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Introduction

The ongoing shortage of donor organs and need of life-

long immunosuppression for the thousands of patients

suffering from end-stage diseases worldwide claim a ther-

apeutical shift. Tissue engineering (TE) is increasingly

regarded as a potential solution to allotransplantation. It

focuses on the repair, replacement, and regeneration of

cells, tissues or organs to restore impaired function result-

ing from any cause, including congenital defects, disease,

trauma, and aging. By using a combination of several

approaches that moves beyond traditional replacement

therapies, TE has already provided functional tissue [1,2]

and organ [3] human replacement. TE involves the

replacement of tissues and organs by using engineered

matrices or scaffolds and target cells that can be seeded

on or within the matrices [4] and cells represent one of

the primary ‘‘raw material’’ required for building tissues

and organs in the TE approach. The aim of this review is

to discuss the immunogenicity and immunomodulatory

properties of the mesenchymal stromal cells (MSCs), their

possible mechanisms and their potential clinical use in

the field of TE.

Stem cell and TE

A renewable and expandable cell source as well as the

availability of a sufficient number of cells that maintain

the appropriate phenotype and perform the required bio-

logical functions is a clearly desirable focus for TE strate-

gies. Cells must produce extracellular matrix in the

correct organization, secrete cytokines, and other signal-

ing molecules, and interact with neighboring cells/tissues.

Immediately, this raises a number of potential problems,

the first of which is the selection of cell type and source.

Cells used in TE may be allogeneic, xenogeneic, synge-

neic, or autologous. Ideally, the cells should be nonimmu-

nogenic, highly proliferative, easy to harvest, and have the
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Summary

Mesenchymal stromal cells (MSCs), a rare heterogeneous subset of pluripotent

stromal cells that can be easily isolated from different adult tissues, in vitro

expanded and differentiated into multiple lineages, are immune privileged and,

more important, display immunomodulatory capacities. Because of this, they

are the preferred cell source in tissue-engineered replacements, not only in

autogeneic conditions, where they do not evoke any immune response, but

especially in the setting of allogeneic organ and tissue replacements. However,

more preclinical and clinical studies are requested to completely understand

MSC’s immune biology and possible clinical applications. We herein review the

immunogenicity and immunomodulatory properties of MSCs, their possible

mechanisms and potential clinical use for tissue-engineered organ and tissue

replacement.
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ability to differentiate into a variety of cell types with spe-

cialized functions. Although autologous cells are the most

desirable compared with allogeneic and xenogeneic cells,

with regard to immunological compatibility and pathogen

transmission, in general, they are differentiated and post-

mitotic. Primary cells are still used in TE approaches

[5–7], however, their proliferation rates tend to be low,

harvesting from a patient or donor could be related to

disadvantages (e.g. cartilage harvesting is related to donor

site pain) or could not be an option (e.g. brain, heart and

pancreas do not provide a readily available cell source)

and, depending on the extent of end-organ/tissue damage,

there may not always be a sufficient pool of viable tissue

or cells available for biopsy and subsequent expansion.

These limitations have stimulated studies to find and

develop alternative cell sources for TE strategies and stem

cells, having the ability to continuously renew themselves,

maintaining the ability to differentiate into various cell

types, are already providing promising solutions for TE

applications [8,9].

The different stem cell types are described below, and

the concerns and advantages related to their use in TE

approaches are reported in Table 1. Stem cells may be

embryonic (ESCs), perinatal (cord blood, amniotic fluid)

or adult. ESCs, isolated from the inner cell mass of the

blastocyst, are highly pluripotent and have the potential

to differentiate into almost any cell in the body, providing

a chance to obtain a renewable source of healthy cells and

tissues to treat a wide array of diseases. Amniotic stem

cells, which can be induced to differentiate into different

Table 1. Concerns and advantages of different cell types to be used in tissue engineering approaches.

