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Influenza is a global health concern. The single most ef-
fective way of protecting people against influenza infec-
tion and disease is vaccination. However, currently avail-
able vaccines against influenza induce only strain-spe-
cific immunity, and do not elicit long-lasting serum anti-
body titers. Therefore, they are ineffective in the case of 
possible pandemics. There is an urgent need for a new 
generation vaccine which would induce broad and long-
lasting immune protection against antigenically distinct 
flu viruses. The paper presents recent achievements and 
the challenges in the field of universal vaccine construc-
tion.
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INTRODUCTION

Influenza is a global health concern, with the annual 
attack rate estimated at 5%–10% in adults and 20%–
30% in children. Illness can result in hospitalization and 
death, especially among high-risk groups: the very young, 
elderly or chronically ill (Thompson et al., 2004; Zhou et 
al., 2012). It is estimated that each year influenza infec-
tions cause for 3 to 5 million cases of severe illness and 
250 000 to 500 000 deaths worldwide (http://www.who.
int/mediacentre/factsheets/fs211/en/). The European 
Centre for Disease Prevention and Control estimates 
that, on average, nearly 40 000 people die prematurely 
each year from influenza in countries of the European 
Union (EU) and the European Economic Area (Mereck-
iene et al., 2014). Given its disease-causing potential, the 
prevention of infection with influenza viruses is a high 
public health priority. Currently, the most effective sin-
gle way of protecting people against influenza infection 
and disease is vaccination (Nicoll et al., 2013; Cox et al., 
1999). The influenza virus belongs to the family Or-
thomyxoviridae (Lamb et al., 2001) and is divided into 
the A, B and C genera, which are distinguishable on 
the basis of antigenic differences between their matrix 
and nucleoproteins (M and NP), their host range, varia-
tions in surface glycoproteins, genome organization and 
morphology. Within the influenza virus genera, influen-
za A and B viruses are the most relevant clinically be-
cause they cause severe respiratory infections in humans 
(Hampson et al., 2006). Of the two, type A viruses are 
more virulent, cause the most severe disease and are the 
primary pathogens responsible for seasonal and pandem-
ic influenza outbreaks (Hayashida et al., 2001; Wright et 
al., 2001).

Type A viruses can be divided into different subtypes 
based on the serotypes of their main surface antigens: 
hemagglutinin (HA) and neuraminidase (NA) (Hayashida 
H et al., 1985). So far, 18 HA and 9 NA subtypes have 
been identified. Phylogenetically, HA subtypes are cate-
gorized into two groups (H1, H2, H5, H6, H8, H9, H11, 
H12, H13, H16, H17, and H18 in group 1, and H3, H4, 
H7, H10, H14, and H15 in group 2) (Medina et al., 2011; 
Huber, 2013; Tong et al., 2013; Pica et al., 2013). Histori-
cally, H1 (H1N1), H2 (H2N2) and H3 (H3N2) strains 
have caused influenza pandemics in humans and resulted 
in millions of deaths (Steel et al., 2010).

Influenza B viruses have diverged into two antigenical-
ly and phylogenetically distinct lineages that co-circulate 
in the environment (Rota et al., 1990; Hay et al., 2001; 
Kanegae, et al., 1990). Infections caused by influenza B 
viruses are less severe, but the pathogen can still cause 
outbreaks. The influenza C virus is of little concern for 
human infections, causing only a mild common cold-like 
disease in children (Moriuchi et al., 1991).

