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This paper addresses the polar profile of ancient pro-
teins using a comparative study of amino acids found in 
25 000 000-year-old shells described in Abelson’s work. 
We simulated the polar profile with a computer plat-
form that represented an evolutionary computational 
toy model that mimicked the generation of small pro-
teins starting from a pool of monomeric amino acids 
and that included several dynamic properties, such as 
self-replication and fragmentation-recombination of the 
proteins. The simulations were taken up to 15 genera-
tions and produced a considerable number of proteins 
of 25 amino acids in length. The computational model 
included the amino acids found in the ancient shells, the 
thermal degradation factor, and the relative abundance 
of the amino acids observed in the Miller-Urey experi-
mental simulation of the prebiotic amino acid formation. 
We found that the amino acid polar profiles of the an-
cient shells and those simulated and extrapolated from 
the Miller-Urey abundances are coincident.
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INTRODUCTION

For decades, the analysis of functional and structural 
profiles of proteins has been an important research sub-
ject, and it is still a topic of utmost relevance (González-
Díaz et al., 2008; Maccari et al., 2013). Understanding the 
origin of the protein structure and its function represents 
a fundamental contribution to science that, among other 
aspects, could lead to a deeper insight into the abio-
genic evolution of proteins on the early Earth (Forslund 
& Sonnhammer, 2012), as well as to the development 
of new and more effective and less toxic drugs (Chen 
& Chen 2008; Fernald et al., 2005). We think that the 
knowledge of the polar profile of proteins that prevailed 
in the ancient past constitutes a key element for under-
standing the specialization lines of the proteins we know 
today.

This paper was based on the experimental work of 
Abelson (Abelson, 1957; Abelson, 1959; Abelson, 1966), 
who evaluated the amino acid compositions of two 
groups of Mercenaria mercenaria fossil shells: one of the 
Miocene epoch (25 000 000 years ago) and one of recent 
age. Both groups of shells were subjected to similar ex-

traction protocol to identify their amino acid contents by 
paper chromatography. The amino acids P, K, V, F, I, L, 
Y, A, T, G, E, S, and D were recovered from recent shells, 
whereas the amino acids A, G, E, L, P, I, and V were 
found in fossil shells. The conserved amino acids common 
to both shell groups were A, E, G, I, L, P, and V. Other 
fossils studied from the Ordovician period (430 000 000 
years ago) and the late Pleistocene (5 000 000 years ago) 
showed the amino acids G, A, V, L, and I as the most 
conserved.

With the aforementioned information, we used an 
evolutionary computational toy model that mimics the 
generation of small proteins starting from a pool of 
amino acid monomers. The computational abstraction 
of Abelson’s analysis was based on an approach that we 
had previously designed to perform an extrapolation of 
the computational Miller-Urey amino acid abundances 
(Miller, 1953; Polanco et al., 2013), to simulate the amino 
acid profiles of so-called biological common ancestors 
found in E. coli, M. jannaschii, and S. cerevisiae (Delaye et 
al., 2005). Our present computational approach intend-
ed to re-create possible elements of a prebiotic scenario 
and included a simulation of thermal amino acid deg-
radation, which appears to be a relevant aspect in the 
findings of Abelson. The model design had a Markovian 
profile (Meyn & Tweedie, 2005) to enable the handling 
of several variables without increasing model complexity. 
This is particularly useful when the re-creation includes a 
large number of variables.

The molecular self-replication was also introduced 
into the model, as an essential attribute of life (Bag & 
von Kiedrowski, 1996; Issac et al., 2001; Orgel, 1992; 
Reinhoudt et al., 1996; Robertson et al., 2000). Here, the 
molecular self-replication can be understood as the “au-
tocatalysis by a reaction product which is able to recog-
nize at least two individual reactants with a high degree 
of selectivity” (Bissette & Fletcher, 2013), like the asso-
ciation of a product with the reactants that leads to an 
acceleration of the product formation. Pioneering studies 
by the Ghadiri group (Lee et al., 1996; Lee et al., 1997; 
Severin et al., 1997; 1998) showed that molecular self-
replication can occur during amino acid peptide linkage 
in the case of short α-helical peptides.