Cell type Concerns Advantages References

Autologous

differentiated cells

Harvesting not always possible

Limited expansion capacity

Low risk of teratoma

No immunological response

No risk of teratoma

[121–123]

Allogenic

differentiated cells

MHC I/II dependent immunological

response

Harvesting not always possible

Limited expansion capacity

Low risk of teratoma

No risk of teratoma [121,123]

Adult stem/progenitor

cells

Immunogenicity cell type dependent

(different MHC I/II expression)

Low to moderate risk of dedifferentiation

Long lasting culture increases risk of

de-differentiation

Immunomodulatory capacity

cell type associated

High expansion capacity

[124–126]

Amniotic

fluid/placenta/umbilical-cord

blood (UCB) derived cells

No to low ethical consideration

Tumorgenicity so-far unknown

Variable immunogenicity ascribable

to cell dependent MHC I/II expression

Low risk of teratoma

No to low ethical

consideration

Stable karyotype (UCB)

No teratoma risk (UCB)

High source for stem and

progenitor cells

Easy isolation

Multipotency

Expression of HLA-G

(immunomodulatory

functions) (amniotic cells)

[126–130]

Embryonic and fetal

stem/progenitor cells

Significant ethical consideration

Variable immunogenicity ascribable to

cell dependent MHC I/II expression

Possible infection risks

Potential teratoma development

De-differentiation risk

Pluri- to Omni-potency

High to unlimited

self-renewing capacity

[125,126,131,132,133]

Induced pluripotent

stem cells

Epigenetic memory of the tissue of origin,

with possibility to revert into original

cell source phenotype

Teratoma risk

Potential immunogenicity in syngeneic

recipients

Pluripotency

Unlimited isolation

[14,128,134–138]

MHC, major histocompatibility complex.
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cell types representing each embryonic germ layer

(including cells of adipogenic, osteogenic, myogenic,

endothelial, neuronal, and hepatic lineages) [10], have

intermediate characteristics between embryonic and adult

stem cells, are not tumorigenic [11], and there are no

ethical issues concerning their use, suggesting that they

might be promising candidates for TE approaches [12].

Recently, induced-pluripotent stem cells (iPS) resulted to

be a unique, nonimmunogenic, autologous alternative to

ESCs, with similarly high differentiation potential; how-

ever, preclinical studies have reported iPS possible

immune recognition and consequent rejection, especially

in syngeneic recipients [13].

Multipotent adult stem cells have been described from

a wide range of adult tissues (including the brain, heart,

lungs, kidney, and spleen), and are commonly called mes-

enchymal stem cells or, more commonly now MSCs.

MSCs hold great promise as tools for further develop-

ment of TE technologies and, are at the moment highly

considered as a cell-based therapeutic tool for a diverse

range of clinical purposes (http://clinicaltrials.gov/). MSCs

can be easily isolated from various tissue sources, in vitro

readily expanded and differentiated. Moreover, recent

studies have highlighted that MSCs possess potent anti-

inflammatory and immunomodulatory effects, and

through either direct cell–cell interaction or factor secre-

tion, can exert strong effect on local tissue repair and

regeneration and could then provide a preferred tool for

TE approaches.

MSC immunomodulatory properties

MSCs have been identified within specific niches in a

variety of human tissue/organs [such as bone marrow

(BM), umbilical cord, adipose tissue, heart, brain, muscle]

and have a key role in tissue and organ maintenance,

regeneration, and repair [14]. MSCs are characterized by

a continuous cell cycle progression for self-renewal and a

potential to differentiate into highly specialized cell types

of the mesodermal, endodermal, and neuroectodermal

lineage [15–20]. Once implanted, MSCs are able to inter-

act with the surrounding microenvironment, to promote

tissue healing and regeneration, renew biologic function

and to support and rejuvenate host cells [21–23]. MSC

in vivo effects are mainly based on supportive and trophic

functions and on crosstalk with other cells present within

diseased tissues [24–26]. In addition, MSCs showed to

possess immunomodulatory properties [27,28], and their

immune phenotype (widely described as major histocom-

patibility complex (MHC) MHCI+, MHCII), CD40),

CD80), CD86)) is regarded as non, hypoimmunogenic

and allow MSCs to evade the host immune system

[29,30]. It has been demonstrated that MSCs have the

ability to modify and influence almost all the cells of the

innate and adaptive immune system, to interfere and

affect cellular proliferation, differentiation, maturation,

and function to induce an anti-inflammatory/tolerant

phenotype and to modulate the immune response [31–

34]. In particular, allogeneic MSCs (allo-MSCs), having

the ability to promote active immunological tolerance to

donor MHC, could be considered as a suitable therapy

for allogeneic transplantation [22,35,36].

