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Introduction

In 2006, Atala et al. implanted bladders engineered

ex vivo from the seeding of autologous cells onto artificial

supporting scaffolds [1]. The recent report on the

implantation of the trachea manufactured from human

components, received the well-deserved coverage by the

media across the world [2]. For the first time, an organ

was produced from autologous differentiated cells and

stem cells (SC). Enormous enthusiasm was generated also

in the transplant community. Transplant specialists

perceived for the first time that regenerative medicine

(RM) has the potential to solve the problem of the short-

age of organs available for donation. We believe that it is

timely and critical to illustrate the state-of-the-art of the

investigations in the field of RM as applied to solid organ

transplantation.

Heart

One of the main objectives in cardiac restoration therapy

is to augment the damaged cardiac muscle following an
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Summary

In the last two decades, regenerative medicine has shown the potential for

‘‘bench-to-bedside’’ translational research in specific clinical settings. Progress

made in cell and stem cell biology, material sciences and tissue engineering

enabled researchers to develop cutting-edge technology which has lead to the

creation of nonmodular tissue constructs such as skin, bladders, vessels and

upper airways. In all cases, autologous cells were seeded on either artificial or

natural supporting scaffolds. However, such constructs were implanted without

the reconstruction of the vascular supply, and the nutrients and oxygen were

supplied by diffusion from adjacent tissues. Engineering of modular organs

(namely, organs organized in functioning units referred to as modules and

requiring the reconstruction of the vascular supply) is more complex and chal-

lenging. Models of functioning hearts and livers have been engineered using

‘‘natural tissue’’ scaffolds and efforts are underway to produce kidneys, pancre-

ata and small intestine. Creation of custom-made bioengineered organs, where

the cellular component is exquisitely autologous and have an internal vascular

network, will theoretically overcome the two major hurdles in transplantation,

namely the shortage of organs and the toxicity deriving from lifelong immuno-

suppression. This review describes recent advances in the engineering of several

key tissues and organs.
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infarct, by engineering functional myocardium. The earli-

est attempts at cardiac restoration therapy in humans

were focused on the direct injection of either circulating

progenitor cells or bone marrow-derived progenitor cells

into the infarcted myocardium [3]. Although some stud-

ies showed an improvement in cardiac function following

intravascular injection of such progenitor cells [4,5], the

percent of surviving cells in the infarcted myocardium

was generally very low [6,7]. The low cell survival follow-

ing direct cell injection motivated the use of biomaterials.

The classic approach to use biomaterials for cardiac

regeneration therapy has been to implant a cardiac patch

made from a scaffold seeded with cardiac cells. Zimmer-

mann used neonatal rat cardiomyocytes embedded in a

collagen gel and subjected then to mechanical stimulation

to improve the contractile properties of the patch [8].

Integration of the patch within the native muscle, as well

as improvement in cardiac function was demonstrated.

Later, Leor et al. used alginate sponges seeded with fetal

cardiomyocytes and implanted into the infarcted rat myo-

cardium [9]. After 9 weeks in vivo, only a small portion

of the grafted patch was occupied by cardiomyocytes,

whereas most of the alginate scaffold was filled with colla-

gen fibers and scattered fibroblasts.

A cardiac tissue patch was also created using the cell

self-assembly approach pioneered by Okano [10]. In this

approach, cell sheets were cultivated and detached from

their culture substrate by using a temperature-responsive

polymer substrate. Using this multistep transplantation

procedure, a 1-mm thick cardiac tissue sheets was

implanted onto infarcted adult rat myocardia.

An emerging and promising field in cardiac bioengi-

neering is injectable biomaterials for cellular cardiomyopl-

asty. Injection of a liquid biomaterial which can then be

solidified in situ will not impose a fixed geometry on the

heart muscle as with a cardiac patch. Moreover, injecting

the biomaterial into the scar tissue allows for an intimate

contact between the injected cells and the host tissue,

and, more importantly, an injectable therapy can be

administered using a less invasive procedure. Christman

pioneered investigations on a fibrin glue biomaterial as an

injectable scaffold to deliver myoblasts to the ischemic

myocardium [11]. They reported that the fibrin signifi-

cantly increased cell survival after 5 weeks.

