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Pseudomonas aeruginosa, is an opportunistic bacterium 
with a high prevalence in diverse pulmonary infections. 
Although several genes are involved in the system of re-
sistance and evasion of the immunological response of 
the host, little is known about the inflammatory, degra-
dative, and cell-binding response induced by P. aerugi-
nosa in human lung alveolar epithelial cells. The purpose 
of this study was to determine the cytokine expression 
(IL-1β and TNFα), pro matrix metalloproteinases activa-
tion (proMMP-2 and proMMP-9), and the effects on the 
cell-binding adhesion protein (E-cadherin) in an in vitro 
model of human lung alveolar epithelial cells. A549 
cells were stimulated with a different number of colo-
ny-forming units of P. aeruginosa for 3, 6, and 24 hours. 
Subsequently, the culture medium was collected, IL-1β 
and TNFα levels were evaluated by ELISA; proMMP-2 
and -9 levels were determined by substrate gel zymog-
raphy, and the MMP-9 and E-cadherin assessed by im-
munostaining of A549 cells. Our results demonstrated 
that P. aeruginosa induces mainly the secretion of TNFα, 
increases actMMP-9 level, and significantly reduces the 
level of E-cadherin in the A549 cells. In summary, the in-
flammatory/degradative process induced by P. aerugino-
sa modulates the expression of the E-cadherin protein. 
The probable clinical implications of this study suggest 
the use of inhibitors that reduce the degradative activity 
of proMMP-9 which will be further explored in the next 
phase of this study.
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INTRODUCTION

Pseudomonas aeruginosa is an opportunistic Gram-nega-
tive bacterium that has been associated with chronic in-
fections in airways (Beaudoin et al., 2012), cystic fibrosis 
(Holm et al., 2013) and pulmonary inflammation (Park et 
al., 2013). The pathogenicity of P. aeruginosa is mediated 
by several factors, including the production of diffusible 
molecules controlled by a mechanism known as quorum 
sensing (Chugani et al., 2012; Kownatzki et al., 1987; 
Perez et al., 2013; Rada and Leto, 2013). It was shown 
that lipopolysaccharides of P. aeruginosa induce in the al-
veolar and bronchial epithelium the secretion of nitric 
oxide (Pitt & St Croix, 2002), inflammatory cytokines 
(Wong & Johnson, 2013) and production of matrix met-
alloproteinases (MMPs) (Frisdal et al., 2001; Okamoto et 
al., 2002; Yao et al., 1996). MMPs are a family of zinc 
neutral endopeptidases produced in several pathological 
conditions (Churg et al., 2007; Holm et al., 2013) by a 
wide variety of cell types, including neutrophils (Brad-
ley et al., 2012; Louhelainen et al., 2010), alveolar mac-
rophages (Churg et al., 2007), and bronchial epithelial 
cells (Yao et al., 1996). MMPs induce degradations of 
various structural components of the extracellular matrix 
including collagen type I, IV, V, VII, X, fibronectin, elas-
tin, proteoglycan (Woessner, 1991), basement membrane 
(Kargozaran et al., 2007) as well as cell-binding adhe-
sion proteins (Allport et al., 2002; Nawrocki-Raby et al., 
2003). Although the secretion of MMPs is well known 
in various lung diseases: bronchopulmonary dysplasia 
(Mizikova & Morty, 2015), adenocarcinomas (Canete-
Soler et al., 1994), and chronic obstructive pulmonary 
disease (Louhelainen et al., 2010), the secretion profile 
of proMMP-2 and -9 produced by human pneumocytes 
secretory type II cells during infection with Pseudomonas 
aeruginosa is unknown. We chose the A549 cell line as 
it is a model of human lung alveolar epithelium which 
plays an important role in the immune response. We 
hypothesized that an increase in IL-1β and TNFα con-
centrations would be accompanied by a parallel increase 
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in collagenolytic activity of MMP-2 and -9 in the culture 
medium, and thereby would induced changes in epithe-
lial cadherin (E-cadherin) in A549 cells during transient 
P. aeruginosa stimulation.

