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This study was conducted to investigate the roles of fer-
ritin in atherosclerosis. The mouse model of atherosclero-
sis was established by feeding ApoE knockout mice with 
a high-fat diet. The mice were then treated with ferritin-
overexpressing and -silencing constructs, and assessed for 
interleukins (ILs) and matrix metalloproteinases (MMPs) 
levels using ELISA and Western blot analysis. After being 
fed with a high-fat diet, the ApoE knockout mice devel-
oped pro-atherogenic lipid profiles with elevated total 
cholesterol (TC), triglyceride (TG) and low-density lipopro-
tein cholesterol (LDL-C). They also showed increased ath-
erosclerotic lesions including narrowed lumen diameter, 
reduced lumen area, and increased plaque size. Following 
injection of the overexpression and silencing constructs, 
mRNA levels of ferritin were increased and decreased, 
respectively, and at the same time the atherosclerotic le-
sions were aggravated and alleviated, respectively. Fur-
ther analysis indicated that silencing of ferritin gene re-
duced IL-1β and IL-10 levels while overexpressing ferritin 
increased them. On other hand, the TNF-α levels showed 
an opposite trend. MMP8, MMP12 and MMP13 levels 
were increased or decreased significantly after the mice 
were injected with ferritin over-expression or silencing 
vectors, respectively. Western blot analysis showed that 
compared to the control, overexpressing ferritin resulted 
in increased expression of p-JNK while silencing ferritin 
decreased the expression. Meanwhile, the levels of pc-Jun 
remained unchanged. Our work demonstrates that ferritin 
can regulate the progress of atherosclerosis via regulating 
the expression levels of MMPs and interleukins. Silencing 
ferritin inhibits the development of atherosclerosis and is, 
therefore, worth being further investigated as a potential 
therapeutic approach for this disease.
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INTRODUCTION

Cardiovascular and cerebrovascular diseases caused by 
atherosclerosis are common and leading causes of dis-
ability and death (Barquera et al., 2015). Atherosclerosis 
is a chronic inflammatory disease affecting large and me-
dium arteries (Fatkhullina et al., 2016; Moss et al., 2018). 
A better understanding of cellular and molecular mecha-
nisms underlying the pathogenesis of atherosclerosis is 
important for developing new prevention and treatment 
strategies as well as therapeutics for the disease. Stud-
ies have shown that inflammatory response plays an 
important role in the pathogenesis of atherosclerosis. 
For example, inflammatory cytokines such as tumor ne-
crosis factor α (TNF-α), interleukin (IL)-1β, IL-6 and 
lipid mediators could promote inflammatory reactions 
in atherosclerotic plaque (Auguet et al., 2016; Gostner 
& Fuchs, 2016). The abnormally elevated expression 
of matrix metalloproteinases (MMPs) can lead to ath-
erosclerotic plaque rupture, acute myocardial infarction 
and other cardiovascular events (Newby, 2016). On the 
other hand, other cytokines such as IL-10, transforming 
growth factor β (TGF-β), and extracellular matrix (ECM) 
proteins can reduce atherosclerotic inflammation, leading 
to plaque regression (Hassan et al., 2018; Rahman et al., 
2017).

Ferritin is an iron storage protein whose level reflects 
the iron reserve and iron load in the body (Golan et al., 
2021). It is elevated during infectious diseases, tumors 
and inflammation (Jaksch-Bogensperger et al., 2020; Kim 
et al., 2013). Studies have shown that iron at high con-
centration could accelerate the formation of free radicals 
and oxidation of atherogenic lipoproteins such as cho-
lesterol (Cozzi et al., 1990; Ikeda et al., 2006; Tuomain-
en et al., 2003). Therefore, increased ferritin and iron 
stores may be a risk factor for cardiovascular disease 
and have a causal role in the pathogenesis of athero-
sclerosis (Lauffer, 1991; MacDonald, 1993). Since pro-
inflammatory and anti-inflammatory macrophages within 
arterial plaques have a different amount of intracellular 
iron (Kraml, 2017), it is still largely unclear how ferritin 
participates and regulates the atherosclerotic process, al-
though iron level appeared to increase in the atheroscle-
rotic plaques in deceased patients with coronary heart 
disease (Vlad et al., 1994). In addition, high ferritin was 
shown to predict poor prognosis in patients with coro-
nary artery disease (Zhu et al., 2006).