Seliktar proposed a new type of injectable biosynthetic

material based on fibrinogen to be used as a cell carrier in

cardiac cell therapy. The biomaterial is made by conjugat-

ing poly-ethylene glycol (PEG) with fibrinogen to form a

liquid precursor which is then assembled into a hydrogel

matrix in situ using nontoxic photo-polymerization [12].

This formulation allows for the control of the hydrogel’s

degradation rate, while reducing the overall inflammatory

response to the fibrinogen graft. Moreover, controlling the

mechanical properties of the hydrogel by altering the com-

position of the matrix is also possible [13]. The PEGylated

fibrinogen hydrogel was injected into infracted adult rat

hearts together with neonatal rat cardiomyocytes or

human embryonic stem cells (ESC) derived cardiomyo-

cytes. When using the PEGylated fibrinogen biopolymers,

cell survival was increased and the overall cardiac

functionality was significantly improved after 30 days, as

evaluated by echocardiography (26% improvement in

percent factional shortening change) (M. Habib,

K. Shapira-Schweitzer, O. Caspi, A. Gepstein, G. Arbel,

D. Aronson, D. Seliktar, L. Gepstein, unpublished data).

More recently – and with a tremendous potential for

the field of organ bioengineering – Ott et al. have pub-

lished a novel method of perfusion decellularization that

is able to generate whole organ scaffolds [14]. The inser-

tion of a cannula into the ascending aorta allowed retro-

grade coronary perfusion with detergents. Such method

achieved the complete removal of the cellular compart-

ment of a whole heart that was later repopulated with

neonatal rat cardiomyocytes. These latter were delivered

within the heart scaffold through transmural injection,

while endothelial cells were injected through the aorta.

The construct was able to contract up to 2% of the nor-

mal contractile function.

Liver

Hepatocyte transplantation is the most valuable alterna-

tive to whole liver transplantation. Since its first attempt

into a patient with familial hypercholesterolemia [15],

several other cases have been performed to cure different

livers diseases with nonconvincing results [16–25]. These

failures may be attributed to the relatively small number

of hepatocytes that engraft in the recipient because of the

quality and quantity of infused cells, as well as immuno-

suppression-related toxicity. Nonetheless, transplantation

of a number of hepatocytes corresponding to 1–5% of the

total liver mass has been able to show a positive impact

in transplanted patients [26].

As a result of the shortage of available human hepato-

cytes for transplantation, other cell sources have been

identified and used. Specifically, bone marrow-derived

mesenchymal SC [27], hematopoietic SC [28,29] and fetal

liver progenitor cells [30,31] have shown to improve to a

certain extent the condition of cirrhotic patients. Fetal

liver progenitor cells also hold an enormous potential for

cell/RM therapies because of their expansion and differen-

tiation capabilities into hepatocytes and biliary epithelium

[31]. While these alternative SC sources have been

explored, significant advances were made using ESC and

induced pluripotent SC (iPS) to create hepatic cells by

using defined soluble growth factor signals that mimic

Regenerative medicine and solid organ transplantation Orlando et al.

ª 2010 The Authors

224 Transplant International ª 2010 European Society for Organ Transplantation 24 (2011) 223–232



embryonic liver development [32,33]. Embryonic

SC-derived hepatic cells, once transplanted into rodent

livers, were able to engraft and express several normal

hepatic functions [34]. However, more extensive charac-

terization, as well as further safety evaluation, is needed

to determine whether these cells will fully function as pri-

mary adult hepatocytes.

In addition to cell injection therapies, two experimental

approaches may have a reasonable chance for clinical

translation quicker than many others. The first experimen-

tal approach is the cell sheet technology developed by

Okano in Japan [35]. Its simple configuration and fabrica-

tion allows for the stacking of up to four hepatocyte cell

sheets that can readily engraft and provide a defined meta-

bolic relief to the recipient [36]. More recently, Baptista et

al. were able to use a perfusion decellularization technique

to liver, pancreas, intestine and kidney generating decellu-

larized organ scaffolds for organ bioengineering [37]. In

an analogous fashion, Uygun et al. have just published a

comprehensive approach of decellularizing rat livers and

recellularize them with rat primary hepatocytes, showing

promising hepatic function and the ability of heterotop-

ically transplant these bioengineered livers into animals

for up to 8 h [38]. This technology has the potential to

translate into human liver bioengineering, which may offer

readily available organs for drug discovery applications

and for transplantation, overcoming organ availability.

