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miR-3942-3p Increases the radiosensitivity of nasopharyngeal 
carcinoma through negatively regulating BARD1
Luxing Peng✉, Jiaxin Chen, Heming Lu, Jinjian Cheng, Qiang Pang, Youjun Wu and Xu Liu
Department of Radiotherapy, Center of Oncology, People’s Hospital of Guangxi Zhuang Autonomous Region, China

Nasopharyngeal carcinoma (NPC) has high incidence in 
China and East and Southeast Asia. The study was per-
formed to investigate the effect of microRNA3942-3p 
(miR-3942-3p) on the radiosensitivity of NPC. Compared 
with non-cancer tissue, NPC had significantly lower miR-
3942-3p expression. X-irradiation (IR) reduced the expres-
sion of miR-3942-3p in a dose-dependent way in NPC 
cells. Down-regulation of miR-3942-3p using miR-3942-
3p inhibitor resulted in significantly increased cell viabil-
ity, decreased apoptosis of CNE1 cells. Bax decreased and 
Bcl2 increased after IR. The expression of BARD1, a can-
cer predisposing gene, was elevated in NPC tissue. It was 
confirmed to be a target of miR-3942-3p using luciferase 
reporter assay. Down-regulation of BARD1 using siRNA 
significantly reduced cell viability and significantly in-
creased apoptosis both before and after IR. The same re-
sponse was observed when miR-3942-3p mimics was used 
to transfect BARD1-overexpressing CNE1 cells, suggesting 
the up-regulation of miR-3942-3p could sensitize CNE1 
cells to X-rays via BARD1. Our data demonstrate that up-
regulation of miR-3942-3p could sensitize NPC to X-rays 
via a downstream target BARD1, offering potential new 
strategies for radiotherapy of NPC.
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INTRODUCTION

Nasopharyngeal carcinoma (NPC) is head and neck 
cancer that has high incidence in southern China, as 
well as East and Southeast Asia (Chen et al., 2019a). The 
main histological types of the malignant tumor are poor-
ly differentiated and undifferentiated carcinoma derived 
from the nasopharyngeal epithelium, which are sensitive 
to chemotherapy and radiotherapy (Lam & Chan, 2018). 
However, recurrence and distant metastasis after radio-
therapy are a challenge in the treatment of advanced 
NPC, mainly due to acquired resistance to radiotherapy 
and complications (Lei et al., 2020). Therefore, there is 
an urgent need to discover effective therapeutics and 
strategies to improve radiosensitivity for better therapeu-

tic outcomes and survival rate of NPC patients. Early 
studies have shown that NPC could acquire the resist-
ance to radiotherapy via cell-matrix and cell-cell crosstalk 
and αV integrin appears to play a major role in acquiring 
the radioresistance and blocking αV integrin is shown to 
increase the radiosensitivity (Ou et al., 2012).

Recently, microRNAs (miRNAs) have attracted signifi-
cant interest in predicting and modifying the outcomes 
of radiotherapy and chemotherapy in different cancers 
(Hummel et al., 2010). miRNAs are single stranded small 
(21-22 nt) non-coding RNAs with regulatory functions. 
They pair with the bases in the untranslated regions of 
target messenger RNA (mRNA) to block its transla-
tion or to facilitate its degeneration to impact various 
pathophysiological processes, including cell apoptosis, 
proliferation and differentiation (Rupaimoole & Slack, 
2017). Abnormal expression of miRNA has been report-
ed in a variety of human cancers, including NPC (Jiang 
et al., 2020; Zheng et al., 2019). They are also found to 
be associated with radioresistance-associated metastasis 
in NPC (Zhou et al., 2021). In addition, miRNAs have 
been demonstrated to take part in the occurrence and 
development of cancers as well as the radiosensitivity of 
tumor. Previous studies showed that miR-7 could acti-
vate the epidermal growth factor receptor (EGFR) path-
way to sensitize human cancer cells to radiation (Lee 
et al., 2011). MiR-200c could inhibit the autophagy of 
breast cancer cells and enhance the radiosensitivity of 
breast cancer cells by targeting ubiquilin-1 (Sun et al., 
2015). MiR-95 expression in prostate cancer was upregu-
lated when the cancer was irradiated with ionizing radia-
tion, leading to increased radioresistance by targeting the 
sphingolipid phosphatase (Huang et al., 2013). miR-203 
sensitized NPC to radiation by targeting IL8/AKT sign-
aling pathways (Ou et al., 2012) and miR-124 enhanced 
radiosensitivity of NPC by targeting PDCD6 (Zhang et 
al., 2017). Furthermore, the expression of miRNAs has 
been found changed in radioresistant cancer cells as 
compared to radiosensitive cells. For instance, the ex-
pression of miR-662 is induced by radiation and is up-
regulated in radioresistant colorectal cancer cells (Ma et 
al., 2015). In addition, long non-coding (lnc) RNA also 
impacts radiosensitivity of cancer via miRNA (Zhong et 
al., 2020)