DISADVANTAGES AND LIMITATIONS OF CURRENTLY 
AVAILABLE VACCINES

Currently available vaccines against influenza are poor-
ly immunogenic and do not induce long-lasting serum 
antibody titers. They provide protection only against a 
subset of strains circulating in the environment, namely, 
those closely related to the vaccine strains. This limited 
effectiveness is due to a mechanism called antigenic 
drift: the influenza virus undergoes genetic variations, al-
lowing it to evade the pre-existing immune responses of 
the host. Therefore, immune responses mounted against 
earlier forms of the virus are less effective or completely 
ineffective against newer variants. Thus, a new vaccine 
must be reformulated and prepared every flu season. Be-
sides, the vaccine has to be based on a surveillance of 
antigenic drift and predictions of the dominant strain for 
the upcoming flu season (Russell et al., 2008). The strains 
are selected by a network of experts several months in 
advance before the next influenza season regarding the 
duration of the manufacturing process. Although the 
process of antigenic drift is well studied, precise predic-
tions of what strains will circulate in a given season re-
mains problematic. Mismatches between vaccine strains 
and circulating viruses occur, resulting in a sharp drop in 
vaccine efficacy (de Jong et al., 2000; Ram Yogev, 2005; 
Carrat et al., 2007). Moreover, current vaccines appear 
to be less effective in the elderly (Centers for Disease 
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It is also important to note that currently available 
vaccines do not protect against possible pandemics re-
sulting from genetic variations between different sub-
types of the influenza virus concurrently infecting the 
same host (Shapshak et al., 2011). Additionally, it takes 
at least 6–8 months to develop, test and produce con-
ventional vaccines against emerging viruses (Krammer et 
al., 2014). The reformulation of the annual flu vaccine is 
also an expensive undertaking that costs consumers and 
the global health system more than $4 billion each year 
(Hoag, 2013).

 Despite these drawbacks, influenza vaccination has 
been demonstrated to be highly cost-efficient and cost 
saving (Nichol et al., 2007; Scuffham et al., 2002). In 
December 2009, the European Council unanimously 
recommended that EU countries adopt and implement 
national action plans to achieve 75% influenza vacci-
nation coverage in all at-risk groups by the influenza 
season of 2014/15 (Official Journal of the European 
Union L348: 71–72). The US Centers for Disease 
Control Prevention recommended universal influenza 
vaccination for all persons at least 6 months of age 
(Fiore et al., 2010). Despite the availability of safe and 
relatively effective vaccines and the recommendations 
of official health sources, seasonal influenza vaccina-
tion coverage rates remain suboptimal and general-
ly well below the WHO and US targets. During the 
2012/2013 flu season in the USA, flu vaccination cov-
erage was 45% (http://www.cdc.gov/flu/fluvaxview/
coverage-1213estimates.htm#estimated). According 
to information from the National Institute of Public 
Health, in the 2012/2013 flu season, 3.75% of the 
Polish population was vaccinated against influenza. It 
demonstrated that even the 2009/2010 A/H1N1 pan-
demic had little effect on the coverage rates for the 
seasonal influenza vaccine (Blank et al., 2012).

EFFICACY OF CURRENT INFLUENZA VACCINES

The efficacy rate of available in the USA influenza 
vaccines is approximately 59% for adults (Osterholm et 
al., 2012; Jefferson et al., 2010). Yet, vaccine effective-
ness against H3N2, the main flu strain circulating during 
the 2012/2013 season, proved to be only 46% for adults 
aged 18–49, 50% for those aged 50–64, and a dismal 
9% for people aged over 65, who represent a vulner-
able group (Centers for Disease Control and Prevention 
2013; http://www.cdc.gov/mmwr/preview/mmwrhtml 
/mm6207a2.htm?s_cid=mm6207a2_w.; Kissling et al., 
2014). However, the suboptimal vaccine effectiveness for 
the H3N2 component during the 2012/2013 season was 
related to mutations in the egg-adapted IVR-165 vaccine 
strain (Skowronski et al., 2014).

The low effectiveness of currently available flu vac-
cines results, among other reasons, from the low use of 
the seasonal influenza vaccine. This is caused by the ne-
cessity of yearly vaccine re-administration, related cost is-
sues, lack of influenza vaccine acceptance in the general 
population, and unknown efficacy for a given season. 
Sensational media coverage and public debate concern-
ing vaccine effectiveness, which depends on the match 
between the circulating virus and the vaccine strains, 
can negatively impact vaccination coverage (Kissling et 
al., 2011; Kissling et al., 2011). Another problem, espe-
cially in European countries, is the public attitude to the 
adjuvants present in vaccines. Thus, in the event of a 

pandemic, vaccination could be ineffective. To overcome 
the limitations of seasonal influenza virus vaccines and 
enhance our pandemic preparedness, we need a vaccine 
that provides universal and durable protection.

