the past three decades.20

Thus, combined approaches have been used in an attempt to
increase therapeutic response. Chemotherapy and radiation
have a synergistic effect and interact by spatial cooperation,
with radiation focusing on local disease and chemotherapy
on systemic subclinical boundaries. 

One such approach is anterior/neoadjuvant chemotherapy;
a regime involving the use of chemotherapy prior to
definitive radiation therapy. This induces shrinkage of
macroscopic disease, controls micrometastases early in the
course of the disease, and reduces the local tumour mass, all
of which is reported to lead to longer survival.21

The effects of radiation and anticancer drugs are mediated
by production of free radicals, which act on DNA to produce
lethal cell damage.22 Hence, the aim of the study is to assess
alterations in circulating lipid peroxidation, antioxidant
components and the activities of defence enzymes in
advanced cervical cancer patients, and to monitor variations
before and after neoadjuvant chemoradiation.

Materials and methods

Subjects
Sixty patients with advanced cervical cancer (histologically
proven cases of squamous cell carcinoma, FIGO stage
IIIa–IVb) referred to the Department of Radiotherapy,
Maulana Azad Medical College, New Delhi, were enrolled in
the study. The mean age of the patients was 48.2±5.6 years.
Clinical staging was assessed by a senior gynaecologist and

confirmed by an oncologist in a jointly run gynaecological
cancer clinic and classified according to FIGO staging.23 At
the same time, a punch biopsy was taken and sent for
histopathological examination. An experienced pathologist
reviewed all histological samples for dysplasia and invasive
carcinoma.

Sixty healthy control subjects (no history or laboratory
evidence of malignancy, inflammation or prior
gynaecological disease, with normal pelvic examination and
negative Papanicolaou smear) were also enlisted. Mean age
of the control group was 47.3±5.7 years. All study
participants were non-smokers, and none had diabetes
mellitus, liver disease or rheumatoid arthritis. The study
protocol was approved by the hospital ethics committee and
patients and controls gave informed consent

All patients received two courses of chemotherapy, with a
21-day gap between the two courses. Each course was given
by sequential infusion of 5-fluorouracil, followed by
cisplatinum and bleomycin for five days. All patients
received ondansetron tablets (4 mg, twice daily) to avoid
cisplatinum-induced nausea. 

Two weeks after the second course of chemotherapy,
whole pelvic irradiation was given using 50 Gray telecobalt
therapy (25 fractions in five weeks at the rate of 200 cGy/day
in each fraction). Two weeks after the end of teleradiation,
intracavitary cesium brachyradiation (30 Gray) was given
over 18 hours in a single application. 

Sample collection
In the patient group, samples were collected before the start
of therapy (S1), two weeks after the completion of the second
course of chemotherapy (S2) and two weeks after completion
of tele/brachyradiation (S3). Single blood samples were taken
from control subjects.

Half of each sample was used for GPx and SOD
estimations. Plasma from the other half was separated by
centrifugation at 1000 xg for 15 min. After removing the
buffy coat and plasma, the packed erythrocytes were
washed (x3) with physiological saline. 

To determine the activity of RBC antioxidant enzymes, the
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Group 1: Controls; Group 2: Pre-treatment;
Group 3: Post-chemotherapy; Group 4 Post-radiation.
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Fig. 1. Levels of conjugated dienes (µmol/mL)
in each of the study groups. 

Group 1: Controls; Group 2: Pre-treatment;
Group 3: Post-chemotherapy; Group 4 Post-radiation.
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Fig. 2. TBARS level (nmol MDA formed/mL plasma)
in each of the study groups. 



haemolysate was prepared by
lysing a known volume of
erythrocytes in cold hypotonic
phosphate buffer (pH 7.4). The
haemolysate was centrifuged
at 2500 xg for 15 min at 4˚C.
Biochemical estimations were
carried out immediately.24

Biochemical estimations
Lipid peroxidation was
estimated by measurement of
thiobarbituric acid reacting
substance (TBARS) in plasma
by the method of Yagi.25 The
pink chromogen produced by the reaction of thiobarbituric
acid with malondialdehyde (MDA), a secondary product of
lipid peroxidation, was estimated at 532 nm. 

Conjugated dienes were estimated in plasma by the method
of Rao and Recknagel,26 based on the arrangement of the
double bonds in polyunsaturated fatty acids (PUFA) to form
conjugated dienes with an absorbance maximum at 233 nm.