To better understand the role of ferritin in pathogen-
esis of atherosclerosis, we examined the effect of ferritin 
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(FTH1 gene) on atherosclerosis and related inflammatory 
reactions using the mouse model of atherosclerosis. The 
findings would provide new insights on the relationship 
between ferritin and atherosclerosis and clues for the 
treatment of atherosclerosis.

MATERIALS AND METHODS

Animals

Specific pathogen-free male apolipoprotein E-knock-
out (ApoE–/–) mice, aged 6 to 8 weeks, weighing 21.2 to 
25.5 g, were purchased from Tsinghua Animals, Beijing, 
China. All experimental protocols for the use of ani-
mals were approved by the Animal Care and Use Com-
mittee of Hebei Medical University. All animal experi-
ments complied with the ARRIVE guidelines. Mice were 
housed under pathogen-free conditions, had access to 
standard mice feed and water ad libitum and were main-
tained at a 12/12 hour day/night cycle in climate-con-
trolled conditions (22±1°C, 40–70% humidity). Animals 
were sacrificed by CO2 asphyxiation after completion 
of the experiments and tissues were collected. CO2 was 
supplied at a flow rate of 20% of the cage volume per 
minute (5 L/min). The death after exposure to carbon 
dioxide was confirmed based on a careful assessment of 
the mice for cardiac arrest.

Reagents and instruments

Multi-shRNA vector pLKO.1-TRC was obtained 
from Addgene, USA; 293A cells were purchased from 
ThermoFisher Scientific, USA; automatic biochemi-
cal analyzer was purchased from Sigma-Aldrich, USA; 
blood lipid test reagents and ELISA kits were purchased 
from Wallysong Biotechnology, Wuhan, China; Trizol 
reagent (CW0580S) and Ultrapure RNA Extraction Kit 
(CW0581M) were products of CWbiotech, Beijing, Chi-
na; cDNA Synthesis Kit (CW2141S) was obtained from 
Cwbiotech, Beijing, China; 2x SYBR Green PCR Mas-
ter Mix (A4004M) was obtained from Lifeint, Beijing, 
China; mouse anti-human monoclonal antibodies against 
phospho-Ser63 c-Jun (pc-Jun) (1,50, ab195924) and 
phospho-Thr183/185 JNK (p-JNK) (1,50, ab131499) 
were obtained from Abcam, Cambridge, UK; HiScript II 
SuperMix for qPCR (R223-01) was from Vazyme, USA; 
PVDF membrane (IPVH00010) was a product of Milli-
pore, USA; real-time fluorescent PCR system (CFX Con-
nect) was obtained from Biorad, Shanghai; ultrasensitive 
luminescent solution (RJ239676) and pENTR Directional 
TOPO Cloning Kit were purchased from ThermoFisher 
Scientific, USA.

Construction of silencing and overexpression vectors

Using ThermoFisher’s online RNAi Designer (https//
www.thermofisher.com/us/en/home/life-science/rnai/
vector-based-rnai.html), short hairpin RNA sequenc-
es for ferritin (shRNA, 5′-ATTTTTGGCAACTGC-
CTCTG) were designed and inserted into pLKO.1-TRC. 
The lentivirus vector was amplified in 293A cells, tittered 
according to the manufacturer’s instructions and stored 
at -80°C before use. To construct overexpression vec-
tor RNA was extracted from mice using Trizol RNA 
extraction kit and reversely transcribed into cDNA us-
ing cDNA synthesis kit according to the manufactur-
ers’ protocols. The cDNA was used as a template to 
amplify ferritin coding sequence using a pair of primers 
(forward 5′-CTGCAGATGCTTCTCAAGGCCTCCGC-

CGCTCTC, reverse 5′-GGTACCCTATGCCTGATG-
CAACTTTCCTTCATCCAGCAGCA). The amplified 
DNA fragment was recovered from the gel and cloned 
into pENTR™ Directional TOPO to generate pENTR-
ferritin according to the manufacturer’s instructions.