UNIVERSAL VACCINE

The development of a universal vaccine is one of the 
major goals in global pandemic preparedness plans. A 
universal flu vaccine could provide protection regardless 
of the strain or subtype of the circulating virus, allow-
ing the vaccine to be prepared in advance in appropri-
ate amounts, and be ready to use “off-the-shelf” in the 
event of a pandemic (Epstein et al., 2010).

It is expected that a universal flu vaccine would have 
several advantages over currently available seasonal vac-
cines. The universal vaccine would require less frequent 
administration, ideally only once. This would reduce 
the exposure of vaccinated individuals to adjuvants and 
would eliminate the recurring cost of yearly vaccination. 
These features could increase public acceptance of vac-
cination against the flu and thereby augment flu vaccine 
coverage.

CONSERVED INFLUENZA ANTIGENS

The development of universal vaccines relies on the 
utilization of highly conserved antigenic targets (Epstein, 
2003; Heiny et al., 2007). However, conserved antigen 
epitopes are usually less exposed to the host immune 
system, and as such, are naturally weakly immunogenic. 
The goal of a universal vaccine is to augment their im-
munogenicity sufficiently to induce protective immunity.

Several proteins encoded by the influenza virus have 
been evaluated as promising candidate antigens for the 
development of a universal vaccine. Among them are 
the HA, M (M1 and M2e), NP and NA proteins. All of 
the listed antigens have highly conserved regions that are 
potential immunogens for a universal vaccine.

STRUCTURE OF THE HA ANTIGEN

Hemagglutinin, the major envelope glycoprotein of 
influenza A viruses, is the target of almost all neu-
tralizing antibodies. HA is synthesized as an immature 
polypeptide chain called HA0, which is activated upon 
cleavage by host proteases to yield two subunits, HA1 
and HA2. HA2 creates a helical chain “stem” that is 
anchored in the viral lipid membrane. The HA1 subu-
nit of HA forms a globular “head” that contains re-
ceptor binding sites and the majority of the virus an-
tigenic sites (Wiley et al., 1981). Because HA1 loops 
are highly variable, antibodies targeting these regions 
are strain-specific, explaining why immunity by natural 
exposure or vaccination is typically restricted to the 
currently circulating strains. It has been estimated that 
human seasonal H3 and H1 viruses have undergone 
between 2.1% and 3% amino acid changes per drift 
variant between 1999 and 2010.

In contrast to HA1, the HA2 subunit is highly con-
served among viruses belonging to the same phylo-
genic group. It also undergoes mutations, although at a 
much lower rate. It underwent only 3 different amino 
acid changes in this region in the H1 and H3 strains in 
the same period of time (Han et al., 2011). Furthermore, 
HA2 is also immunogenic (Russ et al., 1987). Indeed, 
the stem region of HA represents a promising target for 
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universal vaccine design eliciting broadly cross-reactive 
neutralizing antibodies directed against an epitope in this 
region of HA (Gerhard et al., 2006; Krystal et al., 1982).

THE PURSUIT OF AN ANTIBODY THAT TARGETS 
CONSERVED REGIONS

The first report describing an antibody cross-reac-
tive with the HA stem was published by Yoshinobu 
Okuno (Okuno et al., 1993). The mouse antibody 
C179 neutralizes the H1, H2, H5, H6, and H9 sub-
types of the virus (Okuno et al., 1993; Sakabe et al., 
2010; Smirnov et al., 1999). The idea of cross reac-
tive antibodies became popular when, five years ago, 
six independent groups began to publish data on ex-
istence of human antibodies capable of neutralizing 
many different subtypes of the influenza virus. Broad-
ly neutralizing antibodies (bnAbs) neutralizing viruses 
belonging to HA phylogenetic group 1 (mAb CR 
6261 and F10) (Sui et al., 2009; Throsby et al., 2008; 
Kashyap et al., 2008; Ekiert et al., 2009), group 2 
(CR 8020, CR8043) (Ekiert et al., 2011; Friesen et al., 
2014), and group 1 as well as group 2 (mAb FI6) 
(Corti et al., 2011; Russell, 2011; Clementi et al., 2011) 
were identified. The identification of antibodies that 
can bind to both influenza virus groups is important, 
as the influenza A viruses responsible for human pan-
demics derive from both group 1 (H1N1 and H2N2) 
and group 2 (H3N2). In addition, zoonotic viruses 
from both groups can infect humans and have the 
potential to trigger future pandemics (including H5N1 
and H9N2 from group 1 and H7N7 from group 2). 
Consequently, future universal therapies based on the 
FI6 antibody have the potential to provide protection 
against both group 1 and group 2 influenza viruses 
(Corti et al., 2011).