miR-3942-3p is a newly discovered miRNA that is ab-
normally expressed in breast cancer and is involved in 
regulating the development of breast cancer (Zhao et al., 
2018). It is downregulated in patients with early onset 
preeclampsia (Lykoudi et al., 2018). These findings indi-
cate that miR-3942-3p has biological functions in cancer 
and pregnancy. However, the expression of miR-3942-3p 
in NPC has not been investigated and it is not clear if it 
could impact radiosensitivity of the cancer. Bioinformatic 
analysis showed that it could pair with BRCA1-associat-
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ed RING domain 1(BARD1), a gene encoding a protein 
which interacts with the N-terminal region of BRCA1. 
Although BRCA1 is shown to be a human tumor sup-
pressor gene (Duncan et al., 1998; Yoshida & Miki, 
2004), the role of BARD1 in NPC is unclear, although it 
is considered to be a cancer predisposing gene for breast 
and ovarian cancers (Yoshida & Miki, 2004).

In this study, we investigated the expression of miR-
3942-3p in NPC and its impact on radiosensitivity of 
the cancer. The findings may offer new clues to develop 
better therapeutic strategies for NPC.

MATERIAL AND METHODS

Tissue samples

NPC tissue (n=9) and the adjacent normal tissue 
(n=9) samples were obtained from patients undergoing 
surgery at our hospital after histopathological confirma-
tion (based on WHO criteria). The specimens were taken 
from patients who did not receive any radiotherapy or 
chemotherapy, and were kept in liquid nitrogen before 
being used in the experiments. This study was approved 
by the ethics committee of People’s Hospital of Guangxi 
Zhuang Autonomous Region, Nanning, China and writ-
ten informed consent was obtained from every patient.

Cell culture and irradiation

Human NPC line CNE1(Yao, 1978) was obtained 
from Jack Strominger (Harvard) and was grown in Dul-
becco’s modified Eagle medium (DMEM; Thermo Sci-
entific, Waltham, MA) supplemented with 10% fetal 
bovine serum (FBS; Invitrogen, Grand Island, NY) and 
0.5% penicillin-streptomycin (Invitrogen-Gibco). Cells 
were grown at 37°C in a humidified, 5% CO2 incubator. 
For irradiation (IR) treatment, CNE1 cells were cultured 
in 60-mm Petri dishes at a density of 1×107 cells/ml 
and irradiated with X-rays using an irradiation apparatus 
(2100 C/D, VARIAN, CA, USA) at a dose rate of 0.25 
Gy/min at room temperature.

Transfection

CNE1 cells were cultured to 80% confluency and di-
gested with 0.25% for subculture. The cells in the loga-
rithmic growth period were harvested and transfected 
with miR-3942-3p mimics (5′-UCGCAUAGUCUCA-
GAAGUGAUC-3′), miR-3942-3p inhibitor (5′-GCUUA-
CUCAUGUGACUAUGCUA-3′), and scrambled nega-
tive controls (NC-mimic, 5′-ACUUUAUCAGUAGUC-
CUAAUCA-3, NC-inhibitor, 5′-AUUGUACAAUCAUC-
UAGUUAUC-3′) using lipofectamine 2000 according to 
the manufacture’s instruction (Invitrogen, USA) at a final 
concentration of 100 nM. These miRNAs were synthe-
sized at Genepharma, Shanghai, China. To overexpress 
BARD1, the coding sequence of BARD1 was inserted 
into pcDNA3.1 vector (Invitrogen, USA) to gener-
ate an overexpressing vector pcBARD1. To knockdown 
BARD1, BARD1-siRNA and siRNA-NC were obtained 
from Genepharma, Shanghai. 24 h after the transfection, 
the cells were irradiated with 0, 2, 4 and 8 Gy X-rays 
and grown for another 24 h before being harvested for 
assessments.