Atherosclerosis model and treatments

ApoE–/– mice were fed a high-fat diet (containing 
21.0% fat and 1.5% cholesterol, Research Diets, New 
Brunswick, NJ, USA) to generate an atherosclerosis 
model or regular diet (10% fat and 0% cholesterol, Re-
search Diets, USA) for use as a control. After 24 weeks, 
three mice were randomly selected from each group to 
examine blood lipid profiles to determine whether ath-
erosclerosis modeling was successful. The model animals 
were then randomly divided into three groups (n=10) to 
receive an intravenous injection of silencing construct 
(10 µl at 108 UT/mL), overexpression construct (5 µg at 
1 µg/µL), or empty vector (5 µg at 1 µg/µL) via tail vein 
as previously reported (Gorgens et al., 2019). After injec-
tion, the animals were reared at the same conditions as 
described above for 20 days and sacrificed for analysis.

Blood lipid measurements

Venous blood was collected from three randomly se-
lected mice per group and analyzed for total cholesterol 
(TC), triglyceride (TG), high-density lipoprotein choles-
terol (HDL-C) and low-density lipoprotein cholesterol 
(LDL-C) using COD-PAP and GPO-PAP methods ac-
cording to the supplier’s instructions.

Hematoxylin and eosin  (HE) staining

HE staining was carried out to examine the plaque 
as described previously (Fischer et al., 2008). Briefly, the 
thoracic aortas were isolated and fixed in 4% paraform-
aldehyde, dehydrated in 70%, 80%, 90% and 100% al-
cohol and cleaned with xylene. Dehydrated tissue was 
embedded in paraffin, sectioned, dewaxed, and hydrated. 
The sections were stained with an aqueous hematoxy-
lin solution for 3 min, differentiated with hydrochloric 
acid for 15 s, briefly washed, and counter-stained with 
eosin for 3 min. After being washed in distilled water, 
dehydrated and cleared, the sections were sealed and 
examined under a microscope for aortic morphological 
changes.

Real-time fluorescent quantitative PCR (qRT-PCR)

Total RNA was isolated from blood 5 days after in-
jection of constructs using the Trizol reagent accord-
ing to the manufacturer’s instructions and was reversely 
transcribed to cDNA for mRNA expression analysis 
using cDNA Synthesis kit according to the manufac-
turer’s protocols. HiScript II qRT SuperMix for qPCR 
was used for quantification of cDNA according to the 
manufacturer’s protocol using primers for ferritin (for-
ward, GCCGAGAAACTGATGAAGCTGC, reverse, 
GCACACTCCATTGCATTCAGCC). Normalization 
was performed with GAPDH. The PCR was carried out 
in a total volume of 10 μl containing 1.5 μl of diluted 
and pre-amplified cDNA, 10 μl of 2× SYBR Green PCR 
Master Mix and 1 μl of each fluorescence probe. The cy-
cling conditions were 50ºC for 2 min, 95ºC for 10 min 
followed by 45 cycles, each one consisting of 10 s at 
95ºC and 30 s at 58ºC. Samples were run in triplicate 
and the mean value was calculated for each treatment. 
The data were managed according to the previously de-
scribed protocol (Livak & Schmittgen, 2001).

https://www.thermofisher.com/us/en/home/life-science/rnai/vector-based-rnai.html
https://www.thermofisher.com/us/en/home/life-science/rnai/vector-based-rnai.html
https://www.thermofisher.com/us/en/home/life-science/rnai/vector-based-rnai.html
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Enzyme-linked immunosorbent assay (ELISA)

Blood samples were collected from mice 20 days after 
injection. Serum concentrations of IL-1β, TNF-α, IL-10, 
MMP8, MMP12, and MMP13 were measured using ELI-
SA kits according to the manufacturer’s protocols. The 
absorbance (OD value) was read with a plate reader at 
a wavelength of 450 nm within 15 min after adding the 
stop solution.

Western blot

Thoracic aorta tissues were lysed with RIPA buffer 
containing protease inhibitors to extract proteins. Total 
protein was quantitated using BCA kit according to the 
manufacturer’s instructions. After denaturation, 50 µg of 
protein was separated using polyacrylamide gel electro-
phoresis (SDS-PAGE) and transferred to PVDF mem-
branes. Non-specific binding was blocked by incubating 
in 5% non-fat milk in 1× Tris-buffered saline containing 
0.1% Tween for 4 hours at room temperature and then 
the membranes were incubated with primary antibodies 
(mouse anti-human phospho-Thr183/185 JNK (p-JNK) 
(1.50) and mouse anti-human phospho-Ser63 c-Jun (pc-
Jun) (1.50)) overnight. The blots were then incubated 
with goat anti- mouse horseradish peroxidase-conjugated 
secondary antibodies (1 2 000) and the immunoreactive 
bands were visualized with a chemiluminescence kit. The 
gray values of bands were analyzed using Quantity One 
software.