Even if not completely understood, it has been

reported that not only cell–cell interaction (direct effects)

but also soluble factors (indirect effects) are involved in

the mechanisms that convey these properties to MSCs

[37–39] (Fig. 1). The major mechanisms responsible for

MSC immuno modulatory properties are briefly reported

below and summarized in Table 2.

MSCs and innate immune system

Dendritic cells

It has been demonstrated that MSCs modulate different

aspects of dendritic cell (DC) function in vitro (such as

differentiation, maturation, and activation) [40–42], and

in vivo [43–46]. MSCs influence DC development,

impairing in vitro differentiation of monocytes and

CD34+ to DC [47–49], and maturation, inducing a

decreased DC cell expression of specific markers, such as

CD40, CD83, and CD86 costimulatory molecules

[40,41,48,50]. By doing so, MSCs cause alteration of DC

cytokine secretion profile, inducing a decreased secretion

of pro-inflammatory cytokines [such as tumor necrosis

factor a (TNFa), interferon-c (IFNc), interleukin-12 (IL-

12)], and an increased production of IL-10, which is a

suppressive and tolerogenic cytokine and a potent inducer

of regulatory T-cells (Treg) [49,51,52]. Moreover, it has

been demonstrated that DC cells, generated in the pres-

ence of MSCs, are strongly hampered in their ability to

induce T-cell activation [48,50]. Thus, MSCs disrupt the

three major functions that characterize DC maturation:

the up-regulation of antigen presentation/co-stimulatory

molecule expression, the ability to present defined anti-

gens, and the capacity to respond to chemotactic signals

(such as CCL19) [41]. In vitro experiments have indicated

that the suppressive effects of MSCs on DC is mediated

by both MSC soluble factors [such as IL-6, monocyte-

colony stimulating factor (M-CSF) and prostaglandin E2

(PGE2)], which influencing DC maturation, lead to T-cell

suppression [48] and by cell–cell contact that drives

mature DC to differentiate into a novel Jagged-2-depen-

dent regulatory DC population capable of suppressing

lymphocyte proliferation [42]. Cell–cell contact seems to

play a crucial role in mediating the MSC effect on DC

function and it has been recently demonstrated that
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MSCs shift DCs from immunogenic to being capable of

producing immunological tolerance through contact

induced cytoskeleton modifications [53]. Overall, MSCs,

modulating DC functionality, are indirectly able to regu-

late T- and B-cell activity.

Using animal model, it has been in vivo demonstrated

that MSCs can delay the development of acute graft-ver-

sus-host disease (GVHD) altering DC migratory proper-

ties [43], and can suppress DC function during allogeneic

islet transplant [54], suggesting a major role of DC mod-

ulation in immune modulation properties of MSCs.

Natural killer cells

The MSCs mediate natural killer (NK)-suppression by dif-

ferent mechanisms: the proliferation and cytokine produc-

tion of stimulated NK cells resulted suppressed via soluble

factors [such as indoleamine2,3–dioxy-genase (IDO),

PGE2 and transforming growth factor b (TGFb)] [55,56];

although the inhibition of NK-cell cytotoxicity required

cell–cell contact [57]. It has been shown that MSCs exert

an inhibitory effect on the NK-cell cytotoxicity against

HLA class I positive targets that are less susceptible to NK-

mediated lysis than HLA class I-negative cells [57]. How-

ever, to date little is known on the interaction of MSCs

with NK cells, especially in in vivo environment.

Very few experimental evidences have been till now

reported regarding the interaction of MSCs and other

elements of the innate immune system (such as neu-

trophils, monocytes, and macrophages) and in vivo

mechanisms are almost completely not understood.