MATERIALS AND METHODS

Antibodies and reagents

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazo-
lium bromide, Mitochondrial uncoupler carbonyl cya-
nide m-chlorophenylhydrazone, Hoechst 33258, and 
4´,6-diamidino-2-phenylindole were obtained from 
Sigma-Aldrich (St Louis, MO, USA). IL-1β and TNFα 
were purchased from R&D Systems (Minneapolis, MN, 
USA). Anti-MMP-9 antibodies were purchased from Cal-
biochem (Darmstadt, Germany). Anti-human E-cadherin 
antibody was purchased from BD Bioscience (San Jose. 
CA, USA).

Cell lines and culture

A549 cell line (American Type Culture Collections, 
Rockville, MD, USA) was obtained and its genetic pro-
file corroborated by the amplification of 21 specific 
markers. The result showed a complete match with the 
A549 line (ATTC, CCL-185). A549 cells were cultivat-
ed on 12 well plates (Corning, Darmstadt, Germany) in 
RPMI 1640 medium (Roswell Park Memorial Institute; 
Gibco, Grand Island, NY, USA) supplemented with 
10% fetal bovine serum (FBS), an antibiotic-antimycotic 
solution (penicillin 100 U/mL, streptomycin 100 µg/mL; 
Gibco) and incubated at 37°C in 5% CO2. After reach-
ing 95% of confluence, A549 cells were washed twice 
with sterile saline solution to remove RPMI-FBS, and 1 
mL of RPMI with 0.2% lactoalbumin hydrolyzated (RP-
MI-LHA; Gibco) was added with subsequent incubation 
at 37°C in 5% CO2.

Bacterial strain and preparation

Prior to the stimulation experiments, we confirmed P. 
aeruginosa (ATCC 27853, Rockville, MD, USA) identity 
through the following screening methods: morphology, 
production of pigments (pyocyanin and fluorescein), and 
disk method to assess susceptibility-resistance for peni-
cillins (piperacillin, carbenicillin), β-lactam-β-lactamase in-
hibitors combinations (piperacillin-tazobactam), cephems 
(ceftriaxone, cefoperazone, cefepime, and ceftazidime), 
carbapenems (meropenem), monobactams (aztreonam), 
aminoglycosides (gentamicin, and amikacin), fluoroqui-
nolones (ciprofloxacin, norfloxacin). These analyses con-
firmed that P. aeruginosa strain maintains all its character-
istics. For the stimulation assays P. aeruginosa was grown 
in 5% Blood Agar Base (Becton Dickison, USA) and 
harvested in calf medium.

Cell stimulation

After reaching 95% confluence, A549 cells were 
washed twice with sterile saline solution to remove RP-
MI-FBS and 1 mL of RPMI with 0.2% lactoalbumin 
hydrolysate (RPMI-LHA; Gibco) was added before in-
cubation at 37°C in 5% CO2. Next A549 cells were in-
fected with live P. aeruginosa in serial dilutions (102, 104, 
105, and 106 colony-forming units (CFU/mL)). The CFU 
numbers were based on a turbidity equivalent to 0.5 Mc-
Farland standard. After the infection, A549 cells were 
cultured for 3, 6 or 24 hours. At the end of the incuba-

tion time, the medium was collected and samples were 
centrifugated at 1400 rpm at 4°C for 5 min, the super-
natants were collected and stored at -70°C until further 
processing.

Cell viability assay

To evaluate A549 cells viability after incubation with 
P. aeruginosa we used the colorimetric assay of 3-(4,5-di-
methylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide 
(MMT) as previously described by Zeng et al. (2017). 
Cells were washed twice with sterile saline solution to 
remove RPMI-LHA and P. aeruginosa, and then cultured 
for 3 hours in presence of 20 µl (5 mg/mL) of MMT 
in 5% CO2 at 37°C. Subsequently, 150 µl of Dimethyl 
sulfoxide (DMSO; Merck KGaA, Darmstadt, Germany) 
was added into each well (Zeng et al., 2017). For nega-
tive control, a mitochondrial uncoupler carbonyl cyanide 
m-chlorophenylhydrazone (CCCP) was dissolved in di-
methylsulfoxide at a concentration of 80 µM (Chaudhari 
et al., 2008) and added to the cells before the incubation 
at 37°C with 5% CO2, 95 % air. Blue formazan prod-
uct in the culture medium from A549 cells was analyzed 
by spectrophotometric absorbance reading at 570 nm 
in Benchmark microplate (model 550; BioRad. Hercu-
les, CA, USA). Five independent experiments were per-
formed, each in duplicate.