Statistical analysis

All data were expressed as means ± standard error of 
the mean (S.E.M.) obtained from at least three independ-
ent experiments. Statistical comparisons between groups 
were performed using one-way ANOVA followed by 
the Tukey post-hoc test. A value of P<0.05 was consid-
ered statistically significant.

RESULTS

High fat-diet generated pro-atherogenic  lipid profiles 
and atherogenic lesions in ApoE-/- mice

After being fed with a high-fat diet for 24 weeks, the 
animals were tested for serum lipid levels. The results 
showed that compared to the mice fed with normal diet 
(ND), high-fat diet feeding resulted in significantly el-
evated levels of pro-atherogenic lipids in ApoE-/- mice. 
The levels of TG, TC, LDL-C and HDLC increased 
from 0.88, 10.06 , 8.06 and 2.06 to 4.89, 25.06, 15.76 
and 2.09 mmol/L, respectively (P<0.05, Table 1), while 
HDL-C remained unchanged (P>0.05, Table 1). The size 

of atherosclerotic plaques was significantly greater in 
mice fed with the high-fat diet than fed with the normal 
diet. In addition, the vessel lumen was significantly nar-
rowed (P<0.05, Table 1).

Ferritin silencing reduced atherosclerotic lesions

The atherosclerotic model mice were then intervened 
with ferritin silencing and over-expression constructs 
and assessed for atherosclerosis-related changes. PCR 
assay showed that five days after injection of silencing 
and overexpression vectors, the serum ferritin mRNA 
levels were significantly down and up-regulated (Fig. 1), 
indicating that the vectors were effective in reducing and 
increasing ferritin expression, respectively. 20 days af-
ter the intervention, compared to mice treated with an 
empty vector, the area of atherosclerosis plaques was sig-
nificantly increased in the mice treated with ferritin over-
expression vector and significantly decreased in the mice 
treated with the silencing vector (P<0.05, Table 2). The 
diameter and area of arterial lumen were significantly de-
creased in the mice treated with ferritin over-expression 
vector and significantly increased in the mice treated 
with ferritin silencing vector (P<0.05, Table 2).

Ferritin silencing changed IL-1β, IL-10, and TNF-α levels

We then measured IL-1β, IL-10, and TNF-α lev-
els in the mice 20 days after injection. Results showed 
that compared to mice treated with an empty vector 
the levels of IL-1β and IL-10 levels were significantly 
increased or decreased in the mice treated with ferritin 
over-expression or silencing vector (P<0.05, Table 3), re-
spectively. On the other hand, the levels of TNF-α levels 
were significantly decreased when the mice were treated 
with ferritin over-expression vector and significantly in-
creased when the mice were treated with ferritin silenc-
ing vector (P<0.05, Table 3).

Figure 1. Serum ferritin mRNA levels following delivery of over-
expression and silencing vectors in mice. 
**denotes P<0.01 vs control.

Table 1. Levels of serum lipids and atherosclerotic lesions parameters in mice after feeding with the high-fat diet (model) and the 
normal diet (ND) for 24 weeks.

Lipids and atherosclerotic lesions ND, mmol/L (n=6) Model, mmol/L (n=6) t P

TG 0.88±0.23 4.89±0.63 2.811 0.022

TC 10.06±1.23 25.06±2.23 4.221 0.011

LDL-C 8.06±1.11 15.76±2.23 2.183 0.031

HDL-C 2.06±0.23 2.09±0.33 2.875 0.082

Minimal lumen diameter (mm) 0.82±0.08 0.55±0.03 7.815 0.012

Lumen area (mm2) 0.44±0.02 0.35±0.03 6.215 0.017

Atherosclerotic plaque size (mm2) 0.04±0.01 0.13±0.02 5.236 0.011
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Ferritin silencing changed the expression of MMP8, 
MMP12, and MMP13

In addition, MMP8, MMP12, and MMP13 levels were 
measured and results showed that they were increased 
significantly following treatment with ferritin over-ex-
pression vector and significantly decreased after treat-
ment with ferritin silencing vector (P<0.05, Table 4).

