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Hepatocellular carcinoma (HCC) has high mortality and 
incidence worldwide. The molecular mechanism associ-
ated with HCC is largely unexplored. Objective: To inves-
tigate the impact of CD44 knock-down on the prolifera-
tion, migration, and invasiveness in HCC cells. Methods: 
Colony formation and MTT assay were used to observe 
cellular proliferation and viability. In addition, cellular 
invasion and migration were studied by Transwell and 
wound healing assays respectively. Finally, western blot-
ting was utilized to check the protein expression levels. 
Results: The cellular proliferation, invasion and metas-
tasis in Huh7 cells were inhibited after the silencing of 
CD44. Furthermore, expression levels of MMP-2, MMP-
9, CXCR4, GSK-3β and β-catenin was significantly de-
creased. However, opposite results were demonstrated 
when CD44 was overexpressed. Conclusions: Interfer-
ence with the expression of CD44 significantly inhibits 
the invasion and metastasis in the HCC cell line, Huh7. 
Furthermore, CD44 was found to regulate the expression 
of MMP-2, MMP-9, CXCL12, CXCR4 and Wnt/β-catenin 
signal pathway.
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INTRODUCTION

In the primary liver cancer class, HCC is the first one 
in frequency and accounts for 80–90% of all malignant 
tumors (Davis et al., 2008; Ghouri et al., 2017). World-
wide, HCC has emerged as a major health issue increas-
ing continuously due to its association with viruses like 
hepatitis B and C (El-Serag, 2012). The world trends 
are unevenly distributed, finding the highest incidence in 
eastern Asia (McGlynn et al., 2015). Incidence ratio of 
HCC varies among sex, and the reasons for such is still 
unknown (Wilson and Buetow, 2020). Concerning age 
distribution, it also varies depending on the geographic 

situation (Sung et al., 2021). HCC is mostly found in the 
late stage when radiotherapy, chemotherapy and other 
treatments are ineffective. However, surgery in the early 
stage is currently the most effective treatment. Conse-
quently, it has become one of the research focuses on 
exploring the detailed mechanism of metastasis and ma-
lignancy to explore novel treatment options for HCC.

The CD44 antigen, as an important epigenomic reg-
ulator, is involved in tumor development (Luo & Tan, 
2016; Asai et al., 2019). Numerous studies have con-
firmed that CD44 can be used as a molecular marker for 
different cancer (Malhotra et al., 2010; Moldovan et al., 
2017). Zhang and colleagues demonstrated that CD44 
could promote HCC progression by up-regulating YAP 
(Zhang et al., 2021). Shah and colleagues found that in-
terfering with CD44 could lead to the death of ovarian 
cancer cells (Shah et al., 2013). It has been found that 
up-regulation of CD44 can promote metastasis and poor 
prognosis of Hepatocellular carcinoma, however, the 
mechanism by which CD44 regulates HCC is unclear 
(Asai et al., 2019). Epithelial to mesenchymal transition 
(EMT) in cancer cells results in the acquisition of stem 
cell-like characteristics and increased CD44 expression 
(Mani et al., 2008). Because of the clinicopathological ef-
fects that CD44 and its isoforms have on carcinogen-
esis, CD44 may one day serve as a molecular target for 
cancer treatment (Li et al., 2014). Additionally, the dem-
onstrated function of CD44 in preserving stemness and 
the ability of cancer stem cells to regenerate tumors af-
ter treatment raises the possibility that CD44 may play a 
significant prognostic marker. Clinical research on treat-
ment plans that concentrate on CD44 or lessen CD44 
expression is ongoing (Matzke-Ogi et al., 2016; Todaro 
et al., 2014). These methods include ectodomain mimics, 
aptamers, tumor-delivery shRNAs, and CD44 neutraliz-
ing antibodies (Orian-Rousseau and Ponta, 2015; Iida et 
al., 2014). Consequently, it is crucial to further clarify the 
functional roles of CD44 as a focus of research.

