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 Carboxylated osteocalcin (Gla-OC) contributes to the 
bone formation, whereas its undercarboxylated form 
(Glu-OC) takes part in the energy metabolism. In vitro 
studies had shown that treatment of osteoblast-like cells 
with advanced glycation end product-modified bovine 
serum resulted in reduced synthesis of collagen 1 and 
osteocalcin. The aim of this study was to find association 
between Gla-OC and markers of protein glycation, oxida-
tion and nitration, as well as pro-inflammatory and an-
tioxidant defense markers in obese subjects. Non-obese 
[(body mass index (BMI)<30 kg/m2; n=34)] and obese 
subjects (30<BMI <40 kg/m2; n=98), both sexes, aged 25 
to 65 years, were included in this study. Urinary glyca-
tion, oxidation and nitration free adduct concentrations 
were determined by stable isotopic dilution analysis liq-
uid chromatography and mass spectrometry, and nor-
malized to creatinine. Obese subjects had lower Gla-OC 
serum levels when compared to the non-obese controls. 
Obese subjects had increased serum concentrations of 
insulin, C reactive protein, interleukin 6, leptin and in-
sulin resistance index (HOMA IR). Urinary early glycation 
and advanced glycation end product (AGE) free prod-
ucts, Nε-fructosyl-lysine and 3-deoxyglucosone-derived 
hydroimidazolone, respectively, and oxidative damage 
marker, N-formylkynurenine free adduct, were increased 
in the obese compared to the non-obese subjects. Se-
rum Gla-OC was negatively correlated with urinary meth-
ylglyoxal-derived AGE, hydroimidazolone MG-H1, and  
N-formylkynurenine free adducts. The Gla-OC/Glu-OC in-
dex negatively correlated with the MG-H1 free adduct, 
and correlated positively with the antioxidant defense 
marker – the glutathione peroxidase activity. Our results 
suggest that increased AGEs and protein oxidative dam-
age markers in the course of obesity may contribute to 
decreased Gla-OC level and, consequently, future risk of 
decreased bone formation. 
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INTRODUCTION

Recent studies had shown that bone cells take part 
not only in the skeletal remodeling but are also involved 
in the adipose tissue metabolism. In turn, the adipose 
tissue could also influence bone remodeling by releasing 
biologically active substances. Several mechanisms have 
been described to explain the relationship between adi-
pose tissue energy metabolism and bone remodeling. 

Osteocalcin (OC) is one of secretory products from 
osteoblasts which regulates glucose and lipid metabo-
lism (Hauschka et al., 1989; Lee et al., 2007; Kanazawa 
et al., 2011). Osteocalcin is a non-collagenous protein of 
the bone, which is released into circulation when a new 
bone is formed (Price et al., 1994). Recent studies have 
shown that carboxylated osteocalcin (Gla-OC) interacts 
with hydroxyapatite crystals and modulates their growth. 
It contributes to bone formation, calcium ion homeosta-
sis and is considered a marker of bone turnover (Dowd 
et al., 2003; Kruger et al., 2006). Bone resorption leads 
to decarboxylation of osteocalcin and releasing of its 
undercarboxylated form, Glu-OC, which participates in 
the glucose and lipid metabolism (Lee et al., 2007; Fer-
ron et al., 2014; Wei et al., 2014). Mice with osteocalcin 
deficiency are hyperglycemic, hypoinsulinemic, have low 
pancreatic β-cell mass, decreased insulin sensitivity, in-
creased fat mass and decreased energy expenditure (Pi 
et al., 2008; Wei et al., 2014). Insulin signaling in osteo-
blasts stimulates decarboxylation of Gla-OC (Glu-OC 
formation), whereas leptin secreted by adipocytes inhib-
its OC activation indirectly, leading to inhibition of in-
sulin secretion and causing glucose intolerance (Ducy et 
al., 2000; Takeda et al., 2002; Ferron et al., 2010). Both 
osteocalcins (Gla-OC and Glu-OC) are detectable in cir-
culation. Bone tissue can regulate glucose metabolism 
through an endocrine cross-talk between osteoblasts, 
adipocytes, and other organs (Kanazawa, 2015). Fat mass 
could in turn increase bone resorption through upregu-
lating proinflammatory cytokines, such as for example 
IL-6 and TNF-α. These cytokines could induce osteo-
clast activity through regulation of the RANKL/RANK/
OPG pathway (Kaneshiro et al., 2014; Osta et al., 2014).

Furthermore, in obesity, inflammation is associated 
with increased oxidative stress. Obese subjects displayed 
markers of oxidative stress, elevated levels of reactive 

Vol. 64, No 3/2017
415–422

https://doi.org/10.18388/abp.2017_1627



416           2017U. Razny and coworkers

oxygen species (ROS) (Keaney et al., 2003), and dimin-
ished antioxidant defense resulting from lower anti-
oxidant enzyme activity, such as glutathione peroxidase 
(Olusi, 2002). It is also reported that obesity is connect-
ed with increased amounts of protein advanced glycation 
endproducts (AGEs) in the body (Unoki et al., 2010; 
Gaens et al., 2014). 