Measurement of proinflammatory cytokines

To quantify IL-1β and TNFα secreted to the culture 
medium of A549 cells after each period of incubation 
with P. aeruginosa we used a specific DouSet enzyme-
linked immunosorbent assay (ELISA) (R&D Systems, 
Minneapolis, MN, USA) following the manufacturer´s 
instructions. This procedure was previously reported by 
our research group (Flores-Herrera et al., 2012; Osorio-
Caballero et al., 2015). For IL-1β (DY201; R&D Sys-
tems) and TNF (DY210; R&D Systems), a standard 
curve was created from 4 to 260 pg/mL and 15 to 960 
pg/mL, with a sensitivity of 2.0 and 5.0 pg/mL, respec-
tively. The concentration of IL-1β and TNFα were ex-
pressed as pg/mL. The ELISA assay was performed in 
eight independent experiments.

Zymography gel activity

To evaluate the secretion of proMMP-2 and proMMP-9 
into the culture media of A549 cells, SDS-polyacrylamide 
gels with porcine gelatin (1 mg/mL) were used as de-
scribed previously (Flores-Herrera et al., 2012). Each well 
was loaded with 0.75 µg of protein and the activity band 
was determined by optical density using NIH ImageJ. 
We used a culture medium from, promyelocyte cells as a 
control of electrophoretic mobility (U937, ATCC, CRL-
1593.2; Manassas, VA, USA). The gel activity assay was 
performed in eight independent experiments.

Inmunodetection of MMP-9 and E-cadherin in the A549 
cells

To localize MMP-9 in A549 cells after infection with 
P. aeruginosa we used immunefluorescence as described 
previously (Flores-Herrera et al., 2012). After fixing the 
cells with 4% paraformaldehyde for 10 minutes, a pri-
mary mouse anti-MMP9 antibody (clone 56-2A4; Calbio-
chem Darmstadt, Germany) was added at 1:50 dilution. 
An appropriate fluorescent-labeled secondary antibody 
(Molecular Probes, USA) was used. The nucleus was 
stained with 1 ng/ml of Hoechst 33258 (Sigma-Aldrich). 
In another set of experiments, E-cadherin was immu-
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nodetected using mouse anti-human E-cadherin (clone 
NCH-38) antibody at a 1:100 dilution. The nucleus was 
stained using 4’,6-diamidino-2-phenylindole (DAPI) for 7 
minutes. Negative controls consisted of cells without pri-
mary antibody, and, as expected, they did not exhibit any 
staining (not shown). The immunostaining was analyzed 
using an epi-fluorescence microscope (Olympus, IX-81, 
Tokyo, Japan) and photographed with a CCD camera 
(Hamamatsu, ORCA-Flash 2.8, Tokio, Japan).

Statistical analysis

Data were analyzed by one-way ANOVA with mul-
tiple comparisons followed by Tukey´s test using Sig-
maPlot version 11.0 (San Jose, CA, USA). Results are 
expressed as mean ± S.E.M. p<0.05 was considered sig-
nificant. Immunostainings of proMMP-9 and E-cadherine 
were performed five times.

RESULTS

Effects of P. aeruginosa on A549 cells viability

Figure 1 shows the viability of A549 cells with and 
without P. aeruginosa stimulation after 3 (1A), 6 (1B) 
and 24 hours (1C). The viability was not affected by 
the different doses of P. aeruginosa when compared to 
the control group (p=0.65). In the same experiments, 
we included the mitochondrial inhibitor (CCCP), which 
significantly reduced the viability of A549 cells in com-
parison to the control group (p<0.05). Finally, MMT 

was not metabolized by P. aeruginosa (Fig. 1). These ex-
periments demonstrated that infection with P. aeruginosa 
did not affect the viability of A549 cells. We then as-
sessed the effect of P. aeruginosa on the secretion of IL-
1β and TNFα.

Secretion of proinflammatory cytokines by A549 cells

IL-1β

Figure 2 shows that the stimulation of A549 cells with 
P. aeruginosa significantly increased the secretion of IL-1β 
in a dose-dependently manner. After 3 hours of stimu-
lation with P. aeruginosa at 105, and 106 CFU/mL, A549 
cells significantly increased the secretion of IL-1β by 
1.2- and 1.6-fold, respectively, in comparison to the con-
trol (2.3±0.7; p≤0.05, Fig. 2A). A similar secretion pro-
file was observed after 6 hours of stimulation (Fig. 2B). 
Maximal secretion of IL-1β was detected after 24 hours 
of stimulation with P. aeruginosa at 102, 104, 105, and 106 

CFU/mL, with 3.8-, 5.1-, 6.7-, and 8.1-fold increase, re-
spectively, when compared to the control (2.7±0.216; 
p≤0.05, Fig. 2C).