Using an animal model of sepsis, it has been reported

that auto- and allo-MSCs reduced animal mortalities

enhancing IL-10 production by means of a direct inter-

action with macrophages (mediated by monocytes)

[58]. Recent reports indicate that MSCs may express

membrane-associated proteins, such as toll-like receptors

(TLR), which play a critical role in clinically established

immunomodulation [59–61]. Indeed the ligation of

TLR-3 (to double-stranded RNA) and of TLR-4 (to

lipopolysaccharide and innate self antigens) block the

MSC ability to inhibit T-cell responses, downregulating

MSC immune modulation [60], whereas the galectins

resulted were able to modulate the release of cytokines

involved in GVHD and autoimmunity [62]. This sug-

gests that MSCs have multiple effects depending on the

local microenvironment and could be more effective in

suppressing chronic inflammation (not driven by patho-

gens) without impairing inflammatory responses essen-

tial to antimicrobial defense (where TLR would be

abundant) [26].

Taken together these findings suggest that the MSCs

can modify the innate immune mediator functions to

protect themselves and suppress different destructive

inflammatory pathways.

Figure 1 Immunomodulatory effects of MSCs. CD, cluster of differentiation; HGF, hepatocyte growth factor; ICAM, inter-cellular adhesion mole-

cule; IDO, indoleamine2,3-dioxy-genase; IL, interleukin; M-CSF, monocyte-colony stimulaying factor; PGE2, prostaglandin E2; TGFb, transforming

growth factor b; Th, helper T-cells; VCAM, vascular cell adhesion molecule.
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MSCs and acquired immune system

T-cells

The MSCs modulate the activation, proliferation, and

function of both effector and Treg: MSCs inhibit prolifer-

ation and cytokine production of activated CD4+ T-cells

[37,63–65] and of memory T-cells [66,67] and suppress

the formation of cytotoxic CD8+ T-cells [51,52]. It has

been reported that MSCs actively attenuate T-cell activa-

tion, up-regulating anti-inflammatory helper T-cell (Th)2

cytokines (such as IL-3, IL-5, IL-10, and IL-13) and

down-regulating pro-inflammatory Th1 cytokines (such

as IL-1a and b, IFNc, and TNFa) [68]. On the contrary,

even if relatively resistant to cytotoxic T-cells, MSCs

resulted not to be able to inhibit their cytolytic activity

[66]. Furthermore, MSCs exert an anti-inflammatory

effect, by inducing Treg phenotype in Th cells [69]. It has

been demonstrated that MSCs down-regulate T-cell

response both through secretion of anti-inflammatory

and tolerogenic cytokines (which may involve also the

recruitment of Tregs) and direct cell–cell contact [68].

Several MSC-derived soluble factors seems to be

involved in this inhibitory effect, such as IL-10, hepato-

cyte growth factor, TGFb, and PGE2 [32,67,70]. T-cell

proliferation resulted also to be inhibited by up-regula-

tion of IDO expression, which is responsible of the inhi-

bition of cell proliferation [71,72]. Moreover, it has been

recently demonstrated that IDO effect could be also

exerted via the local accumulation of tryptophan metabo-

lites [73]. In vitro studies, evaluating the effect of super-

natants from MSC cultures, suggested that these

suppressive factors are not constitutively expressed/

secreted by MSCs but require a dynamic crosstalk

between MSCs and T-cells and are induced by exogenous

factors (such as IFN-c and TNFa) [35].

The MSCs express adhesion molecules (such as ICAM-

1, 2, VCAM, CD72), up-regulated under inflammatory

conditions, which having high affinity for T-cell, keep

T-cells in close proximity increasing the inhibitory effects

of released cytokines [74].

In addition, MSCs have been reported to induce T-cells

to enter an anergic state (arrest in G0-G1 phase of the cell

cycle, associated with inhibition of cyclin D2 expres-

sion),only partly reversed by exogenous IL-2, [75] and to

promote the survival of resting T-cells, by protecting

them from apoptosis [76]. Moreover, even if not

completely clear, it seems that MSCs modulate immune

response also in an indirect way: increasing the production

Table 2. The multiple effects of MSCs on immune cells.