Similarly, antibodies (CR8033 and CR8071) were 
identified as recognizing conserved epitopes in the HA 
head region of influenza B (Dreyfus et al., 2012). Fur-
thermore, an antibody (CR9114) that recognizes epitopes 
in the HA stem of both influenza A and influenza B, 
and which protects against lethal challenges from both 
of these genera, was discovered (Dreyfus et al., 2012). 
CR9114 is the most broadly neutralizing antibody identi-
fied so far.

In addition to cross-reacting antibodies which bind to 
the conserved regions of HA2, broadly neutralizing anti-
bodies that recognize regions on HA1 were also identi-
fied (Ohshima et al., 2011; Ekiert et al., 2012; Lee et al., 
2012; Tsibane et al., 2012).

It has been shown that such broadly cross-reactive 
HA stem antibodies provide protection through passive 
transfer (Ekiert et al., 2011; Corti et al., 2010; Sui et al., 
2009; Wang et al., 2010; Corti et al., 2013).

UNIVERSAL VACCINES BASED ON HA ANTIGEN

The identification of bnAbs against influenza viruses 
has raised hopes for the development of the universal 
vaccines for influenza. It was shown that bnAbs recog-
nizing the HA stem, can be elicited after influenza infec-
tion in humans, although they are produced at low levels 
(Ohshima et al., 2011; Sui et al., 2011; Corti et al., 2013). 
The natural occurrence of bnAbs has inspired construc-
tion of a vaccine that would exclusively induce bnAbs, 
i.e., a universal vaccine. Such a vaccine could potentially 
provide a long-lasting protection; a recent study showed 
that a high titer stem-reactive antibodies induced by an 

influenza virus vaccine were detectable after more than 
30 years (Miller et al., 2013).

Two approaches are used when developing a universal 
vaccine based on the HA antigen. One approach involves 
the use of full-length HA, and the other focuses on the 
HA conserved stem domain. Both of these approaches 
are associated with low level of neutralizing antibodies 
that recognize conserved regions on the HA stem. When 
using full-length HA, considerably lower levels of im-
munological response are achieved to the HA stem than 
to the head because the HA head physically masks the 
stem region on the influenza virion (Kwong et al., 2009). 
There have been some attempts to use full length HA to 
elicit a broad neutralizing response.

In one such approach adenovirus vectors expressing 
centralized consensus influenza antigens representing pu-
tative HA ancestors were used. Centralized HA antigens 
were obtained from synthetic full-length HA sequences 
within a subtype or among different subtypes. The pro-
posed vaccine provided protection that was limited to vi-
ruses within the same subtype (Weaver et al., 2011). An-
other approach using the full-length HA antigen is DNA 
vaccine technology (Chen et al., 2008).

It is challenging to induce immunological responses to 
conserved regions that are weakly immunogenic. There 
are currently several strategies employed for stem-ori-
ented antigen design that eliminate the dominant im-
mune response to the HA head. One such strategy is 
the use of a truncated HA that lacks the globular head 
domain, but still maintains the integrity of the stem re-
gion. Such a headless HA antigen derived from H2N2 
was expressed in CV-1 cells and detected with the C179 
antibody that neutralizes all H1 and H2 subtypes. Mouse 
experiments revealed that the mice were protected from 
the homologous virus and partially protected from the 
H1N1 virus (Sagawa et al., 1996).

In another example, mice were vaccinated with a 
combination of DNA and Virus Like Particles (VLPs) 
expressing a headless HA construct derived from 
H1N1 and H3N2 viruses. Immunization elicited an-
tisera that were cross-reactive against multiple group 
1 subtypes of hemagglutinin, and provided protec-
tion against homologous lethal challenges (Steel et al., 
2010). Schneemann et al. used a multivalent display of 
a 20-residue A-helix from HA2 on icosahedral VLPs 
derived from the capsid of the Flock House virus to 
immunize mice. The 20-residue A-helix of HA2 is the 
major component of the epitopes of the broadly neu-
tralizing antibodies CR6261, F10, and others. It was 
shown that immunization with VLPs displaying 180 
copies/particle of the A-helix elicited antibodies rec-
ognizing multiple HA subtypes from group 1, but not 
from group 2. However, the elicited antibodies did 
not neutralize the influenza virus (Schneemann et al., 
2012). In another attempt, a stable trimeric influenza 
hemagglutinin stem domain was produced through the 
T4 bacteriophage fibritin foldon fusion at the C-ter-
minus of the HA stem domain (Lu et al., 2014).