TNFα

Figure 3 shows that stimulation of A549 cells with 
P. aeruginosa increased the secretion profile of TNFα in 
a dose-dependent manner. After 3 hours of stimulation 
with P. aeruginosa at 104, 105, and 106 CFU/mL, A549 
cells significantly increased the secretion of TNFα by 
1.4-, 1.5-, and 1.6-fold, respectively when compared with 
the control (6.4±0.4; p≤0.05, Fig. 3A). A similar secre-

Figure 1. A549 cell viability assay. 
Effect of different number of colony-forming units (CFU/mL) of 
Pseudomonas aeruginosa at 3 (A), 6 (B), and 24-hours (C) of stimu-
lated of A549 cell (ashurated bars), the viability was determined 
with MMT assay. We included two negative controls: carbonyl cya-
nide m-chlorophenylhydrazone as mitochondrial inhibitor incubat-
ed with A549 cells (CCCP, 80 µM; black bar) and Pseudomonas aer-
uginosa (Pa). The assay was performed in five independent experi-
ments with duplicates. Data represent the mean ± standar devia-
tion. Statistically significant difference *p<0.05 vs. control group.

Figure 2. Secretion of IL-1β by A549 cells stimulated with P. aer-
uginosa. 
After 3 (A), 6 (B), and 24 hours (C) of stimulation with or without 
P. aeruginosa (differentnumber of colony-forming units; CFU/mL), 
the culture medium of A549 cells was recovered and analyzed 
using ELISA. The concentration of IL-1β was expressed as pg/mL. 
The assay was performed in 8 independent experiments with du-
plicates. Data represent the mean ± standard deviation. Statisti-
cally significant difference *p≤0.05 vs. control group.
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tion profile was observed after 6 hours of stimulation 
(Fig. 3B). Maximal secretion was observed after 24 hours 
of stimulation with P. aeruginosa at 102, 104, 105, and 106 

CFU/mL with 3.8-, 5.1-, 6.7-, and 8.1-fold increase, 
respectively, when compared to the control (6.7±1.1; 
p≤0.05, Fig. 3C).

Interestingly, it was shown that IL-1β and TNFα in-
duce the secretion of MMPs (Roomi et al., 2013). There-
fore, our next step was to determine the effect of the 
inflammatory responses induced by P. aeruginosa on the 
secretion of extracellular matrix metalloproteases into 
the culture medium from A549 cells. Lysis bands for 
proMMP-2 and -9 were identified by taking the mobil-
ity of U937 standard as a reference point, as previously 
reported and validated by our research group (Flores-
Herrera et al., 2012).

Production of metalloproteinases by A549 cells

Figure 4 shows the lysis bands of proMMP-2 and -9 
secreted by A549 cells after stimulation with P. aeruginosa 
for 3 (4A), 6 (4E), and 24 hours (4I). The relative den-
sitometric analysis indicated that after 3 (Fig. 4B) and 6 
hours (Fig. 4F) of stimulation, significantly higher levels 
of proMMP-2 were detected when compared to the con-
trol. Maximal secretion of proMMP-2 was observed after 
24 hours of stimulation with P. aeruginosa at 105, and 106 

CFU/mL, with a 1.3-fold increase compared to the con-
trol (48.7±2.8; p≤0.05 Fig. 4J). After the same period of 
stimulation, we observed a band of 66-KDa that corre-
sponded to the MMP-2 active form (Fig. 4J).

The relative densitometric analysis indicated that af-
ter 3 (Fig. 4B) and 6 hours (Fig. 4F) of stimulation with 

P. aeruginosa, A549 cells secreted proMMP-9 in a dose-
dependent manner. Maximal secretion was detected after 
incubation with 104, 105 and 106 CFU/mL with 1.8-, 1.7-, 
and 2.0-fold increase, respectively, in comparison to the 
control (21.7±2.4; p≤0.05, Fig. 4F). Interestingly, after 
24 hours of stimulation, we did not detect the lysis band 
corresponding to proMMP-9 (Fig. 4J).