Immune cells Effect Mediated by Reference

Innate immune system

Dendritic cells (DC) Inhibition of differentiation and maturation of

CD34+ DC

MSC soluble factors

(IL-6, M-CSF, PGE2)

[49]

Decrease of DC cell expression of costimulatory

molecules

[49]

Alteration of DC cytokine secretion profile [49,51,52]

Influence in DC maturation mechanisms [41,48,50]

Natural killer (NK) cells Suppression of proliferation and cytokine

production of stimulate NK cells

MSC soluble factors

(IDO, TGFb, PGE2)

[55,56]

Inhibition of NK-cell cytotoxicity Cell–cell contact [57]

Acquired immune system

T-cells Inhibition of proliferation and cytokine production

of activated CD4+ T-cells

MSC soluble factors (IL-10,

HGF, TGFb, PGE2, IDO)

induced by exogenous

factors (IFN-c and TNFa)

direct cell–cell contact: by

adhesion molecules

(ICAM-1, 2, VCAM, CD72)

[32,35,66,136]

Inhibition of proliferation and cytokine production

of memory T-cells

[65,66]

Suppression of the formation of cytotoxic CD8+

T-cells

[49,51]

Downregulation of pro-inflammatory Th1 cytokines [64]

Upregulation of anti-inflammatory Th2 cytokines [64]

Induction to enter an anergic state [74]

Production of selective Treg MSC soluble factor (PGE2) [32,49,76,77]

B-cells Inhibitory effect (arresting cell cycle in G0/G1

phase) (MSCs in high doses)

MSC soluble factors (IL-10,

HGF, TGFb, PGE2, IDO)

induced by exogenous

factors (IFN-c)

[26,89]

Stimulatory effects (induction of B-cell

differentiation) (MSCs in low doses)

[90,91]

CD, cluster of differentiation; HGF, hepatocyte growth factor; ICAM, inter-cellular adhesion molecule; IDO, indoleamine2,3-dioxy-genase; IFN-c,

interferon-c; IL, interleukin; M-CSF, monocyte-colony stimulating factor; PGE2, prostaglandin E2; TGFb, transforming growth factor b; Th, helper

T-cells; TNFa, tumor necrosis factor a; Treg = regulatory T-cells; VCAM = vascular cell adhesion molecule.
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only of Treg with suppressive properties and stimulating

Treg proliferation in a selective way [32,49,77,78].

Preclinical studies demonstrated that pretransplant

infused MSCs, inducting Treg cells, prolong the survival

of allogeneic transplants [44,79,80] and prevent diabetes

mellitus [81,82]. Moreover, recent human clinical studies

have demonstrated that, via the same mechanisms, MSCs

are able to suppress the immune responses to allo-anti-

gen, preventing allograft rejection, GVHD and autoimmu-

nity [26,36,83–88].

Even if these results confirm in vivo the clinical rele-

vance of MSC induction of Treg cells, several questions

(e.g. the efficacy of regulatory effect and the possible

translation of animal studies on human) still remained to

be clarified.

B-cells

The concentration of MSCs is determinant to the effect

on B-cells. It has, indeed, been reported that in high

doses, MSCs exert inhibitory effect on B-cells, while in

low doses have stimulatory effects. The inhibition is med-

iated not by the activation of apoptosis pathways, but

arresting cell cycle in G0/G1 phase [89,90]. On the other

hand, the stimulatory effect seems to be activated because

MSCs, acting like DC, induce B-cell differentiation and

rescue them from apoptosis [91]. Furthermore, a recent

study demonstrated that MSCs can support survival, pro-

liferation and differentiation of B-cells to antibody secre-

tion cells [92]. Moreover, the release of soluble cytokines

(such as IFN-c) by activated T-cells resulted to play a role

in mediating the effects of MSCs on B-cells [93].

Preclinical studies produced conflicting results: some

groups reported MSC inhibition of antigen-specific anti-

body production, although others did not reveal an auto-

antibody MSC suppression, suggesting a complex

interaction, involving inhibitory pathways and potential

for stimulatory effects.

Overall, MSCs seem to regulate immune responses by

reducing the generation/differentiation of DC, down-reg-

ulating NK-cell cytotoxicity and proliferation, suppressing

effector T-cells, and increasing the number of Tregs.

Most of the research, evaluating immunomodulatory

properties of MSCs, have been performed using BM-

derived MSCs, However, recent findings suggest that

MSCs derived from different sources (adipose tissue,

umbilical-cord blood, and cord Wharton’s jelly) are com-

parable in terms of ability to suppress mitogen-induced

T-cell proliferation and mechanism of action (mediated

by IDO) [94], and that the antiproliferative effect of

MSCs is a property shared by all stromal cells [95]. These

results suggest that these cells could be suitable alterna-

tives to BM stromal cells for allogeneic transplantation in

TE [96].