Reduced glutathione was assayed in plasma by the
method of Ellman.27 Estimation is based on the development
of yellow colour when 5, 5’dithio 2-nitrobenzoic acid
(DTNB) is added to compounds containing sulphydryl
groups. Whole blood GPx levels were measured using a
commercially available kit (Ransel, Randox Laboratories,
UK) using the method of Paglia and Valentine,28 where GPx
catalyses the oxidation of glutathione by cumene
hydroperoxide. In the presence of glutathione reductase and
NADPH, the oxidised glutathione is converted immediately
to its reduced form, with concomitant oxidation of NADPH
to NADP+. The decrease in absorbance at 340 nm was
expressed as units/g haemoglobin. 

Glutathione-S-transferase activity in the haemolysate was
determined by the method of Habig et al.,29 by following 
the increase in absorbance at 340 nm using 1-chloro, 
2-4-dinitrobenzene (CDNB) as substrate. 

Whole blood SOD levels were measured using a
commercially available kit (Ransod, Randox Laboratories).
Xanthine and xanthine oxidase were used to generate
superoxide radicals, which react with 2-(4-iodophenyl)-3-(4-
nitrophenol)-5-phenyl- tetrazolium chloride (INT) to form a
red formazan dye. Superoxide dismutase activity was
measured by the degree of inhibition of this reaction. One
unit of SOD causes a 50% inhibition of the rate of reduction
of INT under the conditions of the assay.30

Catalase activity was determined by the method of Sinha,31

based on the utilisation of hydrogen peroxide by the
enzyme. The colour developed was read at 620 nm.
Haemoglobin in the haemolysate was measured by the
method of Drabkin and Austin.32 Blood was diluted in an
alkaline medium containing potassium cyanide and
potassium ferricyanide. Haemoglobin oxidised to
methaemoglobin combines with cyanide to form
cyanmethaemoglobin, which was measured at 540 nm.

Statistical analysis
Biochemical data are expressed as mean ± SD for patients
and controls separately. Comparison of data in all groups
was performed by non-parametric Mann-Whitney U test
and significance was calculated by the Kruskal-Wallis test.33

Comparisons were made between the control group and the
cancer group, and within the cancer group comparing
results before treatment with those achieved after each stage
of treatment. P<0.05 was considered to be significant.
Statistical analysis was performed using SPSS version 12.0.

Results

Figures 1 and 2 show the levels of circulating conjugated
dienes and TBARS. Lipid peroxidation, indicated by
circulating TBARS, and levels of plasma conjugated dienes
were significantly higher (P<0.001) in the patients with
cervical cancer. 

Tables 1 and 2 show the levels of circulating antioxidants
The non-enzymic antioxidant GSH and enzymic
antioxidants GST, GPx, SOD and CAT were significantly
lower in the cancer patient group. 
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GPx (U/g Hb) SOD (U/mL)

Mean±SD P value Mean±SD P value

Controls (n=60) 31.36±5.43 199.94±28.48

Cancer patients (n=60)

Pre-treatment 13.44±4.50 <0.001* 50.53±18.11 <0.001*

Post-chemotherapy 19.06±2.31 <0.05† 108.63±20.16 <0.03†

Post-radiation 31.13±4.26 <0.02† 198.68±23.46 <0.01†

*versus controls.
†versus pre-treatment levels.

Table 1. Antioxidant enzyme activities in each of the study groups.

Plasma GSH (mg/dL) GST (U/mg Hb) Catalase (U/g Hb)

Mean±SD P value Mean±SD P value mean±SD P value

Controls (n=60) 39.23±3.52 2.51±0.28 5.96±0.61

Cancer patients (n=60)

Pre-treatment 18.06±2.47 <0.001* 1.34±0.3 <0.001* 3.2±0.41 <0.001*

Post-chemotherapy 26.31±3.16 <0.05† 1.82±0.41 <0.05† 4.5±0.29 <0.03†

Post-radiation 37.30±2.67 <0.02† 2.43±0.16 <0.01† 5.87±0.43 <0.01†

*versus controls.
†versus pre-treatment levels.

Table 2. Circulating antioxidant levels in each of the study groups.



After chemotherapy, levels of lipid peroxidation and
conjugated dienes showed a significant decline (P<0.05) and
the antioxidant parameters (GSH, GPx, SOD, GST and CAT)
showed a slight rise (P<0.05). After completion of therapy,
the decrease in lipid peroxidation and the level of
conjugated dienes became highly significant (P<0.01). On
completion of neoadjuvant chemoradiotherapy, the
antioxidant parameters (GSH, GST, GPx, SOD and CAT)
showed significant elevation (P<0.01), but then returned to
normal or near-normal levels.

Discussion

Enhanced lipid peroxidation observed in the circulation of
cervical cancer patients in the present study can be
attributed to a deficiency in antioxidant defences.34

Antioxidant depletion in the circulation may be due to the
scavenging of lipid peroxides, as well as sequestration by
tumour cells. Epidemiological studies reveal that low levels
of antioxidants are associated with an increased risk of
cancer.35,36 Significantly increased levels of lipid peroxidation,
with a concomitant decrease in antioxidant levels, in 
cancer cervix patients was observed by Manoharan et al.37

and Mila-Kierzenkowska et al.38 Similar changes in other
cancers39–43 have also been reported.