Consistent with these findings, we observed morpho-
logical changes in A549 cells characterized by an increase 
in the number of spherical cells (Fig. 4L), when com-
pared to the control group (Fig. 4K). This finding, to-
gether with the absence of the proMMP-9 band in activ-
ity gels, suggested that this enzyme can be located in the 
extracellular matrix of A549 cells, as previously reported 
under other pathological conditions (Flores-Herrera et al., 
2012; Nawrocki-Raby et al., 2003). To explore this hy-
pothesis, we performed immunolocalization with specific 
antibodies.

proMMP-9 detection in A549 cells by 
immunofluorescence

As shown in Fig. 5, proMMP-9 was immunodetected 
in the extracellular matrix of A549 cells after stimulation 
with 106 CFU/mL of P. aeruginosa. We observed a sig-
nificant increase in immunoreactivity after 3, 6 and 24 
hours compared to the respective controls (Fig. 5). As it 
was previously demonstrated in another cellular system, 
the active isoform of MMP-9 is able to degrade different 
support components, including collagen type I, IV, V, 
XI, elastin, and proteoglycan of the extracellular matrix 
(Morrison et al., 2009; Woessner, 1991), as well as cell-
binding proteins such as vascular endothelial-cadherin 
(Allport et al., 2002) and E-cadherin (Nawrocki-Raby et 
al., 2003). After observing a change in the morphology 
of A549 cells, a reduction in the number of adhered 
cells (data not shown), and a decrease of proMMP-9 im-
munoreactivity, we complemented our approach by ana-
lyzing E-cadherin using immunodetection.

proMMP-9 reduces E-cadherin immunofluorescence in 
A549 cells

A549 cells incubated for 24 hours with P. aeruginosa 
showed very low immunostaining intensity for E-cadher-
in compared to the respective controls (Fig. 6). Immu-
noreactivity was located around the cells and the nuclei.

DISCUSSION

Several in vivo and in vitro models of infection are able 
to release a diverse set of molecules that are associated 
with cellular stress (Osorio-Caballero et al., 2015), and 
the reduction of chemotactic (Henriquez et al., 2015) and 
proinflammatory cytokines (Keyel, 2014; van de Veer-
donk et al., 2011), which are involved in the next phase 
of the inflammatory response through the secretion of 
degradatives enzymes, such as proMMPs (Flores-Herrera 
et al., 2012). In in vitro models, the induction of the deg-
radative response affects cell integrity by decreasing the 
expression of cell-cell adhesion proteins, like E-cadherin 
and vascular endothelial-cadherin (Allport et al., 2002; 
Nawrocki-Raby et al., 2003). However, little evidence is 
available on the effect of Pseudomonas aeruginosa on the in-
flammatory-degradative response in human lung alveolar 
epithelial type II (A549 line) cells.

Our results showed that P. aeruginosa was able to in-
crease the secretion of 1) the proinflammatory cytokines 
IL-1β and TNFα; and 2) the prodegradative enzyme 

Figure 3. Secretion of TNFα by A549 cells stimulated with P. aer-
uginosa. 
After 3 (A), 6 (B), and 24 hours (C) of stimulation with or without 
P. aeruginosa (different number of colony-forming units; CFU/mL), 
the culture medium of A549 cells was recovered and analyzed us-
ing ELISA. The concentration of TNFα was expressed as pg/mL. 
The assay was performed in 8 independent experiments with du-
plicates. Data represent the mean ± standard deviation. Statisti-
cally significant difference *p≤0.05 vs. control group.
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MMP-9 in a time- and concentration-dependent manner. 
This proinflammatory/prodegradative environment com-
promised cell viability through changes in cell morphol-
ogy and decrease of E-cadherin expression in the A549 
cells.