Self-replication is basically the formation of a helical 
peptide (T) through the amide bond formation between 
two peptide fragments, where T acts as a template that 
assists the coupling of the two fragments forming a 
product that is identical to itself. Observed kinetic data 
indicates an autocatalytic pathway in which T, as a net 
effect, catalyzes its own formation. Such system could be 
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regarded as a possible model for peptide-based molecu-
lar evolution on the early Earth.

Regarding our simulation, protein segments were as-
sumed to catalyze the formation of other protein seg-
ments with the same amino acid sequences. The so-called 
offspring replicas of protein segments were identical 
copies randomly generated from the proteins previously 
formed and they were sent to a so-called cutting record; 
i.e., they were transferred to a parallel program as a seed 
where they served for further protein formation. In this 
parallel program, the protein formation mechanism, as de-
scribed above, took place using these fragments as starting 
material, instead of the amino acid monomers.

With these variables, the model generated a set of pro-
teins and calculated its polar profile. This profile represent-
ed the number of polar incidents resulting from reading the 
linear representation of the protein (Polanco et al., 2013). 
The tests compared the polar profile of the Miller experi-
ment (Miller 1953; Polanco et al., 2013), with the Abelson 
model, and included changes to the variables of polarity 
and abundance. We showed that both models (Abelson and 
Miller) have coincident polar profile representations.

MATERIALS AND METHODS

The computational model. Our computational model 
(see Availability Section for source code) simulates protein 

formation. The simulations started from a monomer pool 
comprising the 13 different amino acids (P, K, V, F, I, 
L, Y, A, T, G, E, S, and D) that were identified in re-
cent shells of Mercenaria mercenaria. It was assumed that the 
abundances of these amino acids, i.e. their relative con-
centrations, were equivalent to the abundances found in 
the Miller-Urey spark discharge experiments (Miller, 1953; 
Polanco et al., 2013) (Table 1). For practical reasons the 
generated proteins were fixed at 25 amino acids in length 
as the protein length does not affect the polarity profile 
calculation (Polanco et al., 2013). The specific length of 25 
amino acids was chosen to compare the present simula-
tions with those that we performed in our previous stud-
ies (Polanco et al., 2014; 2014a).

The protein building and sequencing rules were based 
on the classification of the amino acids by their side 
chain into [P+] basic hydrophilic, [P-] acidic hydrophilic, 
[N] neutral, and [NP] non-polar residues. The simula-
tions also included a thermal degradation process (Abel-
son, 1957; 1959) starting with the 13 amino acids P, K, 
V, F, I, L, Y, A, T, G, E, S, and D and successively 
decreasing the abundances of D, K, F, S, T, and Y to 
obtain the seven amino acids identified in the fossil shells, 
i.e. A, G, E, L, P, I, and V. The simulations were per-
formed up to 15 protein generations, being a tractable 
limit in respect to computational cost, to determine the 
future trend of the polar profiles of the proteins.

Table 1. Starting amino acids used in the simulations.

# Amino acid Symbol Thermal  
degradation μmola Miller-Urey  

equivalenceb Polarityc Numeric  
equivalenced

1 Glycine G 440.0 2 NP 3

2 Alanine A 790.0 1 NP 4

3 Valine V 19.5 41 NP 4

4 Leucine L 11.3 71 NP 4

5 Isoleucine I 4.8 166 NP 4

6 Proline P 1.5 526 NP 4

7 Aspartic Acid D * 34.0 23 P- 2

8 Glutamic acid E 7.7 102 P- 2

9 Serine S * 5.0 158 N 3

10 Threonine T *  0.8 987 N 3

11 Lysine K * 1.2 403 P+ 1

12 Phenylalanine F * 0.3 2800 NP 4

13 Tyrosine Y * 0.3 2800 N 3

ayields from sparking CH4 (336 mmoles), N2, and H2O with traces of NH3 (based on the carbon added as CH4). Glycine=0.26%; Alanine=0.71% total 
yield of amino acids in the table=1.90%; bamino acid amount in μmol compared to the Miller-Urey experiment; cclassification of amino acids by 
their charge state: acidic hydrophilic (P-), basic hydrophilic (P-), neutral (N), and non-polar (NP); drepresentative numerical value for each amino acid 
according to polarity.