Growing data indicates that cancer stem cells (CSCs) 
are responsible for the recurrence and metastasis of 
many malignancies (Vlashi et al., 2011; Gao et al., 2013). 
CSCs are essential for starting and maintaining tumour 
phenotypes because they can self-renewal and differen-
tiation, which other cancer cells (non-CSCs) lack (Ayob 
& Ramasamy, 2018). The presence of CSCs in numerous 
malignancies, including those of the brain, breast, lung, 
colon, and liver, has been demonstrated utilizing particu-
lar CSC markers (Yang et al., 2020). Epithelial adhesion 
molecule (EpCAM), CD13, CD44, and/or CD133 are 
among the markers that liver CSCs display and studies 
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have shown that the expression of these molecules on 
HCC cells is associated with a poor prognosis (Yamash-
ita et al., 2009; Zhu et al., 2010). Although traditional 
therapies could eradicate non-CSCs, it is claimed that 
surviving CSCs eventually induce tumour recurrence 
and metastasis because they exhibit the characteristics 
of tumorigenicity and resistance to conventional chemo-
therapy and radiotherapy (Cross & Laidler, 1990; Gao et 
al., 2013). Therefore, eliminating CSCs is crucial for fully 
curing cancer.

Tumor invasion and metastasis is a complex biological 
process (Nguyen et al., 2009a). Gene regulation is crucial 
in different processes, like unlimited growth potential, 
epithelial-mesenchymal transition (EMT), and apoptosis 
avoidance (Perlikos et al., 2013). Wnt signaling is an es-
sential pathway affecting tumor cells’ cellular migration 
and invasion ability. The Wnt/β-catenin signaling system 
is a conserved signalling axis involved various physiolog-
ical processes, including tissue homeostasis, migration, 
invasion, differentiation, proliferation, and apoptosis (Sa-
lik et al., 2020). There is mounting evidence that certain 
solid tumors and hematological malignancies were aided 
in their development and progression by deregulation 
of the Wnt/ß-catenin cascade (Gajos-Michniewicz & 
Czyz, 2020). Early events in carcinogenesis are brought 
on by aberrant regulation of the transcription factor ß-
catenin, a crucial part of the Wnt signaling pathway, in 
the Wnt/ß-catenin pathway (Zhang et al., 2020). GSK3ß 
and CK1a, two enzymes in the degradation complex, 
facilitate the phosphorylation of ß-catenin, boosting its 
ubiquitination and subsequent proteasomal destruction 
(Wiese et al., 2018). When β-catenin is accumulated at 
a certain amount, it gets translocated to nucleus, and 
binds to the target transcription factor to form a tran-
scriptional complex. This complex subsequently activates 
its downstream target genes matrix metalloproteinases 
(MMPs), p21, and C-myc (Wiese et al., 2018; Tai et al., 
2015). MMPs are a group of proteolytic enzymes which 
are highly homologous and zinc-dependent. The extra-
cellular matrix (ECM) holds cells together and is essen-
tial for cell survival, motility, differentiation, and prolif-
eration. The ECM components that serve as the physical 
impediments to cell migration must be locally broken 
down for a tumour cell to spread from the main tumour 
to other organs. Matrix metalloproteinases (MMPs) are 
the primary enzymes responsible for the breakdown of 
the ECM (Conlon & Murray, 2019).

Chemokine (CXCL12) and its receptor (CXCR4) have 
emerged as key factors in the development of tumors 
and their metastasis. CXCL12 has been reported to in-
duce signaling via AKT and ERK pathways and thereby 
induce cancerous growth (Scotton et al., 2002). In breast 
cancer, CXCL12 expression has been linked with patho-
logical features and clinical outcomes (Kang et al., 2005). 
The expression levels of CXCL12 have been reported 
on the higher side in different human cancers, includ-
ing HCC (Sakai et al., 2012) (Ghanem et al., 2014; Teng 
et al., 2016). The essential role of CXCL12 is yet to be 
fully explored in most cancers. The involvement of the 
CXCL12/CXCR4 axis in tumor progression, survival, 
metastasis and angiogenesis is well known. The current 
investigation aims to study the effect of CD44 on pro-
liferation, migration, and invasiveness in HCC cells for 
CXCL12/CXCR4/Wnt/β-Catenin Axis.

MATERIALS AND METHODS

Cell culture and cell transfection

The human hepatocellular carcinoma (HCC) cell line, 
Huh7 was purchased from ATCC. Huh7 were grown in 
DMEM containing 10% FBS (Sigma). The medium was 
put in a saturated humidity incubator at 37°C with 5% 
CO2. SiRNA (Si-CD44) was obtained from Ruibo Bio-
technology Co., Ltd (Guangzhou, China). Over-express-
ing plasmid pcDNA3.1-CD44 (CD44) along with control 
vector (Vector) was purchased from General Biol (An-
hui, China). Huh7 cells were grown in 6-well plates and 
divided into six groups, namely: blank group (Blank), Si-
CD44 group, Si-NC, CD44 and Vector. Lipofectamine 
was used for the transfection of different vectors into 
the cells.