Kidney

The complex anatomy and physiology of the kidney pose

a tremendous challenge for scientists to develop func-

tional self-sustaining renal substitutes. The current inves-

tigational approaches for renal regeneration are of three

types: tissue engineering (TE), developmental biology and

SC.

Four centers have decellularized rodent [37,39,40], por-

cine [37] (http://www.faqs.org/patents/app/20090202977)

and rhesus monkey [41] kidneys to produce a scaffold

with preserved extracellular matrix (ECM) and vascula-

ture. As in the case of heart and liver bioengineering, kid-

ney ECM maintains its natural characteristic in terms of

protein and growth factors content. Ross et al. seeded rat

renal ECM with murine ESC through the artery and

ureter. Cells proliferated and repopulated within the

glomerular, vascular, and tubular structures. Interestingly,

cells lost their embryonic phenotype and turned on

expression of Pax-2 and Ksp-cadherin, which are nor-

mally expressed in the ureteric bud (UB), the induced

metanephric mesenchyme (MM) and the distal nephron

tubular cells at late developmental stages [40]. Notewor-

thy, a perfectly intact vascular tree, present in the kidney

ECM but lacking in artificial polymeric scaffolds, will

grant the physiological delivery of oxygen and nutrients

rather than only through diffusion [37].

Embryologic precursors of the urinary tract are being

used to engineer kidneys, under specific culture condi-

tions and the adoption of developmental biology tech-

nique. Kidneys develop from interactions between cellular

components of two embryonic structures from which the

entire adult nephron derives, namely the UB arising from

the Wolffian duct and the MM. Combination of cells iso-

lated and expanded from both UB/MM were seeded in a

three-dimensional (3D) ECM gel, in the presence of con-

ditioned media from an MM cell line or a medium con-

taining hepatocyte growth factor and an epithelial growth

factor receptor ligand [42,43]. Investigators were capable

of inducing both branching morphogenesis in Wolffian

duct tissue in cultures combining UB and MM cells, and

MM epithelialization and tubulogenesis with apparent

duct-like tubules with lumens. In vitro, culture of full UB

and MM in presence of similar growth factors lead to a

primordial kidney structure referred to as metanephroi,

complete with its parenchyma and collecting system [43].

In vivo implantation of metanephroi in different rodents’

models showed survival and generation of concentrated

filtrate [44–46].

The human kidney has an intrinsic capability to repair

after injury [47]. The repair process is accomplished by

migration of new cells (stem/progenitor cells) into the

damaged region, with eventual reconstitution of a func-

tional epithelium. Such progenitors have been identified

in resident epithelial cells, activated renal macrophages

and glomerular parietal epithelial cells, but investigators

believe that SC cells with broader regenerative properties

are endowed in niches located in the proximal tubuli,

glomeruli, papilla and peritubular capillaries, as well as

urine itself [48]. Investigators are currently identifying

niches within the kidney where SCs with regenerative

capacities are most likely endowed. Such SC should

express the phenotype for MM epithelial precursor cells.

Overall, RM for renal diseases is at its infancy and far

from being established. The renal assist device is the only

engineered kidney having completed phase II clinical tri-

als in acute renal failure complicating sepsis, with encour-

aging interim data [49,50].

Pancreas

Regeneration of insulin-producing b-cells is a major goal

for RM. The limited availability of human islets for trans-

plantation and severe complication of immune-suppres-

sion therapy encourage scientist to search for a cell-based

approach that produces large numbers of transplantable

b-cells or islets to meet the needs of the many millions of

diabetic patients.
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Historically, attempts to produce large numbers of

functional b-cells have utilized ESC and staged culture

techniques that recapitulate the pancreatic ontogeny of

b-cells [51]. Using ‘‘cocktails’’ of differentiation factors,

ESC and other SC types can be directed to differentiate

into endoderm, pancreatic progenitors, insulin-producing

cells, and finally cells with some but not all of the pheno-

typic and functional characteristics of b-cells [52–54].

