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Molecular cloning of glutathione reductase from Oryza sativa, 
demonstrating its peroxisomal localization and upregulation by 
abiotic stresses
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Abiotic stress is a major constraint on crop productivity 
and in the agricultural field, multiple abiotic stresses act 
synchronously leading to substantial damage to plants. 
A common after-effect of abiotic stress-induced dam-
age in plants is an increased concentration of reactive 
oxygen species (ROS) leading to oxidative damage. Glu-
tathione reductase (GR) plays a significant role in curtail-
ing ROS. Apart from the GR enzyme, the peroxisome as 
an organelle also plays a significant role in ROS homeo-
stasis. Here, we report a peroxisome localized GR, whose 
expression was found to be upregulated by various abi-
otic stresses. The in silico analysis also revealed that the 
peroxisomal localization of GR could be a common phe-
nomenon in angiosperms, suggesting that it could be a 
suitable candidate against abiotic stress combinations.
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INTRODUCTION

Abiotic stress is one of the significant factors which 
limits the yield of crops. Due to the untimely onset of 
abiotic stress conditions, crops worth millions of dollars 
are lost annually worldwide (Wang et al., 2003; Wania et 
al., 2016). Abiotic stress leads to a series of detrimental 
activities in the plant, which cause either partial or com-
plete loss of yield (Yousuf et al., 2012; Harshavardhan 
et al., 2017). One such after-effect is an increase in the 
cellular concentration of reactive oxygen species (ROS), 
which has been observed as a common phenomenon in 
the case of all types of abiotic stresses. Uncontrolled in-
crease and accumulation of ROS can lead to oxidative 
damage to the cell, such as oxidation of nucleic acids, 
protein denaturation, breakdown of cell and organelle 
membrane, lipid peroxidation, and carbohydrate oxida-
tion (Scandalios, 1993; Noctor & Foyer, 1998). This im-
balance in the redox state of the cell is dangerous and 
could be lethal if left unchecked. ROS also plays a sig-

nificant role in regulating the response of plants, against 
environmental stimuli by a redox-dependent reprogram-
ming of signalling pathways (Harshavardhan et al., 2017), 
thereby making ROS not only an oxidative deterrent but 
also a signalling molecule (Mittler et al., 2004; Miller et 
al., 2010). Hence, a delicate balance between ROS pro-
duction and scavenging needs to be maintained, mak-
ing ROS homeostasis very crucial. To defend them-
selves from this abiotic stress-induced oxidative damage, 
plants have developed various mechanisms. One such 
mechanism is the glutathione reductase (GR) mediated 
ascorbate-glutathione pathway, also known as the Foyer-
Halliwell-Asada pathway (Asada, 2006; Foyer & Noc-
tor, 2011). In plant cells, GR activity has primarily been 
found in the chloroplast (70–80%) with a minor pres-
ence in mitochondria and cytosol (Edwards et al., 1990; 
Creissen et al., 1994). However, with recent development 
in molecular and proteomic techniques, the peroxisomal 
localization of Arabidopsis thaliana GR has also been dem-
onstrated (Kataya & Reumann, 2010). Also, it is perti-
nent to mention that the peroxisomes in association with 
chloroplast and mitochondria are primarily responsible 
for cellular ROS homeostasis (Foyer & Noctor, 2003; 
Habib et al., 2016; Dietz et al., 2016; Huang et al., 2016). 
The significant role of peroxisomes in ROS scavenging 
and abiotic stress tolerance makes a peroxisome-localized 
GR of special significance.