Selected peptides corresponding to HA conserved re-
gions can be used to construct a universal vaccine. They 
can be fused with carrier proteins, such as keyhole limpet 
hemocyanin (KLH), for improved antigen presentation, 
and enhanced immunogenicity based on the adjuvant 
function of the carrier proteins. It was shown that KLH 
fusion protein comprising an HA2 synthetic peptide 
from an H3 virus conferred heterosubtypic protection 
against H5 and H1 viruses (Wang et al., 2010). Bomma-
kanti et al. designed an HA2-based immunogen derived 
from the sequence of H3N2, which was expressed in Es-
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cherichia coli and refolded from inclusion bodies. The ob-
tained antigen provided protection against a homologous 
H3 viral challenge and also provided cross-strain protec-
tion within the subtype (Bommakanti et al., 2010).

Vaccines based on the HA antigen aiming to elicit an 
immunological response against the HA conserved do-
main have the potential to be developed. Even if the 
immunological response to the HA stem is weak, this 
response could be augmented by boosting with vac-
cines that exclusively induce bnAb HA stem antibodies. 
This theory is supported by data demonstrating that in-
dividuals infected with pandemic 2009 IAV experienced 
a boost in virus-neutralizing antibodies specific to the 
HA stem (Pica et al., 2012). This phenomenon has also 
been confirmed in a mouse model of sequential infec-
tion (Krammer et al., 2012; 2014).

In accordance with these results, it may be necessary 
to preimmunize individuals naïve to the influenza virus 
(such as children) before vaccinating them with a univer-
sal vaccine.

Additional aspect is the safety of next-generation in-
fluenza vaccines based on HA stem domain antigens. 
Generally, antigens induce antibody responses including 
both neutralizing and non-neutralizing antibodies. Recent 
studies demonstrated that non-neutralizing antibodies 
may be associated with enhanced infectivity (To et al., 
2012). It was reported that whole inactivated H1N2 vi-
rus vaccination and subsequent challenging with H1N1 
resulted in more frequent and more severe vaccine-as-
sociated pneumonia. (Khurana et al., 2013). It was sug-
gested that elicited non-neutralizing anti-stalk antibody 
might promote H1N1 infection by enhancing H1N1 
virus membrane fusion activity. As these results imply, 
it is of great importance from the safety point of view 
that we ought to understand fully the molecular basis for 
neutralization of influenza viruses in polyclonal respons-
es in vivo.

UNIVERSAL VACCINES BASED ON M2e ANTIGEN

The extracellular domain of the M2 protein (M2e) 
may be the most explored target for a universal influ-
enza vaccine. Interest in this protein as a vaccine target 
was triggered by observations that anti-M2 antibodies, 
while lacking neutralizing activity, reduce plaque size 
(Zebedee et al., 1988), and the level of replication of a 
challenge virus in the lungs of mice (Treanor et al., 1990; 
Wang et al., 2008). Moreover, this protein is relatively 
well conserved across viral strains. As an example, the 
N (amino)-terminal epitope SLLTEVET (residues 2-9) in 
M2e was found to be 100% conserved among human 
influenza A virus and over 99% among all influenza A 
subtypes (Fiers et al., 2004; Liu et al., 2005).

