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Serendipitous crystallization of E. coli HPII catalase, a sequel to 
“the tale usually not told”*
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Protein crystallographers are well aware of the trap of 
crystallizing E. coli proteins instead of the macromole-
cule of interest if heterologous recombinant protein ex-
pression in E. coli was part of the experimental pipeline. 
Among the well-known culprits are YodA metal-binding 
lipocalin (25 kDa) and YadF carbonic anhydrase (a te-
tramer of 25 kDa subunits). We report a novel crystal 
form of another such culprit, E. coli HPII catalase, which 
is a tetrameric protein of ~340 kDa molecular weight. 
HPII is likely to contaminate recombinant protein sam-
ples, co-purify, and then co-crystallize with the target 
proteins, especially if their masses in size exclusion chro-
matography are ~300–400 kDa. What makes this case 
more interesting but also parlous, is the fact that HPII 
can crystallize from very low concentrations, even well 
below 1 mg/mL.
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As of July 2020, there were ~166,000 macromolecu-
lar structures deposited in the Protein Data Bank (PDB) 
(Berman et al., 2000). Most of them come from X-ray 
diffraction studies, as a result of meticulous procedures 
involving recombinant protein production, purification, 
crystallization, and X-ray diffraction that together form 
experimental basis for elucidation of three-dimensional 
atomic models. Heterologous protein expression is usu-
ally carried out in Escherichia coli cells. During purifica-
tion, the protein of interest is separated from the host 
proteins, typically with the use of various chromato-
graphic techniques. Unfortunately, some impurities are 
notoriously present in the protein samples that are used 
for crystallization. In exceptional instances these con-

taminant proteins happen to crystallize instead of the 
protein of interest. Such cases have been summarized by 
Niedzialkowska and others (Niedzialkowska et al., 2016) 
in their paper “The tale usually not told”, but other ex-
amples also exist in the literature (van Eerde et al., 2006; 
Zaitseva et al., 2009; Keegan et al., 2016).

In our studies, carried out in several laboratories, our 
targets were the structures of two unrelated Arabidopsis 
thaliana proteins, glutamate dehydrogenase (AtGDH2) and 
deoxyhypusine synthase (AtDHS). Having obtained sever-
al morphologically different crystal forms in these projects, 
we collected high quality X-ray diffraction data (Table 1) 
for what appeared to be easy molecular replacement (MR) 
(Rossmann, 1990) problems. However, in both cases, de-
spite the availability of very good models, all our numer-
ous MR trials have failed. We then investigated the unit 
cell parameters of our crystal forms, to find that two of 
them (6ZTV, 6ZTX) were within a 3% margin of those 
reported for E. coli catalase HPII (Uniprot ID: P21179). A 
third crystal form (6ZTW) had different unit cell parame-
ters but the structure could also be solved instantaneously 
with the model of E. coli HPII catalase (Table 1).

E. coli HPII is a homotetrameric enzyme with 222 
symmetry, comprised of four 753-residue subunits 
(Bravo et al., 1995). Each subunit contains a cis-heme d 
prosthetic group. Interestingly, there are 45 structures 
of E. coli HPII catalase in six crystal forms in the PDB 
(Table 2). It must be noted that our pipeline for protein 
purification in both projects involved Ni affinity chro-
matography, His6-tag cleavage with His-tagged TEV pro-
tease, elimination of TEV protease and impurities by a 
second run of the Ni column, and finally size-exclusion 
chromatography (SEC). Despite this multistep proce-
dure, a substantial residual amount of HPII remained in 
all samples, indicating that HPII may interact strongly 
enough with various proteins of interest to pass with 
them through all purification procedures.

Both, AtGDH2 (~45 kDa per subunit) and AtDHS 
(~41 kDa subunits) form oligomers, with total molecular 
weight of ~270 and ~170 kDa, respectively. The mo-
lecular weight of the E. coli HPII tetramer is ~340 kDa. 
This indicates that special caution must be used when 
pooling SEC fractions corresponding to that mass range, 
as they may be contaminated with HPII. It is also im-
portant to note that when we attempted to crystalize 
AtGDH2, the total protein concentration was ~4 mg/
mL. Considering that AtGDH2 was clearly a dominating 
band on SDS-PAGE (not shown), the concentration of 
HPII must have been well below 1 mg/mL. One must 
conclude, therefore, that E. coli HPII can be easily crys-
tallized from very low concentrations, supporting the 
findings of Simpkin and others (Simpkin et al., 2018).
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Table 1. Data collection and refinement statistics.