Peroxisomes are small, single membrane-bound or-
ganelles whose proteome is encoded by nuclear genes, 
synthesized on cytosolic ribosomes, and imported in a 
signal-dependent manner (Hu et al., 2012; Emmanouilidis 
et al., 2016). Depending upon the protein location, per-
oxisomal proteins could be divided into two broad cate-
gories- peroxisomal membrane and matrix proteins, both 
of which are imported in entirely different manners. GR 
happens to be a peroxisomal matrix protein (Kataya & 
Reumann, 2010). The peroxisomal matrix proteins are 
largely imported either by peroxisomal targeting signal 
(PTS) type one or PTS type two (Gould et al., 1987; 
Swinkels et al., 1991). The bulk of the matrix proteins is 
imported by PTS type 1 while a comparatively smaller 
number of matrix proteins are imported by PTS type 2 
(Brocard & Hartig, 2006; Lazarow, 2006). After being 
synthesized on cytosolic ribosomes, PTS1 and PTS2 
containing proteins are recognized by their respective 
cytosolic receptors, PEX (peroxin) 5 and PEX7 respec-
tively, which ultimately bring them to peroxisome with 
the help of other PEX proteins (Kunze, 2019; Kim & 
Hettema, 2015; Kunze et al., 2011; Kiel et al., 2009; Nie-
derhoff et al., 2005; Reumann, 2004; Bottger et al., 2000; 
Lametschwandtner et al., 1998; Albertini et al., 1997). 
The PTS1 is located at the C-terminus of protein and 
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is primarily represented by the last three amino acids, 
however, the upstream residues also play a significant 
role in PEX5 binding (Neuberger et al., 2003; Brocard 
& Hartig, 2006; Lingner et al., 2011; Lametschwandtner 
et al., 1998; Reumann, 2004; Fodor et al., 2012; 2015), 
while the PTS2 is located at N-terminus, represented by 
a nonapeptide (Petriv et al., 2004; Lazarow, 2006). It has 
also been observed that depending upon the composi-
tion of amino acids present at the C-terminus, the PTS1 
shows a varying degree of efficiency in peroxisome tar-
geting (Gatto et al., 2000; Stanley et al., 2006) and this 
has led to the classification of PTS1 into a canonical and 
noncanonical type (Skoulding et al., 2015). The canonical 
ones lead to efficient and strong targeting while the non-
canonical ones are comparatively less efficient and lead 
to weak targeting of the protein to the peroxisome. The 
strong and weak efficiencies have been explained based 
on the time required for the fluorescent detection of the 
peroxisome targeting under in vitro conditions (Skoulding 
et al., 2015; Chowdhary et al., 2012).

In this work, we reported the peroxisome localization 
of GR and its involvement in abiotic stress tolerance in 
the monocot model plant Oryza sativa (rice) which is a 
crop of global significance and is responsible for feeding 
more than half of the world’s population, especially in 
Asian, African continents, and other third world nations.

MATERIALS AND METHODS

Data retrieval for in silico work

The protein sequences of A. thaliana and O. sativa 
GR were retrieved from The Arabidopsis Information 
Resource (TAIR, Tanya et al., 2015, https://www.arabi-
dopsis.org/) and the rice genome annotation database 
(Kawahara et al., 2013, http://rice.uga.edu/) respectively. 
For multiple sequence alignment, CLUSTAL W 2.1 pro-
gram (Larkin et al., 2007) was used at pir.georgetown.edu 
(Cathy et al., 2003). The OsGR was used as a query in 
protein BLAST at NCBI and 80 GR orthologs were ob-
tained.

Plant material and growth condition

For all experiments, O. sativa IR 64 (Indica rice) vari-
ety was used. This is an abiotic stress-sensitive variety. 
The seeds were obtained from National Rice Research 
Institute, Cuttack, India. The seeds were sterilized with 
70% ethanol for 2 min followed by rinsing with distilled 
water three times each for 2 min. The sterilized seeds 
were kept in germination paper pre-wet with distilled 
water, which was incubated in dark for 24 h followed by 
shifting to the plant growth room maintained at 28±2ºC, 
60% humidity, and a light/dark cycle of 16/8 h. For all 
experimentation, 11 days old seedlings were used. The 
abiotic stresses were induced by treatment with 200 mM 
sodium chloride (saline stress), 4±2°C (cold stress), and 
45±2°C (heat stress) for 2 h. The untreated seedlings 
served as a control and were used for the calculation of 
the relative transcript level of OsGR.

RNA extraction and cloning of OsGR

For RNA extraction, 100 mg of seedling was used 
and crushed in liquid nitrogen followed by extraction 
using RNeasy plant mini kit (Qiagen) as per the manu-
facturer’s protocol, with the modification of inclusion of 
in-column DNase digestion step (RNase free DNase set, 
Qiagen). The extracted RNA was checked for its quan-

tity and quality using a microvolume spectrophotometer 
(ThermoFisher Scientific) and agarose gel electrophore-
sis.