Cell viability assay

Cells in the logarithmic growth phase were used for 
viability assay. Diluted cells were seeded in the wells of 

96 well plates at 5000 cells per well and grown to 70% 
confluency at 37°C in a humidified, 5% CO2 incubator. 
To assess cell viability, the CCK-8 assay was performed 
according to the manufacture’s instruction (Dojindo, 
Rockville, MD, USA). The cells were washed twice with 
PBS, added with 10 μL CCK-8 solution and incubated 
at 37°C for 4 h. Optical density (OD) values were meas-
ured at 595 nm using a microplate reader (Thermo Fish-
er Scientific Inc., Waltham, MA, USA). The experiments 
were performed independently three times.

Apoptosis assay

Apoptotic rate was determined using the Annexin V/
PI Apoptosis Detection Kit (Keygen Biotech, Nanjing, 
China) according to the manufacturer’s instructions. In 
brief, approximately 5×105 cells were harvested and re-
suspended in 1×binding buffer, added with 5 μl Annexin 
V-FITC and incubated at room temperature for 15 min, 
followed by incubation with 10 μl propidium iodide (PI, 
10 mg/ml) in the dark at room temperature for 5 min. 
Flow cytometry (Bection Dikinson, USA) was used to 
assess the apoptotic cells using fluorescence-activated cell 
sorting (FACS) according to the manufacturer’s instruc-
tions. The quantitation of apoptotic cells was calculated 
by CellQuest software. The experiments were performed 
independently three times.

Dual-luciferase reporter assay

Potential target genes of miR3942-3p were predicted 
using Targetscan (http://www.targetscan.org). Dual lu-
ciferase activity assay was performed to confirm that 
BARD1 is an mRNA target of miR3942-3p. The human 
BARD1 3′UTRs containing a putative miR3942-3p bind-
ing site and its mutant version were inserted into the 
luciferase reporter vector psiCHECK-2 (Promega, USA) 
to generate psi-BARD1-wt and psi-BARD1-mut. Before 
the assays, CNE1 cells were seeded in 24-well plates and 
transfected with 100 ng vectors, together with miR3942-
3p NC and miR-3942-3p mimics using Lipofectamine 
2000 (Invitrogen) according to the manufacturer’s in-
structions. Luciferase activity was detected using a Dual 
Luciferase Reporter Assay kit (Promega). The experi-
ments were performed independently three times.

Quantitative real time PCR (RT-qPCR)

Total RNA was extracted from tissues and cells using 
the Trizol reagent (Invitrogen, Carlsbad, CA, USA). The 
purity and quantity of extracted RNA were determined 
using Nanodrop 2000 and RNA was reversely transcript-
ed using TaqMan MicroRNA Array kit (Applied Bio-
systems, CA, USA) into cDNA for quantification. The 
relative expression level of miR-3942-3p was quantified 
using TaqMan Universal Master Mix II (Applied Bio-
systems) with U6 as the internal reference on 7500 Fast 
Real-time PCR System (Applied Biosystems, Foster City, 
California) based on stem-loop primer method (Yang et 
al., 2014). Relative expression levels were calculated using 
2−ΔΔCt method (Livak & Schmittgen, 2001). The prim-
ers used were as follows: miR-3942-3p, 5′-TGATTC-
CAGCTGAATTGCATAGTCGTAAA-3′ (forward) 
and 5′-CGAGGAAGAAGACGGAAGAAT-3′ (reverse, 
stem-loop primer); U6 snRNA, 5′-CCCTTCGGGGA-
CATCCGATA-3′ (forward) and 5′-TTTGTGCGTGT-
CATCCTTGC-3′ (reverse). BARD1 was amplified us-
ing forward primer: AGTAATATATTTGGTCTGCGG 
and reverse primer: GCTACTGTGGATTCAAAGAC. 
The thermocycling condition parameters were 10 min at 
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96°C, followed by 40 cycles of 1 min at 94°C, 2 min at 
62°C, and 1 min at 72°C.