Table 2. Charge state matrix.

P+ P- N NP P+ P- N NP

P+ 0.01 0.79 0.15 0.05 99 21 85 95

P- 0.79 0.01 0.15 0.05 – 21 99 85 95

N 0.40 0.40 0.15 0.05 60 60 85 95

NP 0.40 0.40 0.15 0.05 60 60 85 95

P+ P- N NP P+ P- N NP

Quantitative representation of the polar interaction between amino acids, based on their charge state (Polanco et al., 2013). Proposed values based 
on considerations of a previous work (Fig. 9, Mosqueira et al., 2015).
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Amino acid polymerization. For our computational 
model, polarity was used as the main selection criterion 
for an amino acid monomer to bond the growing pro-
tein chain. Polarity is a measure of the molecular bond-
ing (Pauling, 1955) that seems to be an effective dis-
criminant for the protein groups (Polanco et al., 2015). 
In order to accept or reject the bond of an amino acid 
monomer, the model considered the polarity group of 
the monomer and the polarity group of the amino acid 
at the end of the protein chain (Table 2).

The corresponding stochastic polarity matrix P[i,j], 
based on the four-group [P+] [P-] [N] [NP] classifica-
tion, was determined by the indexes (i,j) with the row/
column relation {P+, P-, N, NP} leading to a total of 
16 possible and weighted interactions. The given values 
expressing the probability of each of these interactions 
were represented in Table 2 and were chosen based on 
a previous study (Polanco et al., 2013). The construction 
of the polarity matrix was based on the assumption that 
the polymerization of amino acids occurs partly based 
on the difference in their electrical charge and that it is 
possible to classify them into four groups.

The bonding of the amino acids was simulated by 
counting the number of incidents between the candidate 
amino acid monomer and the amino acid at the end of 
the protein. The bonding was accepted when the num-
ber of incidents reached the given threshold value given 
in Table 2, increasing the protein chain by one amino 
acid. For instance, if both the amino acid monomer and 
the amino acid at the end of the protein chain were 
[P+], the amino acid monomer was added in iteration 
99. On the other hand, if the amino acid monomer was 
[P+] and the amino acid at the end of the protein was 
[P-], the amino acid monomer was added to the protein 
in iteration 21.

Protein splitting and merging. The protein split-
ting and merging mimicked the potential instabilities of 
the growing proteins and introduced into the modelling 
some aspects of dynamic combinatorial libraries that 
could be associated with the interaction between hydrol-
ysis and condensation reactions in a variable prebiotic 
environment. In particular, protein splitting was simu-
lated by randomly cutting the forming protein in two 
segments and sending one segment to a so-called cutting 
record. The cutting probability (Polanco et al., 2013) of 
the protein was defined by:
C(L) = 1/eL                (1)

where e=2.7183 and L=length of the protein. Hence, the 
cutting probability was assumed to change inversely to 
the protein length. The protein recombination was simu-
lated by adding one segment of the cutting record to an-
other protein segment in formation according to the po-
larity criteria outlined above for the protein-amino acid 
monomer interaction.

Autocatalysis. Autocatalysis or self-replication was 
simulated by taking a segment of the forming protein 
and using it as “seed” for a new protein building pro-
cess. Both the selection of the segment and the protein 
formation were done at random. This procedure allowed 
the new generations to be formed from the seed and not 
from the scratch.

Thermal degradation temperature. In our simula-
tion, the presence of amino acids D, K, F, S, T, and Y 
(Table 1, rows marked with (*), was affected by the ther-
mal degradation, according to the Abelson work (Abel-
son, 1957; Abelson, 1959), reducing the probability of 
these six amino acids to emerge by 8% each generation.