The extracted RNA was converted to cDNA using 
Revert Aid First Strand cDNA Synthesis Kit (Ther-
moFisher Scientific) as per the manufacturer’s manual. 
The obtained cDNA was used for polymerase chain re-
action (PCR) amplification using the primers: Forward 
AATTGCGGCCGCGATGGCTAGGAAGATGCT-
CAAG, Reverse TATGTCTAGAGCTACAAGTTT-
GTCTTTGGCTTGGATGATGG, using HiFidelity pol-
ymerase (Qiagen), with PCR cycle of denaturation 94ºC 
for 20 s, annealing 60ºC for 30 s and extension 72ºC 
for 90 s. The obtained PCR product was checked for 
amplification using agarose gel electrophoresis followed 
by digestion using NotI and XbaI restriction enzymes. 
The digested product was resolved in an agarose gel fol-
lowed by gel purification using the GenJET gel extrac-
tion kit (ThermoFisher Scientific). The digested product 
was cloned into the pCAT plant expression vector, as 
an enhanced yellow fluorescent protein (EYFP) fusion 
product under the control of a double 35 S cauliflower 
mosaic virus (CaMV) promoter (Fulda et al., 2002). The 
insert was verified using automated DNA sequencing.

Subcellular localization of OsGR

For subcellular localization studies, the biolistic bom-
bardment method was used, in which onion epidermal 
cells were transformed with plasmid constructs coated 
on gold particles, which were further examined under a 
fluorescent microscope after an appropriate incubation 
time. Under standard conditions, the transformed onion 
epidermal cells are examined after 18–24 h post-trans-
formation. However, it has also been observed that the 
sensitivity of detection of the reporter protein in per-
oxisome increases after an extended incubation time at 
reduced temperature (Lingner et al., 2011, Chowdhary et 
al., 2012).

The gene of interest (OsGR) was cloned as an EYFP 
fusion product and as a peroxisomal marker, Ds-Red-
SKL was used (Matre et al., 2009). In the case of sin-
gle transformation experiments pCAT plasmid contain-
ing EYFP-OsGR was coated with gold particles, while 
in the case of double transformation experiments pCAT 
plasmid containing EYFP-OsGR and peroxisomal mark-
er (Ds-Red-SKL) together were coated with gold parti-
cles and bombarded to onion epidermal cells (Ma et al., 
2006). The onion slices were placed on wet blotting pa-
per in Petri dishes and stored at room temperature in 
the dark followed by analysis using fluorescent micros-
copy or after additional incubation at 10°C for 1 to 6 d. 
Image capture and analysis were done as explained in 
Chowdhary et al., (2012).

Expression analysis by real-time PCR

The expression analysis of peroxisomal GR was carried 
out by real-time PCR technique using SYBR green chemis-
try. For this, the total RNA was extracted from stress-treat-
ed and control (untreated) plants as explained above, its 
concentration was determined, equalized, and converted to 
cDNA using high-capacity cDNA reverse transcription kit 
(ThermoFisher Scientific) as per the manufacturer’s manual. 
Total RNA, 1 µg, was converted to cDNA, which was di-
luted and further used for quantitative real-time PCR us-
ing SYBR green chemistry. Real-time PCR was performed 
using QuantiNova 2X PCR master mix containing SYBR 
green dye with ROX as passive reference dye (Qiagen) in 
QuantStudio 5 (ThermoFisher Scientific) real-time PCR 
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machine. The conditions for real-time PCR were as follows: 
initial denaturation at 95°C for 2 min, followed by 40 cy-
cles of 95°C for 15 s, 60°C for 60 s, and 72°C for 60 s. 
To obtain the melting curve a program of 95°C for 15 s 
and 60°C for 1 min was followed. All qPCR analyses were 
performed in three biological replicates. O. sativa actin was 
used as an endogenous control for the normalization of 
the transcript. The relative transcript level or “fold change” 
(degree of change in expression between the treated sample 
and untreated sample) was calculated by the ∆∆CT method 
using the formula, relative transcript level/fold change = 
2-∆∆CT, where ΔΔCT = ΔCT test sample – ΔCT calibrator 
sample (ΔCT test sample = CT test – CT reference, ΔCT cal-
ibrator = CT calibrator – CT reference; test sample = stress 
treated sample, calibrator = untreated sample, reference = 
endogenous control) (Livak & Schmittgen, 2001). The data 
provided represents an average of three biological replicates 
of independent samples and the values depicted represent 
mean ± standard deviation. The primer used for expression 
analysis were, OsGR Forward primer – CGACCTTTGA-
CAGCACTGTTGG, reverse primer – TGGTCAAGGTC-
CGCATTGTCAC, OsActin forward primers – CAGCCA-
CACTGTCCCCATCTA, Reverse primer – AGCAAG-
GTCGAGACGAAGGA.