MTT assay

Cell viability in each group was observed MTT assay 
(Gibco, USA). Huh7 cells were grown into 96-well plates 
(6×103 cells/well) for 48 h. It was followed by trans-
fection studies using siRNAs (Si-CD44 and si-NC) and 
vectors (empty vector and vector-CD44) in the Huh7 
cells, using lipofectamine and in accordance with the 
manufacturer’s protocol. The efficacy of transfection was 
checked by western blotting. After incubation, the me-
dium was removed from the wells, followed by the ad-
dition of 20 µl MTT reagent (5 mg/ml; Gibco, USA) to 
each well. At the end of the experiment, MTT (Sigma) 
stock solution of 5 mg/mL concentration and volume 
100 µL was supplemented to cells with 4 h of incuba-
tion. The formazan crystals then produced are dissolved 
with DMSO, and thereafter, absorbance was measured 
at 540nm using a microplate reader. Each experiment 
for individual drug concentrations and controls was per-
formed thrice.

Colony formation assay

Cell viability was observed via colony formation assay. 
Cells were rinsed twice with PBS. Afterward, individual 
cell in each group was obtained with 0.25% trypsin and 
then inoculated into culture dishes for one hour. Serially 
dilute the samples to obtain 100 cells in a 10 mL culture 
medium. At last, the cells were inoculated into other cul-
ture dishes for 10–14 days, followed by an observation 
of the cell colony formation under a microscope.

Transwell assay

The anti-invasive and anti-migratory effects of each 
group were monitored via transwell chambers assay. 
The upper chambers of the transwell were loaded with 
600 µL of DMEM medium and 3×104 Huh7 cells 
(transfected or un-transfected) each well. In the tran-
swell’s lower chambers, only cultural medium of 800 µL 
with FBS 10% was filled. Cells in each group were cul-
tured in upper chambers for 24 h at 37°C. Then clean 
off the non-migrated cells and the migrated cells were 
processed routinely by 10 minutes of fixation with for-
malin 4%. Afterward staining was accomplished with 
crystal violet (0.1%) for 12 minutes, followed by pho-
tographing the randomly selected 5 fields using micros-
copy with 100× magnification. Finally, the invasion was 
determined, except transwell chambers were coated with 
Matrigel.
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Wound healing assay

Huh7 cells were cultured in 12-well plate overnight 
for wound healing assay purposes. With the help of a 
10µl tip, a scratch was created on the monolayer cells. 
After scratching, cells were washed with culture media 
to remove floating cells. Cells were kept untreated or ei-
ther transfected with different vectors. The transfection 
of siRNAs (Si-CD44 and si-NC) and vectors (empty vec-
tor and vectore-CD44) was performed in the Huh7 cells, 
using lipofectamine and according to the manufactur-
er’s protocol. The efficacy of transfection was checked 
by western blotting. Images of fresh scratch were cap-
tured immediately with the help of a digital camera. Af-
ter treatment completion, cells were washed thrice with 
culture media and followed by capturing pictures of the 
scratch. The scratch area was determined using Image-
Pro software. Cell migration was determined by calculat-
ing the scratch closure.

RT-qPCR assay

RNA from Huh7 cells was obtained using TRIzol 
method and then reversed to cDNA with RT Kit. Quan-
titative PCR was carried out using SYBRGreen (Takara) 
with appropriate primers designed by Primer 5.0 (Ta-
ble 1) according to the conditions, including an initial 
step of 10 minute in 95°C, and then 40 cycles of ampli-
fication, which includes 10 s in 95°C, 20 s in 58°C and 
25 s in 72°C. Quantification was determined by 2−ΔΔCT 
(26). The internal control used was GAPDH.