M2 is a tetrameric integral membrane protein that 
functions as a pH-dependent proton channel, and is a 
minor component of the virus envelope. The protein is 
essential for proper maturation of the HA, for uncoat-
ing the virus after viral entry, and for releasing the viral 
genome into the cytoplasm (Lamb et al., 1985; Schnell et 
al., 2008). M2e, while exposed on the virion surface, in 
1 to 3 copies, is masked by HA and NA proteins (Song 
et al., 2011). These factors may explain why anti-M2 or 
anti-M2e antibody levels are very low in influenza-infect-
ed humans and animals. However, mouse model studies 
showed that anti-M2 antibodies have a protective nature; 
animals vaccinated with baculovirus-derived M2 were 
protected from lethal challenge with H1N1 and H3N2 
influenza viruses (Slepushkin et al., 1995). Unfortunately, 

the extension of these studies to other laboratory ani-
mals, including ferrets and primates, was not encourag-
ing (Fan et al., 2004). Nevertheless, studies in most 
animal models indicate that M2e-based vaccines reduce 
morbidity levels, but do not confer immunity to infec-
tion. However, pigs immunized with M2e-derived human 
or avian viruses showed no protection against challenge 
with a swine virus, although the anti-M2 antibody levels 
were increased (Heinen et al., 2002; Hikono et al., 2012). 
Differences in the M2e sequences between the vaccine 
and the challenge virus could explain why no protection 
was observed in this case.

M2e in its virion-bound form is poorly immunogen-
ic (Rossman et al., 2011). Therefore, several approaches 
have been proposed to improve the immunogenicity 
of M2, including the addition of adjuvants (Slepushkin 
et al., 1995; Wu et al., 2007; Wu et al., 2009), fusing the 
peptide to known highly immunogenic carrier proteins, 
and employing genes that target and improve immune 
function (hepatitis B core antigen (HBc), KLH (Tomp-
kins et al., 2007), bacterial outer membrane complex (Fu 
et al., 2009), and flagellin (Huleatt et al., 2008), VLPs 
(human papillomavirus L protein VLPs (Ionescu et al., 
2006), phage Qβ-derived VLPs (Bessa et al., 2008)), or 
liposomal platforms (Ernst et al., 2006).

In one approach, to improve hetero-subtypic cross-
protection, VLPs were used. The expressed tandem re-
peats of M2e peptides containing two human, two avian 
and one swine origin M2e sequences fused to the HA 
transmembrane and cytoplasmic domains (Kim et al., 
2013). The M2e proteins incorporated into these VLPs 
were 100 times more abundant than they were in influ-
enza virions. This study showed that sera from mice im-
munized with such chimeric VLPs reacted with a range 
of influenza viruses, including H1N1, H3N2 and H5N1 
strains.

In another approach, different forms of VLPs based 
on the M2e antigen fused to HBc were shown to in-
duce high levels of anti-M2e antibody responses (Fiers 
et al., 2004; Neirynck et al., 1999; de Filette et al., 2006; 
de Filette et al., 2005; Heinen et al., 2002). Nevertheless, 
the protection against infection mediated by M2e was 
not complete. There is also ongoing research directed 
at understanding the mechanism of M2e-specific im-
munity. It was shown that antibodies recognizing M2 
do not neutralize the virus. Several theories explain-
ing the protection mechanism were proposed, including 
antibody-dependent cell cytotoxicity, antibody-dependent 
natural killer cell activity, and complement-mediated lysis 
(Jegerlehner et al., 2004; Tompkins et al., 2007; El Bak-
kouri et al., 2011).

Research on M2e-based universal vaccines has pro-
duced several minor successes. For example, in a dou-
ble-blind, placebo-controlled phase I clinical trial, the 
safety and immunogenicity of M2e-HBc VLPs combined 
with adjuvant, derived from recombinant cholera toxin 
A1, were evaluated in humans, and the results demon-
strated that this approach was promising for further clin-
ical studies. Another candidate, STF2.4×M2e, a fusion 
protein of M2e with the TLR5-ligand domains from Sal-
monella typhimurium flagellin flj B, also completed a phase 
I clinical trial, and was found to be safe and immuno-
genic (Huleatt et al., 2008; Rupp et al., 2011; Talbot et al., 
2010).