RESULTS

Bioinformatics analysis of OsGR

The protein sequence of A. thaliana and O. sativa GR 
were aligned using CLUSTAL W 2.1 and the alignment 
revealed the significant conservation among both se-
quences (Fig. 1). The peroxisome targeting of A. thaliana 

GR is dependent on the PTS type 1, which is localized 
at the C-terminus of the protein. In the case of AtGR 
the PTS1 is represented by TNL> (Kataya & Reumann, 
2010, the symbol “>” represents the end of the poly-
peptide). The presence of the same tripeptide in O. sa-
tiva GR provided a hint for peroxisomal localization of 
OsGR via PTS1 (Fig. 1). Hence, OsGR was fused at the 
C-terminus of the EYFP, so that the targeting signal is 
freely available for the cytosolic receptor, PEX5 binding 
followed by peroxisome targeting (Fig. 1).

Molecular cloning and subcellular localization of OsGR

The cDNA of the O. sativa was used as a template 
for PCR-based cloning of GR. The primer sequences 
and PCR cycle are explained in the materials and meth-
od section. The PCR amplified product was found to be 
of 1500 bp and was cloned in the pCAT vector under 
the control of a double 35 S CaMV promoter. The gene 
was cloned as a C-terminal fusion of enhanced yellow 
fluorescent protein (EYFP, Fig. 1). The sequence of 
the cloned gene was verified using automated DNA se-
quencing. No mutations were detected.

Onion epidermal cells transformed with EYFP, which 
served as a negative control showed uniform cytosolic fluo-
rescence (Fig. 2A). The OsGR, which was expressed as a 
fusion protein with EYFP, showed green cytosolic fluores-
cence after 24 h of incubation (Fig. 2B1), however the same 
was observed in small punctuate structures after an extend-
ed time of incubation (Fig. 2B2). The identity of fluorescing 
punctuate structures was confirmed by double transforma-
tion experiments co-expressing peroxisomal marker DsRed-
SKL. The double transformation experiments demonstrated 
the overlapping of both green and red fluorescence from 

Figure 1. Multiple sequence alignment of GRs from Arabidopsis thaliana and Oryza sativa.
GR sequences were obtained from the database and aligned using CLUSTAL W 2.1. “*”represents the same amino acids, “:”represents the 
similar amino acids present in both the sequences. The red rectangle highlights the PTS1 tripeptide with seven upstream residues. The 
figure at the bottom shows the diagrammatic representation of the interaction of PEX5 with the C-terminus end of GR. The solid black 
and blue rectangle represents the OsGR and PEX5, respectively.
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EYFP and peroxisomal marker respectively, (Fig. 2C), con-
firming the identity of the punctuate fluorescing organelle 
to be peroxisome. Since fluorescence could not be detected 
in peroxisome 24 h post-transformation and it took an ex-
tended time of incubation for the fluorescence to be detect-
ed in peroxisome it was presumed that the GR is targeted 
to peroxisome with lesser efficiency and hence the PTS1 
present in GR was termed as weak or non-canonical PTS1.