Protein AGEs are end-stage adducts formed in a non-
enzymatic reaction of proteins with saccharides and re-
lated metabolites. Glucose reacts with proteins to mainly 
form the early-stage glycation adduct, Nε-fructosyl-lysine 
(FL) residues. FL residues degrade to form AGEs, such 
as Nε-carboxymethyl-lysine (CML) residues. AGEs may 
also be formed by direct reaction of reactive dicarbo-
nyl metabolites, methylglyoxal (MG) and 3-deoxyglu-
cosone (3-DG) with proteins. The major AGE formed 
by MG is the hydroimidazolone Nδ-(5-hydro-5-methyl-
4-imidazolon-2-yl)ornithine (MG-H1) residue, with 
formation of Nε-carboxyethyl-lysine (CEL) and other 
minor AGE residues as well. The major AGE formed 
by 3-DG is hydroimidazolone Nδ-(5-hydro-5-(2.3.4-
trihydroxybutyl)-4-imidazolon-2-yl) ornithine (3DG-H) 
residue and related isomers. AGE-modified proteins 
undergo proteolysis to form related glycated amino ac-
ids called AGE free adducts. AGE free adducts, when 
released into plasma, have high renal clearance and are 
excreted in urine. There are also minor contributions to 
AGE free adducts by direct glycation of amino acids and 
absorption after digestion of AGE-modified proteins in 
food. Similarly, protein oxidation forms methionine sul-
foxide (MetSO) and N-formylkynurenine (NFK) resi-
dues, and protein nitration forms 3-nitrotyrosine (3-NT) 
residues; and after cellular proteolysis, related oxidation 
and nitration free adducts are excerted in urine. Urinary 
excretion of glycation, oxidation and nitration free ad-
ducts are appproximate measures of whole body fluxes 
of protein glycation, oxidation and nitration, respective-
ly (Thornalley & Rabbani, 2014; Rabbani & Thornal-
ley, 2012). AGE-modified proteins are dysfunctional or 
functionally inactivated. They have been implicated in 
pathogeneis of obesity and related metabolic and vascu-
lar complications. Examples of AGE-modified proteins 
are: MG-modified collagen-IV, LDL and HDL (Dobler 
et al., 2006; Rabbani et al., 2011; Godfrey et al., 2014). 
Increased formation of AGEs has been linked to dys-
glycemia, insulin resistance and vascular inflammation in 
overweight and obese subjects (Xue et al., 2016) – as re-
cently reviewed (Rabbani et al., 2016). AGEs have been 
proposed to bind to cell surface receptors and induce 
production of reactive oxygen species, inflammatory cy-
tokines, such as tumour necrosis-factor alpha (TNF-α), 
and activation of NF-κB leading to bone remodeling dis-
order, but there is doubt if this occurs or is functional 
in vivo (Ramasamy et al., 2012; Rabbani et al., 2016). In 
vitro studies with osteoblastic cell cultures demonstrated 
that AGEs could affect osteoblast proliferation and dif-
ferentiation by modification of collagen (Alikhani et al., 
2007; Mercer et al., 2007; Franke et al., 2011), as well as 
could induce apoptosis in bone cells through MAPK, 
p38, caspase-8, and caspase-9 signaling pathways (Alikha-
ni et al., 2007; Weinberg et al., 2014; Tanaka et al., 2015). 
Yamamoto and coworkers have shown that treatment 
with AGE-modified bovine serum of osteoblast-like cells 
resulted in a reduced synthesis of collagen I and osteo-
calcin (Yamamoto et al., 2001). Other investigators had 
found contrary evidence and suggested that AGE bind-
ing in vivo may be non-productive since based on the 
normally found level of AGEs, the best characterized 
receptor, the receptor for AGEs (RAGE), would be pre-

dicted to be always saturated with the AGE protein li-
gands (Buetler et al., 2008; Rabbani et al., 2016).  

Studies in humans concerning correlation between 
Gla-OC and AGEs are still lacking. Therefore the aim 
of this study was to find a correlation between Gla-OC 
and protein glycation, oxidation and nitration products, 
as well as pro-inflammatory and antioxidant defense 
markers in obese subjects, who were characterised in our 
previous paper (Razny et al., 2017). In this study, we use 
some biochemical parameters estimated before in the 
group of obese participants (Razny et al., 2017), and also 
determine urinary excertion of protein glycation, oxida-
tion and nitration free adducts – FL, CML, MG-H1, 
3DG-H, CEL, MetSO, NFK and 3-NT (Thornalley & 
Rabbani, 2014). 