Western Blot

Total cellular protein from each group was extracted, 
followed by protein concentration determination using 
a BCA protein quantification kit (Pierce, 23225). From 
each sample, 45 µg of proteins were loaded and run on 
SDS-PAGE gels, which were processed for blotting to 
PVDF membranes. Blocking PVDF membrane with 5% 
non-fat dry milk was done at room temperature for 2 h. 
It was followed by overnight incubation with primary 
antibodies like anti-MMP-9 (abcam, ab58803, 1:1000) 
anti-MMP-2 (Santa Cruz, sc-13594, 1:800), anti-β-catenin 
(Sigma Aldrich, C7207. 1:1000), anti-GSK-3β (Santa 
Cruz, sc-81462, 1:1000), anti-CXCR4 (abcam, ab124824, 
1:800) and anti-GAPDH (Cell Signaling Technology, 
5174, 1:1000). Next day, after washing with PBS thrice, 
membranes were incubated with HRP-linked secondary 
antibodies (Cell Signaling Technology, 7074 and 7076, 
1:3000) for 90 minutes at room temperature. Finally, 
ECL chromogenic substrate was added for color reac-
tion.

Statistical analysis

The experimental data were expressed as mean 
± standard deviation (S.D.), and SPSS 21.0 software 
was utilized for statistical analysis. In addition, t-test and 
ANOVA were used for comparison between groups. 
Each experiment was repeated thrice. P<0.05 was con-
sidered that the results were statistically significant.

RESULTS

Inhibition of CD44 inhibits proliferation and cell 
viability

Knockdown of CD44 can inhibit its expression in 
Huh7 cells, while overexpression can reverse the result 
(Fig. 1A). The results of immunoblotting showed that 
CD44 is expressed in Huh7 cells. The expression level 
of CD44 significantly decreased in the Si-CD44 group 
compared to the Si-NC group. However, the expression 
level of CD44 increased significantly in the CD44 group 
compared to the vector group.

MTT assay showed that the proliferation ability of 
Huh7 cells were significantly reduced in the si-CD44 
group compared to the si-NC group (Fig. 1B). On the 
contrary, the proliferation ability of Huh7 cells increased 
significantly in the CD44 group compared to the vector 
group. Furthermore, knockout of CD44 significantly in-

Table 1. Primer sequences

Gene Forward primer Reverse primer

CD44 5’-ACTTGGAGGCCTTGGCTAAC-3’ 5’-GACAGACAGACTGCGACCTG-3’

GAPDH 5’-TGTGTCCGTCGTGGATCTGA-3’ 5’-TTGCTGTTGAAGTCGCAGGAG-3’

Figure 1. Transfection efficacy (A) and Effect of CD44 expres-
sions on proliferation and cell viability of Huh7 cells (B, C). 
Cell viability of Huh7 cells was detected by MTT while as Cell vi-
ability was detected by colony formation assay. *P<0.05 and 
**P<0.01 vs. si-NC group; #P<0.05 and ##P<0.01: vs. Vector group.

Figure 2. Effect of CD44 expression on invasion and metastasis 
of hepatocellular carcinoma cells. 
(A) The expression of MMP-2 and MMP-9 in Huh7 cells detected 
by western blot. (B) Effect of CD44 expression on invasive abil-
ity of Huh7 cells detected by Transwell assay. (C) Effect of CD44 
expression on migration ability of Huh7 cells detected by wound 
healing assay. *P<0.05 and **P<0.01 vs. si-NC group; #P<0.05 and 
##P<0.01: vs. Vector group.
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hibited cell viability of Huh7 cells, while overexpression 
of CD44 significantly motivates it (Fig. 1C). The results 
showed that CD44 was involved in the proliferation and 
cell viability of hepatocellular carcinoma cells.

Inhibition of CD44 can inhibit invasion and metastasis

Further, we studied the role of CD44 on cellular inva-
sion and metastasis in Huh7 cells. Transwell and wound 
healing assay were used to evaluate the invasive and mi-
gration ability of Huh7 cells. The results (Fig. 2A–B) 
suggested that the invasion and metastasis of Huh7 cells 
decreased significantly after silencing CD44 compared 
to si-NC group. Instead, cellular invasion and metastasis 
were significantly increased after overexpressing CD44 
compared to the vector group (P<0.05). To investigate 
the possible mechanism through which CD44 regulates 
functional changes in Huh7 cells, MMP-2 and MMP-9 
expressions were examined (Fig. 2C). The expression 
level of MMP-2 and MMP-9 was significantly increased 
after CD44 silencing and a reverse trend was observed 
after overexpressing CD44.