Tumour cells sequester essential antioxidants such as GSH
to meet the demands of the growing tumour.44 Reduced
glutathione, an important non-protein thiol and a true
scavenger of lipid peroxides, in conjunction with the
glutathione-related enzymes GPx and GST, plays a pivotal
role in protecting cells against cytotoxic and carcinogenic
chemicals by scavenging ROS.17 It aids the formation of the
reduced form of antioxidants (e.g., ascorbic acid) and
promotes detoxification of carcinogens, free radicals and
xenobiotics. 

Rapid GSH synthesis in tumour cells is associated with
high rates of cell proliferation, while GSH depletion can
sensitise cancer cells to the cytotoxic effects of oxidative
stress and make them more vulnerable to the effects of
anticancer drugs or the genes that promote apoptosis.45 The
enzymes SOD and CAT catalyse cell defence reactions
against the potentially harmful effects of superoxide- and
hydrogen peroxide-mediated lipid peroxidation.17,46

The observed increase in circulating lipid peroxides 
in cervical cancer patients in the present study correlates
with the decline in SOD and CAT activity. In tumour 
cells, decreased SOD and CAT may cause the accumulation
of superoxide and hydrogen peroxide. The net outcome 
of this abnormality in the process of carcinogenesis is
unknown. 

A fundamental difficulty in this approach is to ascertain
whether changed antioxidant enzymes are the primary
metabolic disturbance that creates the cancer or they are
secondary responses to neoplastic change. It seems
reasonable to hypothesise that free radicals produced by
carcinogens or by irradiation cause mutations and DNA
damage, which may lead to neoplastic change. On the other
hand, free radicals can induce antioxidant enzymes,47 which
should prevent tumour formation. 

Mechanisms must exist by which cells escape the
inhibitory effect of antioxidant enzymes and by which the
levels of induced enzymes fall below normal, as seen in

tumour cells. More work is required to illustrate the role of
antioxidant enzymes in human carcinogenesis.

Moreover, the increase in circulating lipid peroxides may
be related to deficiency of SOD and CAT in tumour tissue.
This can result in the accumulation of superoxide anion, a
highly diffusible and potent oxidising radical capable of
crossing membranes, causing deleterious effects at sites far
removed from the tumour.48

In addition to SOD and CAT, GPx and GST act as
antioxidant enzymes. Kumaraguruparan et al.49 have reported
deficiency of these enzymes in cancer patients, and the
findings of the present study are in agreement. Both
enzymes, using glutathione as a substrate, play a crucial 
role in protecting against the deleterious effects of ROS and
xenobiotics.40

Glutathione peroxidase is a primary antioxidant enzyme
involved in the direct elimination of ROS. Glutathione-S-
transferase catalyses the nucleophilic addition of the thiol of
reduced glutathione to a variety of electrophiles. This
enzyme has a critical role in protecting cells against ROS, due
to redox cycling of exogenous and endogenous quinones. 

Blood glutathione levels are believed to be predictors of
morbidity and mortality.45 Lower GSH levels and
glutathione-related enzymes seen in cervical cancer patients
support the hypothesis that GSH status is inversely related
to malignant transformation.

Antioxidants, which scavenge free radicals, can counter
the effects of radiation and anticancer drugs. If antioxidant
levels are high, the tumour is radioresistant and resistant to
some anticancer drugs. The complex metabolism of tumour
cells produces excess free radicals and/or abnormality in
antioxidant enzymes. This may be necessary for the
maintenance of the malignant state, resulting in a further
decrease in non-enzymatic antioxidants. 

After therapy, levels of antioxidants return to normal.
Mila-Kierzenkowska et al.38 reported similar findings after
brachytherapy, as did Bhuvarahamurthy et al.19 after
chemoradiotherapy. This increase in antioxidant
concentration may be due to the death of tumour cells
following radiation, or by the arrest of tumour growth due
to the effects of chemotherapeutic agents. Lipid
peroxidation levels (MDA) and conjugated dienes return to
normal after therapy, indicating the curative effect of the
treatment. Normalisation of enzyme activities may provide
information about the efficacy of radiotherapy and
combined therapy (neoadjuvant chemoradiation). 

The strength of the present work lies in the fact that
alterations in the levels of several oxidants and antioxidants,
before and after neoadjuvant chemoradiation, are compared
in a single study. However, a larger patient cohort and a
longer follow-up period may yield more significant data on
their utility as predictors of the chemoradiosensitivity of
cervical tumours. 5
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