Chandra et al. found that adipose derived SC differenti-

ated into insulin-producing cells in culture and normal-

ized blood glucose levels after transplantation into

diabetic mice [55]. Despite the inability to obtain actual

b-cell or islets, human ESC and other SC types differenti-

ated along the pancreatic lineage, display the ability to

respond to glucose and secrete insulin when transplanted

into mice, suggesting that the transplant ‘‘environment’’

provides the necessary signals to induce terminal differen-

tiation [54–56].

Introduction of and ectopic expression of pancreatic

transcription factors such as Pdx1 and MafA, known as

direct reprogramming, increases the efficiency of deriva-

tion of pancreatic-like cells from SC. Reprogramming

techniques could shorten the steps necessary to differenti-

ate SC into terminally committed cell types. Chiou et al.

found that constitutive expression of MafA facilitated dif-

ferentiation of placental-derived SC into insulin-produc-

ing cells able to respond to high glucose levels in vitro

and, after transplantation, restore euglycemia in diabetic

mice [57]. Induced pluripotent SC and amniotic fluid SC

might also differentiate into b-cells under the influence of

appropriate genetic signaling. However, greater control

over expression of introduced transcription factors is

probably necessary to predictably guide SC to the desired

cell phenotype [58].

Scaffolds or tissue constructs might serve as adjuncts to

current cell-based approaches aiming to produce large

numbers of functional pancreatic endocrine cells. An

environment that allows 3D contacts may be necessary

for appropriate terminal differentiation and functional

phenotype in vitro and in vivo and appear to increase the

efficiency of cell-based approaches for pancreatic islet TE

[59,60]. However, islets, which have the ability to engraft

and function within the liver, can simply be transplanted

by percutaneous access to the portal vein, whereas a

whole organ would require revascularization and possibly

even exocrine drainage; which is clearly a more invasive

procedure. Besides the challenge of obtaining large num-

bers of functional b-cells, cell-based therapies are faced

with the risk of tumor formation and attack by the

immune system (both allogeneic and autoimmune

responses). Derivation of and the ability to differentiate

SCs from patients may address some of these challenges,

but the autoimmune nature of type 1 diabetes could still

be problematic, and may require effective immunoisola-

tion of the cells by microencapsulation prior to transplan-

tation [61].

Airways

The larynx is a complex organ responsible for protecting

the lungs from aspiration. Complete replacement will

require the ability to engineer whole neuromuscular units,

although there is immediate requirement for structural

replacement following trauma, tumor or stenosis [62].

The respiratory organ on which RM has had most

impact, however, is the trachea. After the first report of a

clinically significant tracheobronchial defect treated with

the implantation of an acellular bioartificial airway patch

[63,64], Macchiarini et al. restored normal function to a

30-year-old mother whose tracheobronchial tree had been

damaged by tuberculosis [2,65,66]. An SC-based bioengi-

neered airway trachea was manufactured ex vivo and

transplanted with immediate normalization of lung func-

tion. Briefly, a decellularized trachea retrieved form a

deceased donor was seeded with autologous SC-derived

chondrocytes and epithelial cells. The construct was

allowed to mature into a bioreactor for 7 days, before

implantation. Later, the same authors used an updated,

intraoperative technique to graft a 7-cm trachea into an

11-year-old boy with congenital stenosis, with excellent

early results. In this case, the new organ was implanted

without undergoing any maturation period ex vivo (M. J

Elliott, M. A Birchall, D. Roebuck, S. Speggiorin, A. Fie-

rens, L. Cochrane, C. Doyle, D. Vondrys, P. DeCoppi,

M. Lowdell, P. Macchiarini, unpublished data).

Lung bioengineering remains a major challenge, possi-

bly in reason of the complexity of the tissue and the vari-

ety of cell types present in the lung. Lungs have been

regenerated through the seeding of pulmonary epithelium

and vascular endothelium on rat lung ECM [67,68]. Lung

decellularization allows complete cell removal, while

retains the hierarchical branching structures of airways

and native vasculature. The mechanical characteristics of

the above-mentioned constructs were comparable with

those of native lungs, and when implanted into rats

in vivo, the engineered lungs were effective in gas

exchange.

Noteworthy, a biologically inspired bioengineering

approach has been recently described by Ingber et al.