It is of great importance to test the effectiveness of 
new universal flu vaccine strategies in clinical trials, as it 
is almost impossible to mimic the human situation using 
animal models.
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UNIVERSAL VACCINES BASED ON NP AND M1 
ANTIGENS

Phylogenetic analysis of virus strains isolated from 
different hosts indicates that the NP and M1 genes are 
relatively well conserved, with a maximum amino acid 
difference of less than 11% for NP (Shu et al., 1993), 
and only about 5% for M1 (Reid et al., 2002). Therefore, 
they are attractive candidates for a broad-spectrum influ-
enza vaccine (Shu et al., 1993; Heiny et al., 2007; Price et 
al., 2009). The NP protein is able to elicit subtype cross-
reactive cytotoxic T lymphocyte immunity to speed up 
viral clearance in mice and humans (McMichael et al., 
1983; Ulmer et al., 1998). It was also demonstrated that 
NP induces non-neutralization antibodies, which play a 
role in heterosubtypic immunity in mice (Carragher et 
al., 2008). Recently, multi-antigen constructs employing 
NP and M1 antigens have shown promise in conferring 
broad protection against influenza subtypes.

Modified vaccinia virus Ankara (MVA) vectors ex-
pressing various combinations of NP, M1, HA and NA 
have been evaluated in animal models (Boyd et al., 2013; 
Brewoo et al., 2013). Phase I and II clinical studies of 
an MVA expressing NP+M1 indicate that this approach 
is safe and might be efficacious for preventing influenza 
infection in humans (Berthoud et al., 201; Lillie et al., 
2012).

Furthermore, MVA vectors expressing influenza NP 
alone or co-expressed with other conserved influenza 
proteins (e.g., the stem region of HA, proteins M1 and 
M2, the viral polymerase basic protein 1 (PB1), or the 
HA stem fused to a quadrivalent M2e) protect mice 
against lethal challenges with H5N1, H7N1 and H9N2 
viruses by a mechanism involving influenza-specific 
CD4+ and CD8+ T cell responses (Hessel et al., 2014).

UNIVERSAL VACCINES BASED ON NA ANTIGEN

Although a vaccine based on NA is also being devel-
oped, this antigen alone is considered to have little po-
tency in preventing infection (Johansson et al., 2011).

Nevertheless, it has been shown that NA-specific an-
tibodies restrict viral replication by preventing the release 
of progeny from infected cells, which limits viral spread 
and shortens the severity and duration of illness (Powers 
et al., 1996; Kilbourne et al., 1968; Murphy et al., 1972; 
Couch et al., 1974; Webster et al., 1988). It was shown 
that the administration of N1-VLP particles induced 
the production of NA antibodies that confer significant 
cross protection against H5N1 and H1N1 (Wu et al., 
2012). The immunization of mice with VLPs contain-
ing the N1 NA antigen induced the production of an 
antibody recognizing H1N1 and H3N2 viruses as well 
as protected against lethal infection by the homologous 
H1N1 and heterosubtypic H3N2 (Quan et al., 2012).

CONCLUDING REMARKS

The development of a universal vaccine against influ-
enza viruses is challenging. Although promising research 
is in progress, there is still no commercially available 
vaccine protecting against a wide spectrum of influenza 
viruses. In 2013, Jesse Goodman, Chief Scientist at the 
U.S. Food and Drug Administration, predicted that a 
universal flu vaccine was still 5 to 10 years away. Given 
the disease-causing potential of the type A and B virus 
strains, vaccination against both of these virus types is 
a high public health priority. The ideal universal vac-

cine will protect against all subtypes of influenza A vi-
ruses and both lineages of influenza B. Nevertheless, in-
fluenza A and B have significant genetic and antigenic 
differences, and the construction of a single vaccine 
that provides protection against both genera seems to 
be difficult (Subbarao et al., 2013). Although, the pos-
sibility of designing a vaccine against both lineages has 
emerged due to recently identified, broadly neutralizing 
antibodies. It is thought that immunity induced against 
conserved antigens may not necessarily provide protec-
tion against infection, but it could decrease the severity 
of disease, accelerate virus clearance, and reduce mor-
bidity and mortality during the initial stages of a pan-
demic outbreak until a strain-matched vaccine becomes 
available (Epstein et al., 2010). It has also been suggested 
that immunization with such a vaccine could reduce vi-
rus transmission from vaccinated, infected animals, thus 
reducing the size of epidemics. This hypothesis was con-
firmed in an experimental model in which immunization 
with a recombinant adenovirus expressing NP and M2, 
conserved antigens from the influenza virus, significantly 
reduced the transmission of the virus to co-housed, un-
immunized mice (Price et al., 2014).
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