MATERIALS AND METHODS

Study population. The study was approved by the 
Bioethics Committee of the Jagiellonian University in 
Cracow, Poland (opinion No. KBET/82/B/2009) and 
all subjects gave written informed consent. Volunteers 
were recruited from patients of the Out-patient Clinic: 
the Clinic of Obesity and Lipid Disorder Treatment at 
the Department of Biochemistry UJ CM in Cracow, 
Poland. The study was carried out in accordance with 
The Code of Ethics of the World Medical Association 
(Declaration of Helsinki) and with the Good Clinical 
Practice guidelines. The study population consisted of 
the same groups of volunteers described in the previous 
paper (Razny et al., 2017): obese (30<BMI<40 kg/m2, 
n=98), and non-obese (BMI<30 kg/m2, n=34) women 
and men, aged 25–65 yrs. The subjects with diseases that 
could affect the metabolism of glucose and lipids (dia-
betes mellitus, pregnancy, endocrine disorders, kidney or 
liver dysfunction and other chronic diseases) were dis-
qualified from attendance in the study. Subjects included 
in the study did not take any medication except for hy-
potensive drugs (metabolically neutral). All participants 
enrolled in this study were asked to follow an isocaloric 
diet with low amount of polyunsaturated fatty acids, an-
ti-oxidative vitamins and alcohol for 2 weeks before the 
study began. The percentage of the fat tissue in the body 
was estimated with the bioelectrical impedance method 
using Segmental Body Composition Analyser TANITA 
BC 418 MA (Tanita, Tokyo, Japan). 

Biochemical measurements. After two weeks of 
diet standardization, venous blood samples were drawn 
for biochemical analysis after 12 hrs of overnight fasting. 
Samples were centrifuged at 4000 rpm for 10 min to ob-
tain serum and plasma, which were stored at –80°C for 
further processing. 

Plasma glucose, total cholesterol, HDL-cholesterol 
and triglycerides were measured by enzymatic colori-
metric methods (Allmed, Krakow, Poland) using the 
MaxMat Analyzer (MaxMat S.A., Montpellier, France). 
The intra and inter-assay coefficients of variation were 
as follows: 2.3% and 3.5% (glucose), 1.4% and 3.4% 
(triglycerides), 1.4% and 3.8% (total cholesterol), 2.1% 
and 2.8% (HDL-cholesterol). LDL-cholesterol was cal-
culated using the Friedewald formula. Insulin in serum 
was assayed by an immunoradiometric method (DIA-
source, ImmunoAssays, Louvain-la-Neuve, Belgium) 
using a gamma counter (LKB Instruments, Mount Wa-
verley, Australia). The intra and inter-assay coefficients 
of variation were 2.1% and 6.5%, respectively. Basal in-
sulin resistance was determined by a homeostasis model 
of assessment (HOMA-IR) (Mari et al., 2001). Free fatty 
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acid (FFA) level was measured in non-frozen plasma by 
an enzymatic colorimetric method (Roche Diagnostics 
GmbH, Mannheim, Germany). CRP was determined 
by the highly sensitive immunoturbidimetric method 
(APTEC Diagnostics nv, Sint-Niklaas, Belgium). With-
in-run and between-run imprecision CVs were 1.66% 
and 2.08%, respectively. Visfatin (Nampt/PBEF) was 
assayed by ELISA (BioVendor, Prague, Czech Re-
public). Within-run and between-run imprecision CVs 
were 6% and 7%, respectively. Gla-OC and Glu-OC 
were determined in serum by ELISA (Takara, Kyoto, 
Japan). Within-run and between-run imprecision coeffi-
cients of variation were: <4.8% and <2.4% (Gla-OC), 
and <6.66% and <9.87% (Glu-OC), respectively. Total 
osteocalcin level was calculated as the sum of Gla-OC 
and Glu-OC. Leptin, adiponectin (Adipocyte comple-
ment-related protein of 30 kDa – Acrp 30), resistin, 
and IL-6 were measured in serum using ELISA (R&D 
Systems Europe, Ltd., Minneapolis, USA). Within-run 
and between-run imprecision CVs were 3% and 4% 
for leptin, 4% and 6% for adiponectin, 5.3% and 8.2% 
for resistin, 6% and 7% for IL-6, respectively. Antiox-
idant defense markers (total antioxidant status of plas-
ma (FRAP, ferric reducing ability of plasma), activity of 
glutathione peroxidase (GPx), activity of glutathione re-
ductase (GR) were determined in plasma by automated 

enzymatic colorimetric methods (Allmed, Kraków, Po-
land) using the MaxMat Analyzer (MaxMat S.A., Mont-
pellier, France). Within-run and between-run impreci-
sion CVs were as follows: 3.2% and 7% (FRAP), 4.2%, 
and 8.5% (GPx), 3.8% and 8% (glutathione reductase), 
respectively. 

For determination of biomarkers of protein gly-
cation, oxidation and nitration, urine samples were 
collected during second urination of the day (mid-
stream). The samples were centrifuged (4°C, 10 min, 
1000 g) and frozen at –80°C for further measure-
ments. Protein glycation, oxidation and nitration free 
products (glycated, oxidized and nitrated amino acids) 
were determined by assay of analytes in the ultrafil-
trate (12 kDa filter cut-off, 50 μl aliquot) of urine. 
The analytes were assayed by stable isotopic dilution 
analysis liquid chromatography with triple quadru-
pole mass spectrometric detection (LC-MS/MS), cal-
ibrated by reference to authentic standards and nor-
malized to the urine creatinine level. Urine creatinine 
was measured using colorimetric assay based on the 
Jaffe method (Roche Diagnostics GmbH, Mannheim, 
Germany). The determined analytes were the follow-
ing: glycation products FL, MG-H1, CEL, Nε-car-
boxymethyl-lysine (CML); oxidation products: MetSO 
and NFK, and nitration adduct 3-nitrotyrosine (3NT) 

(Thornalley & Rabbani, 2014; Rabbani et 
al., 2014). 