PDB ID 6ZTV 6ZTW 6ZTX

Data collection

Beamline PETRA P13 PETRA P13 APS 22-ID

Wavelength (Å) 1.03 1.03 1.00

Space group P21 P21 P21

Unit cell parameters 
 a, b, c (Å)
 β (°)

73.78, 172.26, 123.18
104.52

121.19, 168.07, 137.98
105.24

93.21, 132.93, 121.65
109.65

Resolution (Å) 80-1.78 (1.89-1.78)a 80-1.84 (1.95-1.84) 50-1.30 (1.38-1.30)

Unique reflections 282183 (45601) 452364 (72060) 670790 (106698)

Multiplicity 4.6 (4.6) 4.7 (4.5) 4.8 (4.9)

Completeness (%) 99.4 (99.5) 98.4 (97.1) 98.3 (96.9)

Rmerge (%) 10.0 (80.2) 12.4 (68.5) 10.2 (110.1)

<I/σ(I)> 11.5 (1.8) 9.9 (2.0) 11.8 (2.0)

Program used for data processing XDS (Kabsch, 2010)

Refinement

Program used for MR Phaser (McCoy et al., 2007)

Program used for refinement Phenix.refine (Afonine et al., 2012)

Rfree reflections 1411 2260 2638

No. of atoms (non-H)

protein 23009 46122 23350

ligands 186 496 228

 solvent 2077 4695 3309

Rwork/Rfree (%) 18.9/22.9 14.4/18.4 13.5/16.2

Average B-factor (Å2) 31.6 22.2 16.8

Rmsd from ideal geometry

bond lengths (Å) 0.006 0.007 0.005

bond angles (o) 1.09 1.09 1.08

Ramachandran statistics (%)

favored 97 98 98

allowed 3 2 2

outliers 0 0 0

aValues in parentheses refer to the highest-resolution shell

Table 2. Crystal lattice parameters for E. coli HPII catalase.

Space group Unit cell parameters
(Å; °)

Number of 
PDB instances PDB IDs

P1 69, 90, 115; 
107, 106, 96 1 6BY0

P21
94, 133, 122; 
90, 109, 90 38

1CF9, 1GG9, 1GGE, 1GGF, 1GGH, 1GGJ, 1GGK, 1IPH, 1P7Y, 1P7Z, 1P80, 1P81, 
1QF7, 1QWS, 3P9P, 3P9Q, 3P9R, 3P9S, 3PQ2, 3PQ3, 3PQ4, 3PQ5, 3PQ6, 3PQ7, 
3PQ8, 3TTT, 3TTU, 3TTV, 3TTW, 3TTX, 4ENP, 4ENQ, 4ENR, 4ENS, 4ENT, 4ENU, 
4ENV, 4ENW, 6ZTXa

P21
73, 172, 123; 
90, 105, 90 2 4BFL, 6ZTVb

P21
121, 168, 138; 
90, 105, 90 1 6ZTWc

C2 162, 171, 122; 
90, 122, 90 1 5BV2

I222 136, 159, 167; 
90, 90, 90 1 3VU3

Structures presented in this work are in bold. The crystallization conditions were as follows: a0.2 M Li2SO4, 0.1 M Tris pH 8.5, 25% w/v polyethylene 
glycol 3350; b0.2 M NaCl, 0.1 M Tris pH 7.5, 20% w/v PEG 4000, 10% MPD; c0.1 M Tris pH 7.5, 20% w/v PEG 4000.
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We hope that this note will save time, effort, and re-
sources when phasing X-ray data that do not correspond 
to the protein of interest. In cases of inexplicable MR 
difficulties, we recommend screening the PDB for unit 
cell parameters with a 5% margin, and using the hit 
protein models for MR. When the protein of interest 
has the molecular weight in its quaternary structure of 
~300–400 kDa, it might be a good idea to try E. coli 
HPII first. In other cases, one might run a software 
pipeline, such as SIMBAD (Simpkin et al., 2018) or Con-
taMiner (Hungler et al., 2016) that can analyze unit cell 
parameters and suggest an isomorphous structure of a 
contaminant protein for MR. One of the structures pre-
sented in this work represents a new crystal form of E. 
coli HPII, not reported to date. It provides an important 
additional piece of information for data mining which 
will improve future lattice-parameter searches of isomor-
phous structures in the PDB, as models for MR trials.
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