Future challenges

Initial clinical trials, evaluating the potential of MSC

immunomodulatory effects, have been completed or are

underway [97]: donor MSCs have been reported to attenu-

ate some aspect of the GVDH [98], and numerous patients

(affected by different pathologies, e.g. GVDH, diabetes

mellitus, stroke) have safely received allo-MSC therapy

[26,85]. Although evidences of therapeutic benefits, recent

large clinical trials reported disappointing results in term

of the MSC efficacy [99] and, in particular, it remains

unclear if the efficacy of allo-MSCs and auto-MSCs are

equivalent and which mechanisms are in vivo induced by

allo-MSCs. Further research and a critical analysis of the

immunomodulatory properties of the MSCs, in particular

allo-MSCs, are, then, needed before translating the prom-

ising early studies into clinical practice.

Several key issues have to be addressed and clarified to

fully understand MSC therapeutic capacity.

One of the major questions concerning the MSC clini-

cal application is the importance of their origin: autolo-

gous or allogeneic. Although it has been demonstrated

that allo-MSCs are better immunosuppressors [78], they

resulted to protect from sepsis death [58], neuronal loss

[99], neurological injury [100,101], and to enhance

wound closure [102] in a similar way to auto-MSCs.

Moreover, both auto- and allo-MSCs were able to induce

both immunogenicity and immune modulation, which

could be a beneficial for the use of MSC against autoim-

mune disease. However, an evidence of allo-MSC immu-

nogenicity has been often reported: in several studies the

allo-response was weak, although in others, allo-MSCs

demonstrated to be highly immunogenic. Table 3 reports

a summary of recent preclinical animal studies in which

immunogenic properties of allo-MSCs have been in vivo

evaluated or in which allo-MSC effects have been com-

pared with auto-MSC.

The administration route seems to exert an important

role in determining cell immunogenicity: only intrarticu-

lar, intracerebral, intracranial, and direct implantation

into skin wounds resulted to be correlated with none or

low immunogenicity. However, Coyne et al. [103]

reported that intracerebral-administrated MSCs were

rejected as early as 14 days. A plausible hypothesis for this

contradictory result could be that MSCs used underwent

10–15 cellular passages, which could have modified cell

phenotype (such as a decrease in protein involved in sig-

nal transduction) and intrinsic properties [45]. As a con-

sequence, the safety profile of MSC administration route

must continue to be scrutinized, and an improved under-

standing of how culture conditions may affect the immu-

nogenicity of MSCs and how they might be optimized to

promote MSC functionality, is required.
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It is not fully understood if cell differentiation alters

the MSC immunogenic properties. It has been reported

that osteogenic cells, differentiated from MSCs, retained

their in vitro immunoprivilege and immunomodulatory

properties, and after implantation, they do not provoke

an immune response at early stage. However, in vivo the

cells gradually expressed MHC II, with a consequent loss

of their suppressive activity [104].

The MSC dose and timing of injection (in respect to

the moment of transplantation or the stage of disease)

have also to be defined. The local high MSC concentra-

tion used in in vitro studies are indeed not achievable in

clinical applications ascribable to cell distribution to other

tissues/organs and to cell-loss. In a multicentre trial

designed to assess safety and efficacy of MSCs for refrac-

tory acute GVHD, a range of MSC dose, not leading to

adverse side effects, has been reported. Authors reported

that, on one hand, clinically meaningful responses were

obtained after infusing a dose as low as 0.8 · 106 cells per

kg, whereas on the other, doses as high as 1.9 · 106 cells

per kg were not successful in all cases. However, any con-

clusion to suitable dose result to be premature [105].

Concerning timing, preclinical studies reported that MSCs

result to be ineffective when given several days after graft

transplantation [106], whereas were effective when

infused before onset of inflammatory process or at the

peak of disease [100]. These results have been further

demonstrated in phase II clinical trial in which clinical

conditions of more than half of the patients with steroid-

refractory acute GVHD, who do not respond to corticos-

teroids and other immunosuppressive therapies, improved

after MSC treatment [35,105]. The best dose of cells in

each infusion, the more suitable time of injection, and

the possible interactions of cells with other drugs require

further investigation. Indeed, MSC in vivo efficacy seems

to depend also on the concomitant administration of an

immunosuppressive therapy.