Western blot

Total proteins were extracted using RIPA buffer (Be-
yotime, Beijing, China) and quantified using BCA pro-
tein assay kit (Pierce, France). About 50 µg proteins 
were separated on a 12% sodium dodecyl sulfate–poly-
acrylamide gel and transferred to polyvinylidene fluoride 
membranes (PVDF, Millipore, Bedford, MA, USA). The 
membranes were blocked with 5% defatted milk in PBS-
2% Tween20 at room temperature for 1 h and incubated 
with rabbit polyclonal antibodies against Bax (ab32503, 
1:2000, Abcam, US), Bcl2 (AB692, 1:500, Abcam) or 
mouse monoclonal antibody against GAPDH (TA-08, 1: 
2000, ZSbio, Beijing) at 4°C overnight. The membranes 
were washed and incubated with horseradish peroxi-
dase (HRP)-conjugated secondary antibody (1:5000, Cell 
Signaling Technology) at room temperature for 2 h and 
the immunoreactive bands were visualized using an en-
hanced chemiluminescence (ECL) detection kit (Pierce). 
The gray values of reactive bands were analyzed by 
Quantity One software.

Statistical analysis

Statistical analysis was performed using SPSS 13.0 
statistical software and the data were expressed as the 
means ± standard error (S.D.) from at least three inde-
pendent experiments. The Student’s t-test and one-way 
analysis of variance (ANOVA) were used to compare 
means between the two groups and among the groups, 
respectively. Values differences with P<0.05 were con-
sidered statistically significant.

RESULTS

X-ray radiation up-regulates the expression  
of miR3942-3p

We first investigated the expression of miR3942-3p 
in NPC and normal tissue. qRT-PCR analysis showed 
that the miRNA was significantly down-regulated in 
the cancer cells as compared to normal tissue (P<0.01, 
Fig. 1A). After IR, expression of miR3942-3p in CNE1 
cells was up-regulated as compared to non-irradiated 
cells (P<0.01) and the increase was positively related to 
the radiation dose (Fig. 1B) in the dose range used.

Down-regulation of miR-3942-3p increases 
radioresistance

We then examined if up- and down-regulation of 
miR-3942-3p would influence the radiosensitivity of 
CNE1 cells. Compared with inhibitor-NC, miR-3942-
3p inhibitor significantly knockdowned the expression 
of miR-3942-3p (P<0.01). As a consequence, miR-3942-
3p inhibitor-transfected CNE1 cells had significantly 
increased cell viability (P<0.05) and reduced cell apop-
tosis rate (P<0.05) as compared inhibitor-NC. Western 
blot analysis showed that Bax and Bcl2 expressions were 
significantly reduced or increased after transfection with 
miR-3942-3p inhibitor (Fig. 2). Compared with non-
irradiated CNE1 cells, miR-3942-3p level were signifi-
cantly higher in inhibitor-NC- and inhibitor-transfected 
CNE1 cells after exposed to 6 Gy X-ray (P<0.01), while 
the cell viability was lower (P<0.05) and apoptosis was 

higher (P<0.05). The expressions of Bax and Bcl2 were 
increased or decreased, respectively (Fig. 2).

MiR-3942-3p negatively regulates BARD1 as a target 
gene in CNE1 cells

To confirm that BARD1 is a target of miR-3942-3p 
as predicted using Targetscan, we used luciferase re-
porter gene assay to investigate their interaction in 293T 
cells. When miR-3942-3p mimics was co-transfected with 

Figure 1. Expression of miR3942-3p and BARD1 in NPC (A, C) 
and CNE1 cells (B, D) after X-irradiation. 
* and ** denote P<0.01 and <0.05 vs. normal tissue (n = 9) or col-
umns under bars (experiments repeated three times), respectively.

Figure 2. Effect of miR-3942-3p on cell viability, apoptosis and 
expression of Bax and Bcl2 upon irradiation. 
(A) miR-3942-3p expression after transfection with miR-3942-3p 
inhibitor before and after 8 Gy X-irradiation; (B) viability of CNE1 
cells after transfection with miR-3942-3p inhibitor before and after 
8 Gy X-irradiation; (C) left panel: flow cytometry results (also see 
Supplement file Fig. 2-FACS at https://ojs.ptbioch.edu.pl/index.
php/abp), right panel: apoptosis rates of CNE1 cells after transfec-
tion with miR-3942-3p inhibitor before and after 8 Gy X-irradia-
tion; (D) left panel: representative Western blot, right pane: rela-
tive expression level of Bax and Bcl2 in CNE1 cells after transfec-
tion with miR-3942-3p inhibitor before and after 8 Gy X-irradiation 
(experiments repeated three times). * and ** denote P<0.01 and 
<0.05 between the columns under the bars, respectively.
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psiCHECK-2-BARD1-wt, the luciferase activity was sig-
nificantly reduced when compared with co-transfection 
with miR-3942-3p NC (P<0.01) (Supplementary Fig. 1 
at https://ojs.ptbioch.edu.pl/index.php/abp). However, 
such reduction was absent when psiCHECK-2-BARD1-
mut was used (P>0.05), confirming that BARD1 is a 
specific target of miR-3942-3p. Furthermore, compared 
with NC, the cells transfected with miR-3942-3p inhibi-
tor and miR-3942-3p mimics had significantly higher or 
lower levels of BARD1 (P<0.01) (Supplementary Fig. 1, 
P<0.01), indicating that the expression of BARD1 is 
negatively regulated by miR-3942-3p.