Expression analysis of OsGR

For OsGR gene expression analysis, the abiotic stress-
treated seedlings were used for RNA extraction, fol-
lowed by cDNA synthesis and real-time PCR. The un-
treated seedlings were used as a control. The expression 
data were represented as relative transcript level or “fold 
change” which essentially means the change in the degree 
of expression between the treated sample and untreated 
samples. The details are explained in the materials and 
method section. Expression analysis was performed with 
respect to heat, cold, and salinity (sodium chloride) stress-
es. All the treatments were provided for 2 h. In the case 
of heat stress, the change in the transcript accumulation 
was observed to a tune of 3.1-fold (Fig. 3), meaning that 
GR gene transcripts accumulated 3.1 times more in the 
heat stress as compared to untreated samples. This was 
followed by cold and saline stress with transcript level ac-
cumulation of about 3.7 and 10.4-fold respectively (Fig. 
3). This demonstrated that the expression of peroxisomal 

localized GR in O. sativa upregulated in the presence of 
heat, cold, and salinity stress conditions.

DISCUSSION

Abiotic stress is the major bottleneck in the sustainabil-
ity of the global agricultural system. The harmful effect of 
abiotic stress is further compounded when more than one 
abiotic stress factor negatively affects the plant in synchro-
ny, which is more often the case in field conditions. This 
phenomenon has been termed stress combinations (Zan-
dalinas et al. 2020; 2021) or stress matrix (Mittler, 2006). 
This necessitates the development of crop varieties that 
would be tolerant to multiple abiotic stresses. Hence, can-
didate genes are required which would be effective against 
most if not all the abiotic stresses. Since the production 
of ROS is a common factor among all abiotic stresses, we 
intend to investigate the problem of abiotic stress combi-
nations from the perspective of ROS homeostasis.

Since, peroxisomes play a significant role in cellular ROS 
homeostasis, a peroxisome-localized candidate participating 
in ROS homeostasis would be of greater significance. Using 
in vitro subcellular localization techniques, we reported a GR 
isoform from Oryza sativa to be localized in peroxisomes. 
Previously, Kataya & Reumann, (2010) have reported the 
localization of A. thaliana GR in peroxisomes. The peroxi-
some targeting of GR is mediated via a non-canonical type 
of PTS1. The PTS1 tripeptide of GR is represented by 
TNL> in both A. thaliana (Kataya & Reunann, 2010) and 
O. sativa. In the case of non-canonical PTS1, the seven up-
stream residues also play a significant role in binding with 
the cytosolic receptor PEX5 (Fodor et al., 2012; Brocard & 
Hartig, 2006; Lingner et al., 2011), which is represented by 
SPSSKPKTNL> and AHKPKPKTNL> (underlined resi-
dues PTS1 tripeptide, others, seven upstream residues) in 
the case of O. sativa and A. thaliana respectively. Being a 
non-canonical type of PTS1, the targeting is not very ef-
ficient and requires an extended incubation time for the 
fluorescence to be detected in the peroxisome (Lingner et 
al., 2011; Chowdhary et al., 2012). To further understand 
the peroxisome targeting signal of GRs in angiosperms we 

Figure 2. Experimental validation of peroxisome localization of 
Oryza sativa GR by in vitro subcellular targeting.
The OsGR was cloned in the pCAT plant transient vector under 
the control of a double 35 S CaMV promoter. The plasmids were 
coated with gold particles and bombarded biolistically to onion 
epidermal cells. The onion epidermal cells were incubated in dark 
for 24 h at room temperature or low temperature for an extended 
time period (24 h RT plus 6 d cold ca. 10°C) followed by analysis 
using fluorescent microscopy. EYFP alone was included as nega-
tive control (A). 24 h p.t., EYFP fluorescence was detected in cy-
tosol only (B1), while after extended incubation the EYFP fluores-
cence was detected in punctuate structures (B2). The identity of 
the dot-like punctuate structure was confirmed by double trans-
formation experiments, where peroxisomes were labelled with 
Ds-Red-SKL. The green (C1) and red fluorescence (C2) from EYFP 
and Ds-Red-SKL> respectively merged to show yellow fluores-
cence (C3) confirming the punctuate structure to be peroxisomes. 
The green rectangle bar fused to black depicts the diagrammatic 
representation of OsGR fused at the C-terminus of EYFP, while the 
red rectangular bar represents the Ds-RED-SKL>. The upper and 
bottom halves of the image show the single and double transfor-
mation experiments respectively.