Statistical analyses. Statistical analyses 
were performed with the Statistica soft-
ware (StatSoft). Nominal data were anal-
ysed by χ2 test. To assess the normality of 
data, the Shapiro-Wilk test was used. Con-
tinuous variables were log transformed if 
required. Normally distributed data are 
presented as mean ± S.E.M. or otherwise 
as median and quartile range 25–75%. 
Differences between the two studied 
groups were analyzed by unpaired t-test 
or U-Mann Whitney test (for non-normal-
ly distributed data). Comparison of results 
between multiple groups was performed 
by one way ANOVA, followed by post 
hoc Tuckey test or Kruskal-Wallis test and 
Dunn’s test (for non-normally distributed 
data). To find a relation between variables, 
the Spearman rank correlation was used. 
The differences between variables with the 
P value less than 0.05 were considered to 
be significant. 

RESULTS

Characteristics of participants

Ninety-eight obese subjects and thirty-
four non-obese subjects were recruited 
for this study. Clinical characteristics of 
these study groups are given in Table 1. 
Obese subjects had increased BMI (34.0 vs 
28.4 kg/m2; P<0.001), adipose tissue mass 
(40.8 vs 35.0%; P<0.001), waist circumfer-
ence, and blood pressure when compared 
to the non-obese subjects. They also had 
increased plasma leptin levels, fasting in-
sulin and HOMA-IR index. There were 
no differences in the plasma total choles-
terol, LDL cholesterol, HDL cholesterol, 

Table 1. Characteristics of subjects participating in the study* (ref. Razny et al., 
2017)

  Non obese
(n=34)

Obese
(n=98) Pa

Age (years) 48.1±1.9 46.7±1.2 0.816

Sex, female (%) 79 73 0.391

BMI (kg/m2) 28.4 (27.4–29.1)b 34.0 (32.0–36.5) <0.001

Waist circumference (cm)
Women (F)
Men (M)

90 (87–96)
108 (107–110)

101 (96-110)
116 (110-119)

<0.001 (F)
0.038 (M)

Adipose tissue mass (%) 35.0 (33.1–38.1) 40.8 (34.5–43.4) <0.001

Systolic BP (mm Hg) 120 (116–130) 130 (120–140) 0.020

Diastolic BP (mm Hg) 80 (70–86) 85 (80–90) 0.010

Total Cholesterol (mmol/l) 5.38±0.15c 5.54±0.11 0.986

HDL Cholesterol (mmol/l) 1.30±0.03 1.31±0.02 0.997

LDL Cholesterol (mmol/l) 3.49±0.14 3.55±0.09 0.765

NEFA (mmol/l) 0.69±0.03 0.76±0.02 0.141

Triglycerides (mmol/l) 1.31±0.11 1.51±0.07 0.201

Glucose (mmol/l) 5.22±0.08 5.24±0.05 0.488

Insulin (µIU/ml) 12.49±1.48 16.72±0.78 <0.001

HOMA-IR 2.06 (1.85-2.50) 3.45 (2.64-4.66) <0.001

Total OC (ng/ml) 15.92±0.96 15.17±0.47 0.100

Gla-OC (ng/ml) 12.68±0.90 11.36±0.39 0.048

Glu-OC (ng/ml) 3.23±0.34 3.80±0.24 0.955

Gla-OC/Glu-OC (ng/ml) 5.68±0.81 3.83±0.22 0.281

BMI, body mass index; BP, blood pressure; Gla-OC, carboxylated osteocalcin; Glu-OC, un-
dercarboxylated osteocalcin; HDL, high density lipoprotein; HOMA-IR, homeostatic model 
assessment; LDL, low density lipoprotein; NEFA, non-esterified fatty acids; OC, osteocalcin; 
WHR, waist to hip ratio. *The same groups of subjects were described in a previous paper 
(Razny et al., 2017) aSignificant difference between non-obese and obese group (unpaired t-test 
or Mann-Whitney U-test for non-normally distributed variables) P<0.05, bMedian, 25–75% in 
parentheses; cMean ± S.E.M.
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triglycerides and FFA between the study subject groups. 
Obese subjects had lower Gla-OC level, whereas serum 
Glu-OC and total serum osteocalcin were unchanged, 
which was also reported in a previous paper (Razny et 
al., 2017). In case of cytokines and adipokines, the obese 
subjects had increased serum hs CRP and IL-6 as well, 
when compared to the non-obese subjects (Table 2). 

Urinary protein oxidation, nitration and glycation free 
adducts and antioxidant defense markers

Urine levels of protein glycation markers, FL and 
3DG-H free adducts, and protein oxidation marker, 
NFK free adduct, were increased in obese subjects with 
respect to the non-obese subjects. Urinary levels of  
other glycation free adducts, MG-H1, CML, CEL, oxi-
dation free adduct, MetSO, and nitration free adduct, 

3-NT, were unchanged between study subject groups. 
Blood antioxidant defense markers, FRAP, GPx and 
GR, were also not significantly different between the 
two study groups (Table 2). 