Without immunosuppressive therapy, MSCs resulted

were able (independently of the administration route) to

elicit a complete (cellular and humoral) immune

response, which resulted to be attenuated in the presence

of an immunosuppressive therapy [107], suggesting that

MSCs act synergistically with immunosuppressive drugs

[44,108]. Moreover, it has been recently reported that low

dose of immunosuppressant regiment could support the

therapeutical effects of allo-MSCs [109].

The inflammatory cells and factors are commonly pres-

ent in injured sites, and it has been demonstrated that

infused MSCs preferentially immigrated into inflamma-

tory sites [110], suggesting that the inflammatory envi-

ronment may play an important role in mediating MSC

immunosuppressive properties. In vivo animal studies

reported that IFN-c increased MSC expression of MHC I

and MHC II, leading to loss of disease suppression and

to MSC rejection [111,112]; although others showed that

the exposure to inflammatory signals (such as high levels

of IFN-c) or prestimulation with IFN-c, upregulating IL-

10, TGF-b1, PGE2, and IDO expression, improves MSC

suppressive effects [113–116]. The role of IFN-c seems to

be more complex than just being an activating agent: its

level and the contemporary presence of other inflamma-

tory cytokines seem indeed able to change MSC

functional profile. IFN-c can enable MSC to act as anti-

gen-presenting cells but only at low concentrations; as

IFN-c levels increase, MHC II molecule expression on

MSC decreases with the loss of alloreactive-inducing

activity [117,118]. Other inflammatory cytokines, such as

TNF-a or IL-1b, can influence MSC immunosuppression

and determine substantial changes in their immunophe-

notypic profile [119]. Indeed, IFN-c alone seems to be

sufficient to induce IDO and B7-H1 upregulation,

although, when in combination with TNF-a, the two

cytokines act synergistically in the induction of COX2

[113] and in the upregulation of the secretion of MSC

anti-inflammatory enzyme [120]. These results suggest

that the inflammatory environment to which MSCs are

exposed is a fundamental factor influencing MSC func-

tions, resulting in the capability of shaping their proper-

ties in completely opposite directions: MSC immune

suppressive properties could be both induced and

decreased and the fine kinetics of the interactions between

MSCs, inflammatory and immune factors is critical for

the clinical outcome. A better understanding of the inter-

action between MSCs and inflammation environment will

be then an essential step in improving MSC clinical use

for inflammatory and immune-mediated diseases.

Conclusions

The unique MSC immunomodulatory properties suggest

that MSCs could have important clinical implications for

their use as a potential cell source also for TE approaches.

Homing and immunomodulation are important aspects

for MSC function and clinical effects. In particular it has

been proposed that MSC antiinflammatory and antiapop-

totic effects may promote tissue regeneration by creating

favorable environment supporting tissue healing by resi-

dent stem cells. To date, recipient’s own cells, such as BM

MSCs, are the most suitable candidates to obtain an

immunological accept tissue-engineered construct. How-

ever, it is not always possible to obtain cells from the

patient and the time needed to isolate, differentiate, and

grow autologous stromal cells, to populate and create an

engineered construct, may not be feasible for the patient

who urgently requires a tissue/organ replacement. There-

fore, an ‘‘off the shelf’’ product, obtained using allogeneic,

Baiguera et al. Tissue engineering and stem cells

ª 2012 The Authors

Transplant International ª 2012 European Society for Organ Transplantation 25 (2012) 369–382 377



nonimmunogenic MSCs, would be a more suitable and

clinically accepted strategy. The experimental and clinical

results obtained till now suggest that MSCs could provide

a suitable cell source for TE an off the shelf construct,

which would be immune privileged: MSCs could be iso-

lated from any donor, expanded and cryopreserved, pro-

viding a readily available ‘‘universal’’ source of cells for TE.

Although this is an attractive supposition, ongoing

efforts focused on evaluating in vivo effectiveness, short-

comings, and adverse effects of MSCs are needed to

determine if their immunomodulatory properties will

evolve from theoretical to clinical benefit.
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