Ferritin silencing activated p-JNK/c-Jun signaling 
pathways

The expression of proteins in the p-JNK / c-Jun sign-
aling pathways was assessed and results are shown in 
Figure 2. Compared to the control ferritin over-expres-
sion resulted in increased expression of p-JNK, while 
ferritin silencing decreased the expression of the protein 
(P<0.05, Fig. 2A). On the other hand, the levels of pc-
Jun remained unchanged (P>0.05, Fig. 2B).

DISCUSSION

Ferritin is an important storage protein for iron sup-
ply and its role in atherosclerosis has not been fully 
elucidated at the molecular level, although clinical stud-
ies showed that patients with carotid atherosclerosis dis-
played elevated serum ferritin levels (Ma et al., 2015; Xu 
et al., 2017) and a population-based study in northeast 
Germany showed that there is a relationship between 
serum ferritin level and carotid atherosclerosis that was 
potentiated by LDL cholesterol (Wolff et al., 2004). The 
present study found that silencing FTH1 gene expression 
could alleviate the development of atherosclerotic lesions 
in atherosclerotic mice. FTH1 gene codes ferritin which 
is a major intracellular iron storage protein in prokary-
otes and eukaryotes (Muhoberac & Vidal, 2019). Silenc-

ing this gene also reduced the levels of inflammatory cy-
tokines and MMPs and down-regulated p-JNK signaling 
pathways. On the other hand, overexpressing the gene 
promoted the development of atherosclerotic lesions, in-
creased the levels of inflammatory cytokines and MMPs, 
and up-regulated p-JNK signaling pathways. Since over-
expression of ferritin would result in increased body iron 

Table 2. Atherosclerotic plaque size and minimal lumen diameter and area 20 days after atherosclerotic mice were treated with fer-
ritin silencing and overexpression constructs.

Group No. mice Minimal lumen diameter (mm) Lumen area (mm2) Atherosclerotic plaque size (mm2)

Control (empty vector) 10 0.51±0.08 0.29±0.05 0.14±0.01

Overexpression 10 0.42±0.11a 0.25±0.04a 0.28±0.02a

Silencing 10 0.55±0.03b 0.39±0.06b 0.08±0.01b

aand bdenote P<0.05 vs control and overexpression vector, respectively.

Table 3. Levels of IL-1β, IL-10 and TNF-α in mice 20 days after atherosclerotic mice were treated with ferritin silencing and overex-
pression constructs 

Group No. mice IL-1β (pg/mL) IL-10 (pg/mL) TNF-α (pg/mL)

Control (empty vector) 10 20.51±3.08 10.04±1.11 16.29±3.25

Overexpression 10 24.21±2.88a 16.04±1.41a 12.19±3.15a

Silencing 10 16.51±1.08b 10.04±1.11b 33.04±5.15b

a and bP<0.05 vs control and overexpression vector, respectively.

Table 4. Levels of MMP8, MMP12, and MMP13 in mice 20 days after atherosclerotic mice were treated with ferritin silencing and 
overexpression constructs.

Group No. mice MMP8 (pg/µL) MMP12 (pg/ µL) MMP13 (pg/ µL)

Control (empty vector) 10 20.21±1.08 26.69±1.12 20.04±1.11

Overexpression 10 23.61±1.38a 29.33±1.12a 26.14±1.71a

Silencing 10 18.21±1.01b 22.49±1.02b 16.04±0.91b

a and b denote P<0.05 vs control and overexpression vector, respectively.

Figure 2. Expression of p-JNK and pc-Jun following overexpres-
sion and silencing of ferritin gene in mice. 
Upper panel: representative Western Blots, lower panel: relative 
protein levels. * and #denote P<0.05 vs control.



Vol. 68       709Ferritin and atherosclerosis

load, this may lead to enhanced progression of athero-
sclerosis as previously reported (Araujo et al., 1995; Lee 
et al., 1999). Furthermore, previous studies showed that 
the expression of the ferritin gene is up-regulated in ath-
erosclerotic vessels (Pang et al., 1996), which is consist-
ent with our observations that over-expression of ferritin 
has atherogenic activity, leading to increased plaque size 
and reduced aorta lumen diameter.