Correlation of protein oxidation, nitration and glycation 
products with osteocalcin

There were weak negative correlations of Gla-OC with 
urinary MG-H1 (r=–0.205, P=0.020) and NFK free ad-
ducts (r=–0.249, P=0.005) (Table 3). With the strong 
negative correlation of urinary NFK free adduct with Gla-
OC, the subjects were classified by Gla-OC quartiles and 
urinary NFK free adduct levels were compared between 
these groups. In quartile 2 of serum Gla-OC, there is a 
trend for higher urinary NFK free adduct levels with re-
spect to quartile 4 (Fig. 1). In addition, the Gla-OC cor-

Table 2. Serum cytokines and adipokines, urinary protein glycation, oxidation and nitration free adducts and antioxidant defense 
markers in obese and non-obese subjects

Non-obese (n=34) Obese (n=98) Pa

References
Average ± S.E.M.
or Median (25–75%)

Average ± S.E.M.
or Median (25–75%)

Cytokines and adipokines

hs CRP (mg/l) 0.80 (0.42–1.52)b 2.22 (0.96–3.88) 0.001 Razny et al., 2017 

IL-6 (pg/ml) 1.07±0.12c 1.63±0.10 0.001 Razny et al., 2017

IL-8 (pg/ml) 2.13 (1.58–2.89) 2.21 (1.59–3.14) 0.767 Razny et al., 2017

TNFα (pg/ml) 4.8 (3.53-5.91) 5.94 (4.41–7.52) 0.096 Razny et al., 2017

Leptin (ng/ml) 27.80±1.74 40.66±2.44 <0.001 Razny et al., 2017

Adiponectin (μg/ml) 6.72 (4.42–9.46) 6.14 (4.31–8.59) 0.441 Razny et al., 2017

Resistin (ng/ml) 9.78±0.52 10.11±0.40 0.730 Razny et al., 2017

Visfatin (ng/ml) 1.09±0.16 1.17±0.08 0.237 Razny et al., 2017

Urinary excretion of protein glycation, oxydation and nitration free adducts (nmol/mg creatinine)

FL 4.182±0.488 7.679±1.176 0.017 this paper

MG-H1 2.548±0.345 3.364±0.286 0.140 thispaper

3DG-H 0.357±0.052 0.549±0.053 0.029 this paper

CML 6.364±0.605 8.789±0.837 0.165 this paper

CEL 0.476 (0.29–1.09) 0.720 (0.39–1.39) 0.106 thispaper

3NT 0.003 (0.002–0.005) 0.003 (0.002–0.006) 0.081 thispaper

NFK 0.010 (0.004–0.029) 0.028 (0.008–0.067) 0.036 this paper

MetSO 0.050±0.008 0.050±0.004 0.984 this paper

Antioxidant defense markers

FRAP (mmol/l) 0.990±0.038 1.046±0.020 0.126 this paper

GPx (U/l) 520.967±40.703 476.825±16.266 0.230 this paper

GR (U/l) 66.168±2.966 66.664±1.400 0.676 this paper

CEL, Nε-carboxyethyl-lysine, CML, Nε-carboxymethyl-lysine; 3DG-H, hydroimidazolones derivated from 3-deoxyglucosone; FL, fructosyl-lysine; FRAP, fer-
ric reducing ability of plasma; GPx, gluthatione peroxidase; GR, glutathione reductase; hs CRP, high sensitivity C reactive protein; IL-6, interleukin 6; IL-8, 
interleukin 8; MetSO, methionine sulfoxide; MG-H1, Nδ-(5-hydro-5-methyl-4-imidazolon-2-yl)-ornithine; NFK, N-formylkynurenine; 3NT, 3-nitrotyrosine, 
TNFα, tumor necrosis factor α. aSignificant difference between non-obese and obese group (unpaired t-test or Mann-Whitney U-test for non-normally dis-
tributed variables) P<0.05, bMedian, 25–75% in parentheses; cMean ± S.E.M.
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related negatively with urinary CEL free adduct in obese 
subjects (r=–0.251, P=0.015). In the non-obese subjects, 
Gla-OC correlated positively with GPx (r=0.349, P=0.046) 
and total osteocalcin correlated negatively with urinary 
NFK free adduct (r=–0.345, P=0.049). In the non-obese 
and obese subject groups combined, Gla-OC/Glu-OC 
index correlated negatively with urinary MG-H1 free ad-