IL-1β is a pivotal cytokine in several second messen-
ger signaling pathways. It is involved in the activation of 
the inflammatory response (Chen et al., 2017; Ledesma et 
al., 2004), acts as a modulator of the specialized cells of 
the immune system (Gabay et al., 2010; Rubartelli et al., 
1990), and induces the expression of MMPs (Eberhardt 
et al., 2000; Nam & Kwon, 2014). The production of IL-
1β by alveolar macrophages and epithelial cells is induced 
by different bacterial components that interact with Toll-
like receptors 4 (TLR4). Interestingly, this receptor has 
high homology with the IL-1R receptor which amplifies 
the inflammatory response and promotes the activation 
of transcription factors, such as nuclear factor kappa-
beta (NFĸβ) and activator protein (AP-1), inducing the 
expression of genes related to the inflammatory response 
(Armstrong et al., 2004; Parker et al., 2016). Wong and 
others (Wong et al., 2012) showed that alveolar type I 
cells obtained from rats that were stimulated with LPS 
from E. coli for 18 hours, show high expression of 
TNFα and IL-1β, but a low expression of IL-6 (Wong & 
Johnson, 2013). Similarly, in our experiments A549 cells 
stimulated during with P. aeruginosa for 24 hours showed 
a 10-fold increase in secretion of TNFα (Fig. 3C) in 
comparison to IL-1β (Fig. 2C).

Saperstein and others (Saperstein et al., 2009) and 
Thorley and others (Thorley et al., 2007), demonstrated 
that the IL-1β signaling pathways modulate TNFα secre-
tion. They used mouse lung epithelial type II and prima-

ry human alveolar type II cells to show that increase of 
TNFα can be reversed by using small interfering RNA 
and by neutralizing IL-1β with a specific antibody, re-
spectively.

Recently, Jayaraman and others (Jayaraman et al., 2013) 
proposed a hypothetical mechanism by which IL-1β in-
creases the secretion of TNFα via interacting with the 
type-1 form of the TNF receptor (TNFR1) and increas-
ing the secretion of the soluble form of TNFα (Jayara-
man et al., 2013; MacEwan, 2002). However, a alterna-
tive mechanisms mediated by nuclear factor kappa-beta 
(NFĸβ) could also explain the link between IL-1β and 
TNFα (Fig. 7). NFĸβ plays an important role in the im-
munological pathway (Tak & Firestein, 2001), and muta-
tions of cellular NFκβ induced changes in this immuno-
logical response (Picard et al., 2011; Sung et al., 2014). 
NFĸβ and mitogen-activated protein kinases (MAPKs) 
knockout mice displayed an altered inflammatory re-
sponse of chemokines and cytokines after LPS stimula-
tion (Picard et al., 2011; Sung et al., 2014).

The next phase of the inflammatory response pro-
moted by IL-1β/TNFα is the expression and secretion 
of MMPs (Fang et al., 2006; Flores-Herrera et al., 2012). 
Our results suggest that an infectious and inflammatory 
process modulates the secretion of proMMP-2 and -9 in 
a dose-dependent manner and in relation to the stimula-
tion time (Fig. 4).

There is evidence of the mechanism through which 
IL-1β (Eberhardt et al., 2000; Mon et al., 2017; Ruhul 
Amin et al., 2003) and TNFα (Fang et al., 2006; Jayara-
man et al., 2013; Mon et al., 2006; Tsai et al., 2014) in-
crease the activity of MMP-9 (Fig. 7). Recently, Mon 
et al. (2017) demonstrated that IL-1β activates MMP-9 

Figure 4. Secretion of proMMP-2 and proMMP-9 by A549 cells after P. aeruginosa stimulation. 
Representative gelatin-gel zymography (A, E, and I) showing enzymatic activity of proMMP-2 and proMMP-9 secreted into the culture 
medium by A549 cells after stimulation with or without P. aeruginosa (different number of colony-forming units; CFU/mL). After 24 hours 
of stimulation with P. aeruginosa, we detected actMMP-2. The proMMP-9 form was not clearly visualized (I). Each lysis band was quanti-
fied by densitometric analysis after bacterial stimulation (B, F, and J). The baseline activity of media was evaluated using a promyelocyte 
cell line (U937, ATCC Manassas, VA, USA). The assay was performed of 8 independent experiments. Data represent the mean ± standard 
deviation. Statistically significant difference *p≤0.05 vs. control group. Phase-contrast images showing the change in the morphology of 
A549 cells after stimulation with 106 CFU/mL of P. aeruginosa (D, H, L) vs. control group (Ctrl, C, G, and K). The magnification of the main 
image is 10x and of the box is 40x. Scale bar=100 µm.
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through a series of intracellular signals initiated by the 
activation of the proto-oncogene tyrosine-protein kinase 
Src (Src) which phosphorylates two tyrosines (Y397 and 
Y925), activating the system mediated by the growth fac-
tor receptor-bound protein 2 (Grb2) and Ras-dependent 
MAPK protein. This complex activates the MMP-9 (Mon 
et al., 2017). In addition, it was also shown by Mon et al. 
(2006) that TNFα interacts with the focal adhesion ki-
nase (FAK) directly involved in the MMP-9 expresion. 
FAK activation is mediated by the TNFR2 receptor in 
two tyrosine (Y398, and Y925). These findings were 
confirmed using an antibody against TNFR2, which in-
hibited FAK phosphorylation and by using FAK-/- cells, 