Expression of BARD1

Since BARD1 was confirmed to a target of miR-
3942-3p, we examined its expression in NPC. Compared 
with normal tissues, the expression of BARD1 was sig-
nificantly higher in NPC tissue (P<0.01, Fig. 1C). After 
X-irradiation, the expression level of BARD1 in CNE1 
cells decreased significantly as the dose increased from 0 
to 8 Gy (P<0.05, <0.01 and <0.001, Fig. 1D) in a dose-
dependent manner.

Down-regulation of BARD1 increased radiosensitivity

We then investigated the impact of BARD1 on ra-
diosensitivity of CNE1 cells. For this purpose, the cells 
were transfected with siRNA-BARD1 to knockdown 
BARD1 expression. As shown in Fig. 3, compared with 
control, siRNA-BARD1 significantly reduced the lev-

el of BARD1 (P<0.01) and cell viability (P<0.05), and 
significantly increased apoptosis (P<0.05). Meanwhile, 
the levels of Bax and Bcl2 were up- or down-regulated 
significantly (P<0.01), respectively. Similar changes were 
observed after the cells were irradiated with 8 Gy X-rays 
(Fig. 3), suggesting that down-regulation of BARD1 in-
creased the radiosensitivity of CNE1 cells.

MiR-3942-3p sensitized the radiosensitivity of CNE1 
cells via BARD1

We further investigated if miR-3942-3p could impact 
the radiosensitivity of CNE1 cells via BARD1. Compared 
with co-transformation of control, co-transformation of 
miR-3942-3p mimic and pcBARD1 significantly reduced 
the expression of BARD1 and the viability of CNE1 
cells, and significantly increased the apoptosis of CNE1 
cells (P<0.05 or < 0.01). Bax and Bcl2 expressions were 
up or down-regulated, correspondingly (Fig. 4). Fur-
thermore, upon IR with 8 Gy X-rays, co-transfection of 
miR-3942-3p mimics and BARD1 expression vector sig-
nificantly reduced the expression of BARD1 and cell vi-
ability, increased apoptosis with increased Bax expression 
and reduced Bcl2 expression as compared with co-trans-
formation with miR-3942-3p mimics NC (Fig. 4), sug-
gesting that up-regulation of miR-3942-3p could sensitize 
CNE1 cells to X-rays via BARD1.

Figure 3. Effect of BARD1on cell viability, apoptosis and expres-
sion of Bax and Bcl2 upon irradiation. 
(A) BARD1 expression after transfection with siRNA before and 
after 8 Gy X-irradiation; (B) viability of CNE1 cells after transfec-
tion with siRNA before and after 8 Gy X-irradiation; (C) left panel: 
flow cytometry results (also see Supplement file Fig. 3-FACS at 
https://ojs.ptbioch.edu.pl/index.php/abp), right panel: apoptosis 
rates of CNE1 cells after transfection with siRNA before and after 
8 Gy X-irradiation; (D) left panel: representative Western blot, right 
pane: relative expression level of Bax and Bcl2 in CNE1 cells after 
transfection with siRNA before and after 8 Gy X-irradiation (experi-
ments repeated three times). * and ** denote P<0.01 and <0.05 
between the columns under the bars, respectively.