duct (r=–0.209, P=0.021) and correlated 
positively with GPx (r=0.188, P=0.030). 
Gla-OC/Glu-OC index also correlated 
negatively with urinary MG-H1 free ad-
duct (r=–0.271, P=0.008) in the obese 
subject group (Table 3). With the strong 
negative correlation of urinary MG-H1 
free adduct and Gla-OC/Glu-OC in-
dex, obese subjects were re-classified 
by Gla-OC/Glu-OC quartiles and uri-
nary MG-H1 free adduct levels were 
compared between quartiles. Urinary  
MG-H1 free adduct levels were lower in 
the obese subjects in quartile 4 of Gla-
OC/Glu-OC, with respect to quartile 1 
(P<0.05, Fig. 2). In obese subjects, the 
urinary CEL and FL free adduct levels 
also correlated negatively with Gla-OC/
Glu-OC index (r =–0.272, P=0.008 and 
r=–0.207, P=0.044, respectively). In the 
non-obese and obese subject groups 
combined, serum leptin positively cor-
related with urinary 3DG-H and CML 
free adduct levels (r=0.222, P=0.012 
and r=0.190, P=0.031, respectively). 
In obese subjects, serum leptin corre-
lated negatively with FRAP (r=–0.200, 
P=0.05). In the non-obese and obese 
subject groups combined, urinary CML 
free adduct correlated positively with hs 
CRP (r=0.262, P=0.003). In the obese 
subjects only, urinary CML free ad-
duct correlated negatively with FRAP  
(r=–0.201), P=0.049). 

DISCUSSION

In our study, obese subjects had de-
creased serum carboxylated osteocal-
cin Gla-OC and increased urinary FL, 
3DG-H and NFK free adducts when 
compared to the non-obese controls. 
The level of Gla-OC was correlated 

negatively with urinary CEL and NFK free adducts. 
Osteocalcin is a marker of bone turnover. It contains 

three glutamate residues, one of which is γ-carboxylated. 
This Gla residue mediates the binding of calcium and hy-
droxyapatite to osteocalcin (Dowd et al., 2003). The en-
docrine function of osteocalcin is mediated by its under-

Table 3. Spearman rank correlation between protein glycation, oxydation and nitra-
tion free adducts in urine (nmol/mg creatinine) and Gla-OC, Gla-OC/Glu-OC index as 
well as leptin and hs CRP.
Correlations with P<0.05 were considered significant. 

All (n=132) Non-obese 
(n=34) Obese (n=98)

r P r P r P

Gla-OC

MG-H1 & GLA-OC –0.205 0.020 –0.085 0.640 –0.219 0.033

CEL & GLA-OC –0.160 0.070 0.150 0.403 –0.251 0.014

NFK & GLA-OC –0.249 0.005 –0.316 0.073 –0.204 0.047

GPX & GLA-OC 0.079 0.374 0.349 0.046 –0.041 0.689

Gla-OC/Glu-OC

FL & Gla-OC/Glu-OC –0.165 0.062 –0.016 0.928 –0.207 0.044

MG-H1 & Gla-OC/Glu-OC –0.204 0.021 0.001 0.997 –0.271 0.008

CEL & Gla-OC/Glu-OC –0.171 0.054 0.140 0.437 –0.272 0.008

GPX & Gla-OC/Glu-OC 0.188 0.032 0.268 0.132 0.141 0.170

Leptin

3DG-H & Leptin 0.222 0.012 0.040 0.826 0.163 0.114

CML & Leptin 0.190 0.031 –0.130 0.471 0.204 0.047

FRAP & Leptin –0.161 0.067 –0.235 0.188 –0.200 0.050

hs CRP

CML & hs CRP 0.262 0.003 0.016 0.929 0.262 0.010

FRAP & hs CRP –0.113 0.201 –0.165 0.359 –0.201 0.049

CEL, Nε-carboxyethyl-lysine, CML, Nε-carboxymethyl-lysine; 3DG-H, hydroimidazolones de-
rivated from 3-deoxyglucosone; FL, fructosyl-lysine; FRAP, ferric reducing ability of plasma; 
GPx, gluthatione peroxidase; hs CRP, high sensitivity C reactive protein; MetSO, methionine 
sulfoxide; MG-H1, Nδ-(5-hydro-5-methyl-4-imidazolon-2-yl)-ornithine; NFK, N-formylkynure-
nine; 3NT, 3-nitrotyrosine

Figure 1. Variation of urinary N-formylkynurenine free adduct 
with quartile of serum carboxylated osteocalcin. 
Data are for quartiles of serum carboxylated osteocalcin in com-
bined non-obese and obese subject study groups (n=132). Data 
are presented as Median (lower-upper quartile). *P<0.05, Kruskal-
Wallis and Dunn test.

Figure 2. Variation of urinary MG-H1 free adduct with quartile 
of serum carboxylated/undercarboxylated osteocalcin index in 
obese subjects (n=98). 
Data are presented as Mean ±0.95 Confidence interval (CI) and 
Mean ±2x Standard deviation (S.D.). *P<0.05, one-way ANOVA and 
post hoc Tukey test.
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carboxylated form (Glu-OC) (Pi et al., 2011, Ferron et al., 
2012). Glu-OC does not bind Ca2+ and does not require 
elevated Ca2+ concentration to fold into a helical structure 
(Hauschka et al., 1982; Dowd et al., 2001). It acts on pan-
creatic β-cells to increase insulin secretion, and on muscle 
and white adipose tissue to promote glucose homeostasis. 
Both osteocalcin forms are detectable in circulation. We 
have deduced the Gla-OC/Glu-OC ratio index and em-
ployed this in a correlation analysis. The Gla-OC/Glu-OC 
index correlated negatively with urinary MG-H1 and CEL 
free adducts and positively with the GPx activity.