which prevented the degradative activity of MMP-9 
(Mon et al., 2006).

Finally, after 24 hours of stimulation with P. aeruginosa 
we observed a 72 KDa band corresponding to proMMP-2 
and a 62-KDa band corresponding to its active form 
(Fig. 4E). Unfortunately, the activity of MMP-2 could not 
be determined. Furthermore, proMMP-9 (92 KDa) could 
not be clearly identified in the activity gels (Fig. 4E and 
F), but it was clearly detected in the extracellular matrix 
of A549 cells using a specific antibody (Fig. 5). Altera-
tions in the morphology of A549 cells were also evident 
(Fig. 6). Frisdal et al. (Frisdal et al., 2001) and Jackson 
and others (Jackson et al., 2010) have shown higher ex-

Figure 6. MMP-9 reduced the E-cadherin signal in A549 cells. 
A bright signal from E-cadherin immunostaining was detected after 3, 6, and 24 hours in the control group. In contrast, weaker staining 
was observed after 24 hours of incubation with P. aeruginosa. In these assays, the nucleus was stained using 4´,6-diamidino-2-phenylin-
dole (DAPI, blue color) and colocalization with E-cadherin immunostaining (green color) was shown. The assay was performed in five 
independent experiments. The magnification 20x.

Figure 5. Immunoreactivity of proMMP-9 in A549 cells. 
Increased immunoreactivity of actMMP-9 was observed after 3, 6, and 24 hours of stimulation with P. aeruginosa when compared to the 
control group. In these assays, the nucleus was stained using Hoechst (blue color) and colocalization with actMMP-9 immunostaining 
(red color) was shown. The assay was performed in five independent experiments. The magnification is 20x.
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pression of MMP-2 and -9 during pulmonary pathologi-
cal. During physiological development, MMPs are secret-
ed into the extracellular space in the form of proMMPs 
and are bound to specific tissue inhibitors (TIMPs), as 
well as to the membrane-type metalloproteases (MT-
MMP) (Somerville et al., 2003). Their activation is trig-
gered by the removal of the peptides associated with the 
active site of the proMMP-2 (72 KDa) and proMMP-9 
(92 KDa), inducing conformational change (Defawe 
et al., 2005; Koo et al., 2012; Somerville et al., 2003) 
(Fig. 7). Moreover, evidence from different sources sug-
gests that in pathological processes, actMMP-9 degrades 
the E-cadherin involved in cell-cell adhesion (Allport et 
al., 2002; Nawrocki-Raby et al., 2003). Using immuno-
histochemistry, Shaco-Levy et al. (2008) showed that an 
increase in the secretion of actMMP-9 reduces the level 
of E-cadherin and intracellular β-catenin protein. Our 
results showed a reduction of the E-cadherin with rela-
tion to the concentration of P. aeruginosa used for stimu-
lation and the time of stimulation (Fig. 7). Carayol et al. 
(2002) and Kim et al. (2018) used human nasal epithelial 
cell to demonstrated the association between an increase 
of MMP-9 expression and a decrease in E-cadherin lev-
els. Interestingly, the activity of MMP-9 was inhibited by 
preincubation with dexamethasone which was accom-
panied by increased levels of E-cadherin (Carayol et al., 
2002; Kim et al., 2018).

Although in this study we did not examine the expres-
sion of NFĸβ, we are planning to do it as part of our 
research project in order to explore the potential links 
between inflammasome (IL-1β/TNFα) and NFĸβ.

The studies reported here demonstrated that P. aer-
uginosa induces mainly the secretion of TNFα, increasing 
the actMMP-9, and significantly reduces the level of E-
cadherin in the A549 cells.
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