Figure 4. Regulation of miR-3942-3p on BARD1expression, cell 
viability, apoptosis, Bax and Bcl2 expression upon irradiation. 
(A) BARD1 expression after co-transfection with miR-3942-3p mim-
ics before and after 8 Gy X-irradiation; (B) viability of CNE1 cells 
after co- transfection with miR-3942-3p mimics before and after 
8 Gy X-irradiation; (C) left panel: flow cytometry results (also see 
Supplement file Fig. 4-FACS at https://ojs.ptbioch.edu.pl/index.
php/abp), right panel: apoptosis rates of CNE1 cells after co-trans-
fection with miR-3942-3p mimics before and after 8 Gy X-irradia-
tion; (D) left panel: representative Western blot, right pane: rela-
tive expression level of Bax and Bcl2 in CNE1 cells after co-trans-
fection with miR-3942-3p mimics before and after 8 Gy X-irradia-
tion (experiments repeated three times). * and ** denote P<0.01 
and <0.05 between the columns under the bars, respectively.
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DISCUSSION

In the present study, we investigated the role of  
miR-3942-3p on radiosensitivity of NPC using NPC cell 
line CNE1. Cell viability, apoptosis and expression of 
apoptosis-related proteins Bax and Bcl2 were measured 
after exposing to X-rays and up- and down-regulation of 
miR-3942-3p using miR-3942-3p inhibitor and mimics. 
Our results showed up-regulation of miR-3942-3p sensi-
tizes CNE1 cells to X-radiation and this sensitization is 
likely mediated by BARD1, which is a targeted by miR-
3942-3p. These findings could be further explored to im-
prove radiotherapy strategies for NPC.

miRNA has been shown to play important roles in 
various biological processes by posttranscriptionally reg-
ulating signaling molecules, such as growth factors, cy-
tokines and transcription factors. In recent years, many 
oncogenes and tumor suppressors are found to be reg-
ulated by miRNAs during the occurrence and develop-
ment of cancer (Jiang et al., 2020; Zheng et al., 2019). 
They may also modify the radiosensitivity of cancer (Lee 
et al., 2011) and have been explored as an approach to 
increase radiosensitivity of cancer patients (Zhao et al., 
2012; Zheng et al., 2017b). For example, down-regulation 
of miR21 was shown to sensitize NPC to X-rays by in-
hibiting the proliferation of radioresistant NPC cells at 
the G1 phase of the cell cycle (Zhu et al., 2015); miR-
33a-5p increases radiosensitivity of melanoma by target-
ing hypoxia-inducible factor1-alpha (HIF-1α) to inhibit 
glycolysis (Cao et al., 2017); miR-26b increases radiosen-
sitivity of hepatocellular carcinoma by down-regulating 
the expression of ephrin type-A receptor 2 (Jin et al., 
2016) and miR153-3p increases radiosensitivity of hu-
man glioma by targeting BCL2 (Sun et al., 2018). miR-
195 enhances the radiosensitivity of colorectal cancer 
cells by suppressing CARM1(Zheng et al., 2017a). Our 
study showed that miR-3942-3p expression is reduced 
in NPC tissue and is down-regulated in NPC cells upon 
radiation. Furthermore, we found that knockdown of 
miR-3942-3p increases the viability and reduces apopto-
sis of CNE1 cells upon radiation, suggesting that down-
regulation of miR-3942-3p increases the radioresistance 
of CNE1 cells. It would be interesting to know which 
part of cell cycle is being affected by the down-regulated 
miR-3942-3p, leading to the increased viability of CNE1 
cells. A deliberation of this cell cycle effect may help use 
of radiation at the most appropriate cell stage for maxi-
mal therapeutic outcomes.

In the study, in addition to cell viability and apoptosis 
assays, the expression of Bax and Bcl2 was assessed to 
further deliberate the cellular response at molecular lev-
els. The Bcl2 family proteins are key regulators of ap-
optosis cell death and Bcl2 is a pro-survival protein that 
suppresses cell death (Adams & Cory, 1998; Leibowitz 
& Yu, 2010) and Bax is an pro-apoptotic protein that 
promotes cell death (Youle & Strasser, 2008). During 
apoptosis, Bax is often up-regulated and Bcl2 is down-
regulated in cancer cells (Naseri et al., 2015). It has been 
shown that a high ratio of Bax to Bcl2 can lead to col-
lapse the potential of mitochondrial membrane, leading 
to the release of cytochrome c and consequently ap-
optosis (Boersma et al., 1997; Teijido & Dejean, 2010). 
Previously, radiation was shown to increase the Bcl-xl 
to Bax protein ratios in human cell sensitive to UVC-
radiation (Kita et al., 2011) and UV-irradiation increased 
the expression of Bax and increased Bcl2 expression and 
apoptotic rates (Jia et al., 2012). Similarly, in our study, 
increased apoptosis was observed to associate with in-
creased Bax expression and reduced Bcl2 expressions, 

suggesting that Bcl2 family proteins are involved in miR-
3942-3p and radiation-related apoptosis.