Our results are in agreement with recent findings which 
indicated that obesity is connected with increased amounts 
of AGE in the body (Unoki et al., 2010; Andrade et al., 
2015, Li et al., 2005; Gaens et al., 2014). However, stud-
ies are not clear to what extent AGEs reflect hyperglycae-
mia or contribute to the progression of diabetes. It is well 
documented that excessive consumption of saturated fat 
and glucose can also promote advanced glycation (Beiss-
wenger et al., 2005; Sandu et al., 2005; Forbes et al., 2013). 
In the study presented here, the obese subjects with high-
er fasting insulin and insulin resistance (higher HOMA-IR 
index) without increased fasting plasma glucose, had in-
creased urinary FL and 3DG-H free adducts when com-
pared to the non-obese controls. Urinary FL free adduct 
are mainly derived from proteolysis of the FL residues 
of proteins glycated by glucose. In turn, urinary 3DG-H 
free adduct is formed mostly from proteolysis of 3DG-H 
residues of proteins glycated by 3-deoxyglucosone, which 
is mainly formed by degradation of FL. They are formed 
non-oxidatively (Thornalley et al., 1999). Urinary FL and 
3DG-H free products principally originate from proteoly-
sis of glycated proteins in tissues, with a minor contribu-
tion from glycated proteins found in food (Erbersdobler 
& Faist, 2001; Rabbani et al., 2014; Thornalley & Rabbani, 
2014). Levels of urinary FL and 3DG-H free adducts re-
late to protein glycation in vascular and tissue compart-
ments of the body in both, postprandial and fasting stag-
es, and may be more responsive to metabolic dysfunction 
in obesity than measurements of fasting plasma glucose. 
Also, they may be considered as better markers than gly-
cated albumin which likely suffers interference from the 
effects of change in albumin transcapaillary escape rate 
and increased dwell time of albumin in interstitial fluid in 
obesity (Masania et al., 2016). Several AGE receptors are 
linked to increased inflammation, including RAGE. Al-
ternatively, AGE binding to its receptors can induce the 
production of inflammatory cytokines and reactive oxygen 
species (ROS), which is in agreement with results of our 
study. Namely, we have found positive correlation be-
tween AGEs: 3DGH1 and CML with proinflammatory 
leptin, as well as CML with hsCRP, which is elevated in 
obese subjects of the study presented here. Leptin, which 
is elevated in obese individuals, plays a key role in medi-
ating a pro-inflammatory state in obesity and can induce 
oxidative stress (Wannamethee et al., 2007; Korda et al., 
2008), which in consequence could lead to depletion of 
antioxidant defense markers (Niedowicz et al., 2005).

In our study, we have observed not statistically sig-
nificant differences for ferric reducing ability of plasma 
(FRAP), glutathione reductase (GR) and glutathione per-
oxidase activity (GPx) in obesity, when compared with 
the non-obese subjects. GPx activity in serum of these 
patients was slightly lower (not statistically significant) 
than in controls. However, it has been shown that plasma 
GPx is mainly of the renal origin and decreases in GPx 
could indicate changes in renal biochemistry and binding 
of GPx to target cell membranes, rather than reflect the 
whole body response to oxidative stress. Moreover, other 

features of antioxidant defenses in obesity could be im-
paired (Molnar et al., 2004; Matusik et al., 2015). However, 
results of our study show a relation between inflamma-
tion, and antioxidative capacity in obese patients. We have 
found inverse correlation between leptin and ferric reduc-
ing ability of plasma (FRAP), as well as between hsCRP 
and FRAP. Slightly elevated level of FRAP and GR in 
obese subjects and association of FRAP with proinflam-
matory cytokines could suggest that the antioxidant de-
fense tries to compensate for an enhanced production of 
ROS, but probably cannot compensate for it fully, which 
results in oxidative protein modification by reactions 
with amino acid residues which was also observed in our 
study. The correlation between generated ROS and cer-
tain oxidative modifications of individual amino-acids has 
been reported (Cai & Yan, 2013). In the study present-
ed here, the obese subjects had increased urinary NFK 
free adduct, when compared to the non-obese subjects. 
NFK is a major product of oxidative damage to trypto-
phan. Urinary NFK free adduct correlated negatively with  
Gla-OC. Studies in humans concerning the effect of oxi-
dation protein products on bone formation and osteocal-
cin level are still lacking. Experiments performed on os-
teoblast cell lines by Zhong (Zhong et al., 2009) reported 
that exposure of rat osteoblast cells to oxidation protein 
products down-regulated the expression of osteocalcin 
mRNA and protein, as well as inhibited proliferation of 
the cells. So far, the mechanism of oxidative modification 
of proteins in bone cells is not fully known. It was postu-
lated that oxidative modification of proteins could inhib-
it proliferation and differentiation of the osteoblast cells 
through the ROS- dependent NF-κB pathway (Zhong et 
al., 2009). 