[69]. By applying nano- and microscale engineering tech-

nologies, the authors developed a cutting-edge multifunc-

tional microdevice able to reconstitute the functional

alveolar-capillary interface and to reproduce complex

responses to bacteria and inflammation. They first micro-

fabricated a microfluidic system containing two closely

apposed microchannels separated by a thin, porous, and

Regenerative medicine and solid organ transplantation Orlando et al.

ª 2010 The Authors

226 Transplant International ª 2010 European Society for Organ Transplantation 24 (2011) 223–232



flexible membrane. Thereafter, both sides of membrane

were coated with ECM, on which human microvascular

endothelial and alveolar epithelial cells were eventually

cultured. The engineered construct reproduced key struc-

tural, functional and mechanical properties of the funda-

mental functional unit of living lungs. In doing so,

authors provided proof that development of cell-based

biochips that reproduces complex organ-level responses

could revolutionize fields that currently rely on animal

testing and clinical trials [69].

Digestive tract

Despite the first pioneering investigations in the field of

intestinal bioengineering date back to the 1980s [70], the

initial excitement has been blunted by the considerable

limitations and roadblocks encountered in the course of

experimental investigations. The main culprit of such

stagnation is the complexity of intestinal anatomy and

the various functions of the intestine.

The early observation that enteric cells at the interface

between a synthetic material used to patch a full thickness

defect within the small intestine of a rodent and the

native mucosa can migrate into the bare area to regener-

ate organized epithelium [71], paved the ground for

future investigations. Vacanti’s group in Boston processed

neonatal rodent intestine to obtain partially digested

pieces of intestine, referred to as organoid units. These

units were seeded on a nonwoven polyglycolic acid

(PGA) fiber and the constructs were implanted in rats

having undergone the resection of 85% of their native

intestine, to mimic short gut syndrome [72–75]. Bioengi-

neered intestinal constructs were able to partially replace

gut function in rats and, more recently, similar results

have been described in pigs [76]. However, this technol-

ogy is time consuming and expensive, as several centime-

ters of bowel are needed to obtain a sufficient number of

organoid units able to repopulate just a few centimeters

of engineered intestine. On the other hand, organoid

units cannot be cultured and grown easily in vitro. In the

future, the requirement for organoid units might be over-

come by using SC to generate organoids [77].

Stem cells hold a great promise for intestinal bioengi-

neering. As any other tissue in the body, the intestine

hosts a population of slowly cycling SCs that maintain

tissue homeostasis. The entire intestinal epithelium may

be completely replenished every 3–4 days [78,79]. Intesti-

nal SCs are believed to reside in the base of Lieberkuhn

crypts and express Lgr5 [79,80]. Very recently, single

Lgr5+ cells from intestinal crypts were capable of building

crypt-villus structures in vitro without any mesenchymal

niche [81]. As these cells can be reliably expanded in cul-

ture, they could represent the ideal source of progenitor

cells for intestinal bioengineering. To further organize

functional structures in vitro and in vivo, several synthetic

or natural scaffolds have been adopted to support cell

growth and differentiation, with unsatisfactory results

[82–85]. To proceed toward clinical translation, it is pos-

sible that the engineering of less complex gut structures

such as the esophagus may be desirable. A model of bio-

engineered esophagus has been recently developed in

dogs. Oral keratinocytes and fibroblasts were first cultured

on human amniotic membrane. Subsequently, the con-

struct was laid over PGA scaffolds seeded with smooth

muscle tissue and eventually rolled around a tube. Engi-

neered scaffolds were then wrapped within the omentum

and implanted intra-abdominally. Three weeks later, scaf-

folds developed into an esophagus-like tube showing a

well-differentiated stratified squamous cell layer sur-

rounded by a thick smooth muscle-like tissue. Thereafter,

a segment of native esophagus was resected and replaced

by the so-obtained graft in the same dogs [86].

Corneas

Cornea bioengineering presents three major challenges:

functionality, strength, and transparency [87]. A number

of reports have shown that progenitor cells, present at the

basal surface of the limbus – namely, a specialized niche

at the boundary between the cornea and conjunctival epi-

thelium [88,89] – can be isolated and expanded in cul-

ture. These cells have been successfully used in animal

models to restore corneal function [90–96]. Choi et al.

investigated a clinically applicable and readily expandable

source of human corneal endothelial cells (HCECs). Their

data indicate that HCECs can be successfully isolated

from residual human sclera rims obtained during routine

endothelial keratoplasty [97].