Since it was unclear how miR-3942-3p modulates the 
radiosensitivity, we searched potential targets of miRNA 
using bioinformatic tools and found that BARD1 is a 
putative target. BARD1 is one of the molecules that are 
involved in DNA double-stranded break (DSB) repair. 
When histone H2A variant H2AX is phosphorylated, 
BARD1 is recruited to repair DSB (Adamovich et al., 
2019). BARD1 has different functions under different 
conditions. For example, transcription factor FOXK2 
could suppresses the growth of ERα-positive breast can-
cer cells by destabilizing ERα via interacting with involv-
ing BRCA1 (Liu et al., 2015). Mutation of BARD1 leads 
to high risk of breast and ovarian cancer. BARD1 is 
essential for the BRCA1/BARD1 complex to ubiquity-
late nucleosomal histone H2A with its RING domains, 
and for transcriptional regulation of estrogen metabo-
lism genes (Stewart et al., 2018). The BRCA1-associated 
protein BARD1 is conserved as a putative tumor sup-
pressor that may mediate apoptosis because mutation 
Q564H of BARD1 is defective in apoptosis induction 
(Irminger-Finger et al., 2001). Luciferase reporter as-
say confirmed that the luciferase activity was specifically 
reduced when reporter gene with BARD1-wt sequence 
was co-transfected with miR-3942-3p mimics, but the 
activity remained unchanged when BARD1-mut se-
quence was used. Furthermore, RT-qPCR results showed 
that tBARD1 mRNA level is negatively regulated by  
miR-3942-3p, suggesting that miR-3942-3p may degrade 
BARD1 mRNA as observed in other miRNA-mRNA 
interactions (Rupaimoole & Slack, 2017). The expres-
sion of BARD1 was found elevated in NPC compared 
with normal tissue. This is consistent with earlier results 
that BARD1 is highly expressed in many cancers such 
as breast cancer (Chen et al., 2019b), lung cancer (Pily-
ugin et al., 2017) and ovarian cancer (Irminger-Finger et 
al., 2001), although its expression in NPC has not been 
characterized. Upon X-ray irradiation, the expression lev-
el of BARD1 was reduced in a dose-dependent way. Us-
ing siRNA approach, we also found that knockdown of 
BARD1 results in increased radiosensitivity with reduced 
cell viability and increased apoptosis. It is well known 
that radiation may cause various forms of DNA dam-
age, including generation of DSB (Vignard et al., 2013), 
reduced BARD1 expression might hamper the repair of 
DNA damage, leading to increased sensitivity to radia-
tion.

Due to the presence of interaction between miR-
3942-3p and BARD1, we then investigated if miR-3942-
3p would modify the radiosensitivity via BARD1. Co-
transformation of miR-3942-3p mimic and pcBARD1 
reduced the expression level of BARD1, as well as 
reduced the viability of CNE1 cells and significant-
ly increased the apoptosis of CNE1, suggesting that  
miR-3942-3p may sensitize CNE1 cells to X-rays via 
down-regulation BARD1. These findings offer new av-
enue to improve radiotherapy strategies for NPC. For 
example, miR-3942-3p may be explored as a therapeu-
tic agent to increase the radiosensitivity of NPC patients 
before radiotherapy for better efficacy. Several strategies 
have been proposed to deliver miRNA in vivo to achieve 
the therapeutic effect, in which miRNA may be used af-
ter chemical modification to enhance stability and effi-
cacy (Li & Rana, 2014; Rezaeian et al., 2020). In addition, 
other targets in miR-3942-3p-related and BARD1-related 
signaling pathways could be examined as potential tar-
gets for the molecular treatment of cancer. Concerning 
miR-3942-3p down-regulation in other cancers and nor-
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mal cells, it needs to be addressed in the future, because 
the answers to these questions would generalize the find-
ings from this study to other cancers and provide way to 
protect normal cells.

CONCLUSION

The present study demonstrates that overexpres-
sion of miR-3942-3p results in increased radiosensitiv-
ity in CNE1 cells. This sensitization is likely mediated 
via BARD1, which is a target of miR-3942-3p and that 
expression is negatively regulated by miR-3942-3p. The 
findings could be further explored in animal model and 
human subjects to develop new radiotherapeutic strate-
gies for NPC.
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