Experiments conducted in vitro indicated inhibition 
of osteogenesis (downregulation of osteocalcin level) 
by AGEs. Results of our studies have shown that the 
MG-H1 free adduct correlated negatively with serum os-
teocalcin and the Gla-OC/Glu-OC index. In obese sub-
jects, urinary CEL free adduct also correlated negatively 
with Gla-OC and the Gla-OC/Glu-OC index. Our find-
ings seem to be in agreement with previous in vitro data. 
Yamamoto (Yamamoto et al., 2001) had reported that 
treatment of osteoblast-like cells with AGE-modified bo-
vine serum resulted in a reduced synthesis of collagen I 
and osteocalcin in response to stimulation of calcitriol. 

The mechanism of the AGEs’ action on bone cells is 
not fully known. It was postulated that AGEs could af-
fect bone formation by influencing the apoptosis pathway, 
endoplasmic reticulum stress and autophagy in the osteo-
blast cell cultures (Alikhani et al., 2007; Mercer et al., 2007; 
Franke et al., 2011). CML modified collagen induced apop-
tosis of bone-lining cells in vivo and in osteoblastic cell cul-
tures by stimulating caspase-3, -8 and -9 (Alikhani et al., 
2007). Other studies had shown that albumin modified 
by AGEs (AGE-BSA) induces cell cycle arrest and cell 
death, upregulates RAGE with activation of NFκB, inhib-
its osteogenesis (downregulation of collagen 1, osteocalcin, 
and alkaline phosphatase ALP) (Tanaka et al., 2015), and 
promotes osteoclastogenesis (upregulation of RANKL, 
TNF-α, and MMP-1). Thus, AGEs seem to lower the ca-
pacity of osteoblasts to form normal bone and increase 
the osteoclastogenic potential. AGEs may enhance apop-
tosis indirectly through increasing oxidative stress, or via 
increased expression of pro-apoptotic cytokines. AGEs 
could also affect bone formation by inhibiting the osteo-
blastic differentiation of stromal cells which is related to 
suppression of endoplasmic reticulum stress sensors and 
accumulation of abnormal proteins in the cells (Tanaka et 
al., 2013). Osteoblasts are known to synthesize proteins 
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and to secrete them into the bone matrix during their dif-
ferentiation. Unfolded proteins are removed through ER 
stress response. AGEs suppressed the levels of endoplas-
mic reticulum (ER) stress sensors such as IRE1a, ATF6 
and thus contributed to inhibition of osteocalcin mRNA.

Besides ER stress, the cells could destroy damaged sub-
stances and organelles in the process known as autophagy, 
whose deficiency can cause increased oxidative stress in 
osteoblasts, secretion of receptor activator for nuclear fac-
tor-κ B ligand (RANKL), and decreased mineralization. On 
the other hand, excessive autophagy is harmful to cells and 
leads to damage or death of cells (Alva et al., 2004; Platini et 
al., 2010). Studies by Meng (Meng et al., 2015) had indicated 
that short term effects of AGE-BSA included increased os-
teogenic function (increase in osteocalcin and alkaline phos-
phatase expression) and decreased osteoclastogenic function 
(inhibition of RANKL and osteoprotegerin expression), 
which are likely mediated by autophagy and the RAGE/
Raf/MEK/ERK signal pathway. However, increased treat-
ment resulted in an opposite effect. 

The study presented here has potential limitations. 
Namely, an unequal number of both sexes and the small 
number of subjects in the study. Another limitation of the 
study concerns participants enrolled in the control group 
of the study who were non-obese (BMI<30 kg/m2) but 
did not display normal weight. The small number of the 
control group participants, in comparison to the obese 
subjects, could also be an important limitation. However, 
both groups of subjects did not differ statistically in re-
gards of sex and age. A further potential limitation of this 
study is also the fact that protein oxidation, nitration and 
glycation free adducts were measured in urine of the study 
population. Subjects did not differ in regards of eGFR 
(not shown) and the results were normalized according to 
the creatinine level in urine. Urinary AGE free adduct lev-
els may not reflect plasma protein AGEs, although it was 
shown recently that urinary MG-H1 free adduct level was 
a more sensitive marker of changes in insulin resistance 
than plasma protein AGEs (Xue et al., 2016).

In the study presented here, we have found higher level 
of urinary protein glycation and oxidation free adducts, 
FL, 3DG-H and NFK in obese subjects, when compared 
to the non-obese controls. This may indicate an increased 
modification of proteins in the state of insulin resistance 
and oxidative stress. We have also found negative correla-
tions of some urinary protein glycation and oxidation free 
adducts with Gla-OC – a marker of bone formation. Pre-
vious studies had shown that Gla-OC was correlated neg-
atively with inflammatory markers, such as hs CRP (Razny 
et al., 2017). Thus, decreased Gla-OC level, which may re-
flect defects in bone formation, could be a result of obe-
sity associated inflammation, oxidative stress or the effect 
of AGEs. The mechanism of the AGEs’ effect on Gla-
OC should be elucidated. Therefore, we postulate that the 
results of our study could be the basis for further studies 
explaining the mechanism of the effect of AGEs on oste-
ocalcin action in larger groups of subjects. Our results ar-
gue in favor of the suggestion that increased formation of 
AGEs and protein oxidation products in insulin resistance 
in obesity could contribute to decreased Gla-OC level and 
in consequence lead to inhibition of bone formation. 
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