Polarity index method. The computational polarity 
index method (PIM) (Polanco et al., 2013a), used to eval-
uate the simulation results, only took the linear repre-
sentation of the proteins. This linear representation was 
composed of an orderly sequence of amino acids. The 
metric evaluated the polar interaction of amino acids by 
pairs from one end of the protein to the other (polarity/
numeric equivalence, Table 1). This metric generated a 
matrix of polar incidents A [i,j] that represented all the 
polar possibilities with 16 polar interactions, i.e. (i, j) = 
{P +, P-, N, NP} x {P +, P-, N, NP}. When all pro-
teins in matrix A [i,j] were registered, each (i, j) element 
in the matrix was divided by the n number of amino ac-
ids of the proteins, (1/n) A [i,j]. Finally, the 16 elements 
were geometrically represented as a smooth curve of rel-
ative frequencies. The smooth curve of relative frequen-
cies allowed the algebraic interpretation of the informa-
tion based on the location of the maximum, minimum 
and inflection points of the function.

Trial test. The simulated proteins were analyzed using 
the bioinformatics method PIM (Polanco et al., 2013a) to 
obtain their polar profile. The polar profile of the pro-
teins generated by the computational Abelson model was 
compared in three different ways (Polanco et al., 2013): 
with polar bias (probability distribution from Table 2 
turned on), without polar bias (probability distribution 
from Table 2 turned off), and with decreasing the abun-
dance of the amino acid Alanine by 50% (probability 
distribution from Table 2 turned on). The graphs of the 
polar profiles were also compared to locate their max-
imum, minimum and inflection points of the function. 
The simulations were also performed including thermal 

Figure 1. Polar profiles of the former Abelson model simulations 
(Polanco et al., 2013) with and without polar bias and with vari-
ation in the Alanine abundance of 20%. 
The X-axis represents the 16 polar interactions.
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degradation bias (turned on) and without thermal degra-
dation bias (turned off) (Fig. 3).

Inflection points. The smooth curve of relative fre-
quencies (Fig. 1) allowed the algebraic interpretation of 
the information based on the location of the maximum, 
minimum and inflection points of the function. An in-
flection point is a point in the domain of the function 
where the concavity in the graph changes. These points 
are important as they define the behavior of the func-
tion.

RESULTS

Figure 1 compares the profile of our model with three 
different polar biases: with polar bias, without polar 
bias, and with decreasing the abundance of the amino 
acid Alanine by 50% (see Trial test section). The cor-
responding graphs show a matching behavior, except 
in three polar interactions: [P-,N], [N,N], and [NP,N].. 
These three interactions shared the same “N” terminal 
group, which is affected by amino acids S, T, and Y 
(N polar group); the probability that these amino acids 
emerge was decreased by the thermal degradation bias. 
When the abundance of amino acid A (NP polar group) 
was decreased, the [NP, NP] interaction decreased sub-
stantially.

Figure 2 compares the polar profile of our simula-
tion, and the simulation implemented for the amino acid 
abundance found in the Miller experiment (Polanco et 
al., 2013). In both simulations, we kept the same polar 
bias (Table 2). In three polar interactions: [P +, NP], [P-, 
NP], and [NP, NP], the relative frequency was greater or 
equal to the Miller simulation. We think that the reason 

for these results is the fact that in the Miller simulation 
we included 10 non-proteinogenic amino acids that be-
long to the NP polar group.

Figure 3 compares the polarity profile of our model, 
with and without thermal degradation bias. In the sim-
ulation without thermal degradation bias, three of the 
four polar interactions [P-, N], [N, N], [NP, N], showed 
maximum points. These three polar interactions shared 
the same “N” terminal group, which was affected by the 
amino acids S, T, and Y (N polar group), whose prob-
ability of emergence decreased as a result of the thermal 
degradation bias.

DISCUSSION

In this paper, we simulated the evolutionary gen-
eration of small peptides taking into account an ini-
tial distribution of amino acid monomers as observed 
in the Miller-Urey electric discharge experiments of 
presumed amino acid formation under prebiotic con-
ditions. Starting from this combination, the peptide 
sequences were successively built according to a sim-
ple criterion that refered to the amino acid charges 
expressed in a four-group classification: acidic hydro-
philic, neutral, non-polar and basic hydrophilic amino 
acids. The polar interactions between these amino 
acid groups were weighted, resulting in amino acid 
sequences with limited randomness. Other simulation 
rules were introduced to account for the dynamic as-
pects of the peptide formation, namely the peptides 
were allowed to split and merge and the principles of 
peptide self-replication and thermal degradation were 
introduced. These dynamic rules were based on for-

Figure 2. Polar profile of the present Abelson model simulations 
compared with the polar profile of our former Miller model sim-
ulations (Polanco et al., 2013) with polar bias.