Figure 3. Expression analysis of OsGR.
The expression analysis was performed using the RNA isolated 
from Oryza sativa seedlings after the treatments. RNA extraction 
was done by RNeasy plant mini kit, (Qiagen) followed by cDNA 
synthesis (High-Capacity cDNA Reverse Transcription Kit, Ther-
moFisher Scientific). The cDNA obtained was used for expression 
analysis by real-time PCR using SYBR green chemistry. OsActin 
was used as endogenous control. The assays were repeated with a 
minimum of three replicates and ΔΔCT values were calculated, rel-
ative transcript level (fold change) was determined, and the graph 
was plotted. The x and y-axis show the various abiotic stress treat-
ments and fold change, respectively. The data represent three bio-
logical replicates and error bars have been shown.
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obtained GR protein sequences from 80 plant species, and 
the last ten amino acids were aligned by multiple sequence 
alignment (Supplementary Fig. 1 at https://ojs.ptbioch.edu.
pl/index.php/abp/). The alignment revealed that all the se-
quences were terminating with TNL> suggesting that the 
presence of a peroxisomal GR could be a common feature 
among angiosperms. At the -4 position, all the 80 GR or-
thologs have lysine while at the -5 position 73 sequences 
have proline except six sequences, one each from Elaeis 
guineensis, Gossypium hirsutum, Gossypium Raimondi, Amborella 
trichopoda, Cinnamomum micranthum, and Phoenix dactylifera have 
alanine and one sequence namely Brachypodium distachyon had 
leucine. At the -6 position, 75 sequences had lysine while 
asparagine was present at four places (one sequence each 
from Citrus clementina, Olea europaea and two sequences from 
Citrus sinensis) and glutamine was present at one place (Phoe-
nix dactylifera). The most favourable amino acid at the -7 po-
sition is glycine which is present in 35 sequences followed 
by serine present in 29 sequences. At -8, -9 and -10 posi-
tions variability increases. The analysis curtailed here reveals 
that the consensus PTS1 sequence for peroxisomal GRs 
present in the angiosperms would be [G/S/T/N/A/V] 
[L/N/Q] [P/A/L] [K] [T] [N] [L]> at -7, -6, -5, -4, -3, -2 
and -1> positions, respectively. Figure 4 demonstrates the 
diagrammatic representation of the propensity of specific 
amino acids to remain present at specific positions.

Further, the expression pattern of peroxisomal GR 
was investigated under various abiotic stress conditions. 
It was found to be upregulated upon heat, cold, and sa-
linity stress in increasing order. GR expression has been 
reported to get affected due to stress conditions in vari-
ous plant species, however, all previous reports are of 
either chloroplastic or cytosolic variants. Salinity and 
drought stress-dependent upregulation of GR has been 
demonstrated in Cicer arietinum and O. sativa respectively 
(Yousuf et al., 2012). A positive correlation between tol-
erance to low temperature (LT)-induced photoinhibition 
and high GR activities has been observed in O. sativa 
(Guo et al., 2006; Huang & Guo, 2005), C. sativus (Hu et 
al., 2008), (Xu et al., 2008), Glycine max (Sun et al., 2011), 
Cucumis melo (Fogelman et al., 2011) and Citrullus lanatus 

(Gill et al., 2013). Increased GR activity has been widely 
observed in plant species like T. aestivum (Hasanuzzaman 
et al., 2012), Z. mays (Kumar et al., 2012), Cucumis sativus 
(Dai et al., 2012), N. tabacum (Tan et al., 2011) and Pha-
seolus aureus (Kumar et al., 2011) under high temperature 
(HT) stress. Thus, the upregulation in the expression of 
GR is postulated to play an important role in plant pro-
tection against various forms of abiotic stresses (Trivedi 
et al., 2013; Gullner et al., 2001; Reisinger et al., 2008).