Inflammatory response plays an important role in the 
development of atherosclerosis which is regarded as a 
form of chronic vascular inflammation lesions (Soeki 
& Sata, 2016; Taleb, 2016). Measurements showed that 
the levels of inflammatory cytokines such as IL-1β and 
IL-10 were significantly increased following treatment 
with ferritin overexpression construct, and significantly 
reduced once ferritin silencing construct was used, sug-
gesting that ferritin may regulate atherosclerosis progres-
sion via inflammatory pathways. These findings are con-
sistent with the previous observation that the secretion 
of serum ferritin is regulated by inflammatory hormones 
(Tran et al., 1997). For instance, it was found that IL-1β 
may increase the expression of both the heavy (H) and 
light (L) ferritin subunit (Rogers et al., 1994) and ferritin 
could stimulate secretion of IL-10 and TNF-α in mice 
(Wang et al., 2017). Since ferritin level is statistically cor-
related with the levels of inflammatory biomarkers such 
as TNF-α, IL-10, and high-sensitivity C reactive protein 
(hs-CRP) and mortality of patients with the peripheral 
arterial disease (PAD), including atherosclerosis (Depal-
ma et al., 2010), it is likely that ferritin has pro-athero-
genic activity and further study is needed to investigate 
the mechanisms underlying ferritin-induced elevation of 
inflammatory hormones.

In atherosclerotic lesions, monocyte chemotaxis is 
induced to transform monocytes into macrophages. An 
important component of the inflammatory response is 
the secretion of MMPs to promote plaque rupture and 
to produce inflammatory cytokines such as TNF-α, IL-
1β as well as lipid mediators to promote the inflam-
mation in the plaque (Moore et al., 2013; Ruytinx et al., 
2018). On the other hand, some reparative macrophages, 
such as alternatively activated M2 macrophages, could 
phagocytize dead cells or damaged tissue and release 
IL-10, TGF-β and ECM proteins to resolve inflamma-
tion and stabilize or even reverse atherosclerosis (Barrett, 
2020). Our study showed that ferritin increases the lev-
els of IL-1β and IL-10 as well as the levels of MMPs, 
suggesting that ferritin may influence the polarization of 
macrophages, leading to an increased inflammatory re-
sponse. Previously, it was found that iron overload could 
result in M2-like polarization of macrophages (Kao et al., 
2020) and expression of the heavy subunit of ferritin is 
a key factor determining the macrophage polarization in 
isolated bone marrow-derived mouse monocytes (Boli-
setty et al., 2015).

Our study showed that silencing of ferritin down-reg-
ulates the expression of MMP8, MMP12, and MMP13. 
MMPs and their endogenous tissue inhibitors (TIMPs) 
play complex dual role during late-stage progression and 
rupture of atherosclerotic plaques. MMPs can degrade 
the fibrous cap of the lesion, resulting in the rupture of 
the lesion, subsequent thrombus formation (Zhang et al., 
2017), and acute myocardial infarction (Hong-Brown et 
al., 2015). Therefore, selective MMP inhibition would 
help limit cardiovascular morbidity and mortality.

p-JNK/c-Jun signaling pathway is a major signaling 
cassette of the mitogen-activated protein kinase (MAPK) 
signaling pathway. It is involved in a number of cellu-
lar processes, including proliferation, embryonic devel-

opment and apoptosis. Our data showed that JNK was 
down-regulated when the expression of ferritin was sup-
pressed, suggesting that ferritin may regulate the progres-
sion of atherosclerosis via the p-JNK/c-Jun signaling 
pathway. Early works also showed that when berberine 
was used to suppress atherosclerosis (Wan et al., 2018) 
or the chemerin gene was knocked down to alleviate 
atherosclerotic lesion (Liu et al., 2019), p-JNK expression 
was down-regulated, suggesting that p-JNK expression is 
associated with atherosclerosis.

CONCLUSION

By overexpressing and silencing the ferritin gene, our 
work demonstrated that ferritin regulates atherogen-
esis in ApoE–/– mice. Silencing ferritin alleviated ath-
erosclerotic lesions, reduced the levels of inflammatory 
cytokines and MMPs and deactivated the p-JNK/c-Jun 
signaling pathway, while ferritin overexpression resulted 
in opposite outcomes. Further study is needed to inves-
tigate the mechanism underlying the ferritin-mediated 
regulation of atherosclerosis.
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