The ideal cell carrier for corneal endothelium should be

noncytotoxic, biodegradable, transparent, and have appro-

priate mechanical properties. In addition, it should be eas-

ily integrated into the surrounding tissue and permit

sufficient fluid transport between the anterior chamber and

the corneal stroma. Several graft materials have been pro-

posed and used as scaffolds for corneal endothelium trans-

plantation [98–106]. Natural scaffolds are normally

difficult to handle during the implantation, whereas syn-

thetic scaffolds often integrate poorly with host tissue

[107]. In contrast, corneal stroma has a unique ECM orga-

nization which provides appropriate mechanical properties

and transparency as well as inherent biological properties

which are ideal to support cell functions [108]. Previous

reports indicate that CECs grow best on corneal endothelial

ECM [109,110]. For these reasons, Choi et al. developed

corneal scaffolds derived from human corneal stromas for

corneal endothelium transplantation. Human corneas can

Orlando et al. Regenerative medicine and solid organ transplantation

ª 2010 The Authors

Transplant International ª 2010 European Society for Organ Transplantation 24 (2011) 223–232 227



be cut into 120–200 lm thick slices and decellularized. The

corneal scaffolds retain ECM components that support cell

growth and functions, and maintain basic biomechanical

properties [97]. This potentially increases the number of

transplants fourfold from each donated cornea and pro-

vides a human source of corneal tissue.

Immunology

Very little is understood regarding the host immune

response to bioengineered constructs [111,112]. The avail-

able literature shows that the host response to the implan-

tation of materials composed of ECM involves both innate

and acquired immunity. Such response is affected by con-

struct characteristics, including the source of the scaffold-

ing material, the methods used for manufacturing and the

degradation rates. The recipient characteristics such as spe-

cies and site of implantation may also affect the response

[111]. In general, it is assumed that reactions following the

implantation of biomaterials include wounding, blood–

material interactions, provisional matrix formation, and

inflammation. The response of the immune system is vig-

orous as demonstrated by the onset of an early and acute

inflammatory response consisting mostly of polymor-

phonucleate cells; moreover, cytokine and antibody analy-

sis has revealed the presence of a Th-2 type response in the

absence of a Th-1 response, consistent with tissue accep-

tance rather than rejection [113]. In some cases, such

sequence of events leads to chronic inflammation with or

without frank foreign body reaction, with formation of a

fibrous capsule [114,115]. The consequences of the reac-

tion to the material surface can be devastating, yet con-

structs may undergo a remodeling process which plays an

important role in the successful clinical application of these

devices. In fact, the rapid infiltration and proliferation of

functional host cells at the implantation site, and the depo-

sition and assembly of new replacement matrix, are essen-

tial for the integration of the engineered tissue into its new

niche. It is important to note that such response is not

comparable with that triggered by allogeneic cellular con-

structs where the mechanisms of immune rejection would

destroy the whole engineered tissue, in the absence of any

pharmacological suppression of the immune system.

Final remarks

The need for improved treatment modalities for patients

with diseased or absent tissues or organs is evident. RM

holds the promise of regenerating tissues and organs by

either stimulating previously irreparable tissues to heal

themselves, or manufacturing them ex vivo. In the first

scenario, cells with regenerative potential are targeted to

the diseased bodily district. Given the multitude of

available sources of such cells, it remains unclear which is

the most appropriate cell source. Although this may vary

depending on the tissue or organ of interest, it is impor-

tant to fully understand the biological mechanisms con-

trolling differentiation along a specific lineage of all cell

types. Ideally, it is desirable to have the ability to harvest

autologous cells and employ them with minimal ex vivo

manipulation. Ultimately, the goal is to identify cells that

can be easily harvested and differentiated consistently

along the lineage of interest.

In the second scenario, differentiated cells or SC are

seeded on supporting scaffolds and allowed to mature in

custom-made bioreactors. Human or animal-derived whole

tissue ECM scaffolds are preferred, compared with artificial

homogeneous materials, because they preserve an intact

vascular network that will allow regeneration of the vascu-

lar system for optimal delivery of nutrients and oxygen.

The utilization of autologous cells rules out immunological

breakdowns and concerns, and limits the response of the

immune system to a nonharmful inflammatory reaction.
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