Figure 3. Polar profile of the present Abelson model simulations 
with, and without thermal degradation bias.
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mer experimental studies and permitted to render the 
model more realistic in terms of an evolutionary sce-
nario.

Geometrically, this evidenced that the computational 
Abelson model eventually resembles the polar distribu-
tion found in our computational Miller model, due to 
the coincident location of the maximum, minimum and 
inflection points.

The thermal degradation temperature and the self-rep-
lication factors played an important role in this modeling 
because the thermal degradation process, as shown in 
Fig. 3, affected the abundance of the amino acids, lead-
ing to an alteration of the polar profile of the proteins 
generated by the simulation.

The self-replication was the “heritage” component 
from one generation of proteins to another. The 
model randomly formed a new generation of proteins 
from a fragment of the protein that is being built with 
the computational model i.e., the parent process sent 
a segment from one of its proteins as a template to 
the offspring process. Without taking this into ac-
count, the multifactorial nature of the polymerization 
phenomenon would decrease. In other words, abun-
dance and polar interaction were intrinsic features of 
a protein, while “heritage” was related to its fragmen-
tation, thermal degradation temperature, and self-rep-
lication. In our opinion, it is not possible to quantify 
the term “generation” as it is difficult to define the 
time-lapse from one generation to the next. If the 
polymerization process started 4 billion years ago, it 
must have been influenced by various factors, includ-
ing cataclysms, whose complexity can only be partially 
re-created by computer simulations. However, we are 
certain that exploration of this complexity with a dif-
ferential mathematical system, would not have led to 
definitive results; therefore, these simulations had to 
be based on Markovian models.

We believe that these results are worth to be reported 
because they could indicate a relationship between prebi-
otic amino acid abundances and early life on Earth, and 
in this case, the records of ancient life. We are aware 
that this observation does not support any deeper ra-
tionalization about the origin of life and requires further 
experimental and theoretical studies that are out of the 
scope of the present work. The time-lapse between the 
prebiotic world and the fossil records where life prob-
ably emerged 3.5 billion years ago is too large to be 
represented with a computer simulation in terms of a 
coarse-grained toy model. On the other hand, we be-
lieve that the striking similarity of the two polar profiles 
(for Miller-Urey sequences and Abelson’s sequences) is 
not coincidental and therefore the further research on a 
possible reminiscence of the prebiotic world contained 
in protein amino acid sequences of earlier life appears 
rational.

Therefore, our development of computer simula-
tions of prebiotic scenarios as in the present and past 
work (Polanco et al., 2013; Polanco et al., 2014; Po-
lanco et al., 2014a)

 
could allow better understanding 

of the functional and structural profiles of today’s 
proteins. A possible future direction in these studies 
would be to run these simulations more exhaustively 
to observe the limiting composition of the proteins. 
The question is if these implementations would result 
in a common profile. Another direction would be re-
viewing the most consolidated genes registered, iden-
tifying their proteins and comparing them to proteins 
produced by the present simulations.

CONCLUSIONS

Taking the polarity profile of the generated peptides 
as a reminiscence of a Miller/Urey-type of amino acid 
monomers, we compared this simulated polarity profile 
with that of proteins found in ancient shells. We found 
that the amino acid polar profiles of the ancient shells 
and those simulated and extrapolated based on the Mill-
er-Urey abundances were coincident.

Availability

The source program can be requested from the cor-
responding author (polanco@unam.mx ).

Software Resources

The model was written in FORTRAN 77 and execut-
ed on a Linux Fedora 23 Unix-type platform (GNU). 
The program run up to 15 generations on an HP Work-
station Z210-CMT-4x Intel Xeon E3-1270/3.4 GHz 
(Quad-Core)-RAM 8GB-SSD 1x 160GB-DVD Super-
Multi-Quadro 2000-Gigabit LAN, Linux Fedora 14, 64-
bits. Cache Memory 8 MB. Cache Per Processor 8 MB. 
RAM 8 GB.
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