Inhibition of CD44 can inhibit the expression levels of 
CXCR4/CXCL12 proteins

The effect of CD44 expression on CXCR4 proteins 
associated with induction of cancer growth was detected. 
Western blot indicated (Fig. 3) that the expression levels 
of CXCR4 were significantly decreased in the si-CD44 
group, and opposite results were observed in the CD44 
group compared to the control group. These results con-
firmed that the activation of CXCR4 signal pathway was 
inhibited after silencing CD44.

Inhibition of CD44 inhibits the expression levels of 
Wnt/β-catenin signal proteins

The expression of β-catenin decreased significantly in 
the si-CD44 group compared to the si-NC group. On 
the other hand, GSK-3β expression increased significant-
ly in the si-CD44 group compared to the si-NC group 
(Fig. 4). Thus confirming an association between Wnt/β-
catenin pathway activation and CD44.

DISCUSSION

Wnt signal is divided into the typical Wnt pathway 
and two atypical Wnt pathways (Reya & Clevers, 2005). 
The typical Wnt signal pathway is currently the most 
widely studied in clinical practice. Studies have demon-
strated that nearly 50% of currently known tumors show 
an association with abnormal Wnt/β-catenin signal path-

ways, such as intestinal cancer (Barker et al., 2009), breast 
cancer (Shackleton et al., 2006; Teissedre et al., 2009), 
etc. Abnormal expression of proteins such as GSK-3β 
(Cho et al., 2010), β-catenin (Clements et al., 2002), and 
MMPs (Conlon & Murray, 2019) in the pathway triggers 
sustained cell proliferation, ultimately leading to can-
cer (MacDonald et al., 2009). Meanwhile, it performs a 
crucial role in cellular invasion and metastasis (Nguyen 
et al., 2009b; Stein et al., 2006). Therefore, the present 
study investigated whether CD44 could mediate invasion 
and metastasis in HCC cells by regulating the Wnt/β-
catenin signal pathway.

In the present study, cellular proliferation and inva-
sion (Huh7 cells) reduced after silencing of CD44. How-
ever, the proliferative and invasive capacity of cells in-
creased after overexpressing CD44 and thus confirmed 
that CD44 is involved in the progression of HCC. In ad-
dition, protein levels of MMP-2, MMP-9, and β-catenin 
were decreased; the expression of GSK-3β was increased 
after CD44 silencing in Huh7 cells. However, the op-
posite results were presented after over-expression of 
CD44. These findings suggest that down-regulation of 
CD44 inhibits the Wnt/β-catenin signal pathway and 
gradually inhibit invasion and metastasis of Huh7 cells.

The activated Wnt pathway stimulates CXCL12 re-
lease, a key paracrine molecule that controls different 
biological processes like cellular activation and migration, 
influences inflammation, and angiogenesis (Giordano et 
al., 2019; Meng et al., 2018). The earlier connection be-
tween CXCL12 expression and the Wnt/-catenin path-
way has been reported in fibrosis, particularly in liver 
fibrosis (Akcora et al., 2018). But no study involving 
CD44/CXCL12/Wnt/β-Catenin Axis has been reported 
to date. To support our current findings, additional in 
vivo research is necessary. Additionally, this study was 
conducted using a hepatocellular carcinoma cell line, 
which does not reflect a real-world scenario. However, 
this study offered the first proof-of-concept data indicat-
ing CD44/Wnt/CXCL12 signaling axis in hepatocellular 
carcinoma cells.

CONCLUSION

In summary, by silencing CD44 expression, invasion 
and metastasis of HCC cells could be inhibited. This re-
sult could possibly be obtained by mediating the Wnt/β-

Figure 3. Effect of CD44 expression on the expression levels of 
CXCR4. 
The expression of CXCR4 in Huh7 cells was detected by western 
blot. *P<0.05 vs. si-NC group; #P<0.05: vs. Vector group.

Figure 4. Effect of CD44 expression on Wnt/β-catenin signal 
pathway. 
The expression of GSK-3β and β-catenin in Huh7 cells was de-
tected by western blot. *P<0.05 vs. si-NC group; #P<0.05: vs. Vector 
group.
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catenin signal pathway. This provides the more compre-
hensive role of CD44 as a therapeutic target in patients 
with HCC.
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