The overexpression of enzymes of the ascorbate-glu-
tathione (AsA-GSH) pathway has been demonstrated to 
confer abiotic stress tolerance in plants by reducing the 
stress-induced cellular reactive oxygen species (ROS). 
The work has been critically reviewed by Hasanuzzaman 
et al., (2019). It has been observed that in Vigna radiata 
(Nahar et al., 2016) and Solanum lycoperisum (Sabeeha et al., 
2022), the upregulation of AsA-GSH cycle components 
leads to saline stress and heavy metal (mercury) stress 
tolerance, respectively. The overexpression of AsA-GSH 
enzymes from Pennisetum glaucoma in S. lycopersicum has 
been reported to be responsible for the reduced accumu-
lation of malondialdehyde and H2O2 (Raja et al., 2022). 
The impairment of AsA-GSH cycle enzymes has been 
demonstrated to increase saline stress sensitivity in A. 
thaliana (Huang et al., 2005). Further, the overexpres-
sion of Malpighia glabra monodehydroascorbate reductase 
(MDHAR) leads to saline stress tolerance in Nicotiana ta-
bacum (Eltelib et al., 2012). The transgenic O. sativa plants 
overexpressing MDHAR from Acanthus ebracteatus were 
found to demonstrate enhanced saline tolerance (Sultana 
et al., 2012). The overexpression of MDHAR and dehy-
droascorbate reductase (DHAR) in N. tabacum (Eltayeb 
et al., 2007) and A. thaliana (Ushimaru et al., 2006) have 
been demonstrated to increase saline stress tolerance. 
The overexpression of APX has been demonstrated 
to reduce the toxic effects of stress-induced H2O2 and 
enhance salinity tolerance in N. tabacum (Badawi et al., 
2004). Similarly, the overexpression of APX in N. taba-
cum has been demonstrated to relieve it from high and 
low-temperature stress (Yabuta et al., 2002).

It has also been suggested that different GR isoforms 
can be stimulated by varied environmental signals and can 
have different functional manifestations in the response 
to stress in plants (Stevens et al., 1997). This further sup-
ports our analysis that a peroxisomal localized GR could 
have a more pronounced effect in imparting ROS scaveng-
ing properties to plants and hence providing better abiotic 
stress tolerance. It is also pertinent to mention here that 
ample literature is available about chloroplastic and cytosolic 
forms while no work has yet been reported on peroxiso-
mal GR. This would be the first report of a full-length GR 
to be localized in peroxisome from a monocot plant and 
its involvement in abiotic stress tolerance. Since both per-
oxisome and GR are the key entities in cellular ROS ho-
meostasis, a peroxisome localized GR would be of much 
significance in contributing to the abiotic stress tolerance in 
plants. The in silico analysis also revealed that the peroxiso-
mal localization of GR could be a universal feature among 
angiosperms. Further, we also reported that the GR was in-
duced by multiple abiotic stress conditions, suggesting that 
this could also be effective in providing stress tolerance un-
der stress combination or stress matrix situations as well, 
however, further studies need to be done in this regard.

CONCLUSION

In the nutshell, we reported a peroxisome localized GR 
from the monocot model plant Oryza sativa. The in silico 

Figure 4. Graphical representation of PTS1 domain present in 
GR of various angiosperm plants.
The 80 numbers of GR sequences from various dicot and mono-
cot plant species were obtained from NCBI. The sequences were 
aligned using CLUSTAL W 2.1 (Supplementary Fig. 1 at https://
ojs.ptbioch.edu.pl/index.php/abp/). From the multiple sequence 
alignment, the consensus amino acids were derived. The y-axis 
shows the propensity of the presence of specific amino acid at a 
specific position while the x-axis represents the position of amino 
acids in the C-terminus of the respective protein. “>” denotes the 
end of the polypeptide chain. Each square represents one amino 
acid. The bigger the size of the squares, the higher the propen-
sity of amino acids to remain present at that specific position. The 
empty squares represent the high variability.

https://ojs.ptbioch.edu.pl/index.php/abp/
https://ojs.ptbioch.edu.pl/index.php/abp/
https://ojs.ptbioch.edu.pl/index.php/abp/
https://ojs.ptbioch.edu.pl/index.php/abp/


180           2023P. Chanda Roy and G. Chowdhary

analysis also revealed that the peroxisomal localization of 
GR could be a common feature amongst angiosperms. The 
peroxisome localized GR was also found to be induced by 
multiple abiotic stress conditions. The role of GR in ROS 
homeostasis combined with its peroxisome localization and 
induction by multiple abiotic stress conditions suggests that 
it could be a prime candidate for the development of toler-
ance against abiotic stress combinations.
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