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Formononetin enhances the chemosensitivity of triple negative 
breast cancer via BTB domain and CNC homolog 1-mediated 
mitophagy pathways
Shan Li#✉, Linlian Zhu#, Yufeng He and Ting Sun
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This study aimed to investigate the effects of formon-
onetin on triple negative breast cancer (TNBC). Clinical 
samples were collected from patients with TNBC. Over-
all survival rates were evaluated using the Kaplan-Meier 
method. Gene expression was determined using im-
munohistochemistry, immunofluorescence and western 
blot. Cellular functions were determined using CCK-8, 
colony formation and propidium iodide (PI) staining. 
Xenograft assay was performed to further verify the ef-
fects of formononetin (FM) on TNBC. We found that FM 
combined therapy suppressed the metastasis of TNBC 
and increased the overall survival rates of TNBC patients. 
Moreover, FM suppressed the proliferation and induced 
mitochondrial damage and apoptosis of TNBC cells. FM 
increased the expression of the BTB domain and CNC 
homolog 1 (BACH1) in TNBC tissues as well as cells. 
However, BACH1 knockdown antagonized the effects of 
FM and promoted the survival of TNBC cells. FM sup-
pressed the tumor growth of TNBC. Taken together, FM 
suppressed the aggressiveness of TNBC via BACH1/p53 
signaling. Therefore, FM may be an alternative strategy 
for TNBC.
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INTRODUCTION

Breast cancer is the most common tumor among 
women worldwide (Braden et al., 2014; Burstein et al., 
2019). Recent decades witness an increase in the inci-
dence and mortality of breast cancer in China (Ding et 
al., 2020; Fan et al., 2014). Triple negative breast cancer 
(TNBC) is characterized by a high proliferative index, 
histological grade, and metastatic states (Garrido-Castro 
et al., 2019). Although great advances have been made in 
chemotherapy, radiotherapy, and surgery for TNBC (Bi-
anchini et al., 2016). However, the overall survival rates 
of TNBC are still unsatisfactory (Newman and Kaljee 
2017). The high recurrence and metastatic properties of 
TNBC neutralize the clinical outcomes (Xu et al., 2020). 
Therefore, a new strategy for TNBC is urgently needed.

Traditional Chinese medicine (TCM), with high ef-
ficiency and few side effects, is widely applied in the 
treatment of breast cancer (Chan et al., 2021; Yang et 

al., 2021). Formononetin (FM), extracted from astragalus 
membranaceus and spatholobus suberectus and with anti-in-
flammatory and anti-carcinogenic properties, is used as 
adjuvant therapy for breast cancer (Ma et al., 2020; Xin 
et al., 2019; Yu et al., 2020). Previous studies reveal that 
formononetin exerts its anti-cancer function via modu-
lating several signaling. For instance, formononetin sup-
presses the chemoresistance of TNBC via inactivating au-
tophagy (Li et al., 2021). Formononetin induces prostate 
cancer cell mitochondrial and apoptosis via regulating 
IGF-1/IGF-1R pathways (Huang et al., 2013). Addition-
ally, formononetin inhibits the immune suppressiveness 
of cervical cancer through inactivating MYC/STAT3/
PD-L1 signaling (Wang et al., 2022). This study explored 
the effects of NP (vinorelbine and cisplatin) combined 
with formononetin on TNBC.

MATERIALS AND METHODS

Patients

Clinical samples were collected from patients with re-
fractory TNBC undergoing chemotherapy (vinorelbine 
and cisplatin, NP) with or without FM. at People′s Hos-
pital of Dongtai City from April 1, 2019 to March 31, 
2021. The samples were immediately stored in liquid ni-
trogen at –80°C. This study was approved by the Ethi-
cal Committee of People′s Hospital of Dongtai City. All 
patients signed confirmed consent. The inclusion criteria 
are: (1) the patients diagnosed with mTNBC; (2) women 
under the age of 70; (3) no serious complications oc-
curred after the operation; (4) general condition score: 
ECoG 0-2; (5) patients in the combined group insisted 
on taking formononetin for at least 8 months. The ex-
clusion criteria are: the mTNBC patients with an esti-
mated ≤3 months of survival time; (2) patients accompa-
nied by severe impairment or insufficiency of heart, liver 
and kidney functions; (3) patients with poor compliance 
and unable to adhere to treatment.

Immunohistochemistry

Sections were deparaffinized. Then the slides were 
blocked with 0.1% Triton X-100. After washing with 10 
PBS, the section was incubated in 3% H2O2. The sec-
tions were incubated with primary antibody against BTB 
domain and CNC homolog 1 (BACH1) (ab128486, 1: 
150, Abcam, USA) at 4°C overnight in shade. The next 
day, the section was incubated with a secondary antibody 
at 37°C for 1.5 h in the shade. The slices were counter-
stained using hematoxylin for 10 min. Finally, the sec-
tions were visualized using a microscope (Nikon, Japan).
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Cell culture and transfection

Breast cancer cell line MCF7 was purchased from 
ATCC. Cells were incubated with DMEM containing 
10% FBS at 37°C in 5% CO2.

Cells were treated with 1.5 µM of vinorelbine, 2 µM 
of cisplatin, 80 µmol/L of FM or 10 mM of N-acetyl-
cysteine (NAC).

Cells were transfected with shBACH1 (sh1, F: 
5’-CCGGCCAGCAAGAATGCCCAAGAAACTC-3’ 
and R: 5’-AATTCAAAAACCAGCAAGAATGCCCAA-
GA-3’; sh2, F: 5’-CCGGGCCCATATGCTTGTGT-
CATTACTCGA-3’and R: 5’-AATTCAAAAAGCCCAT-
ATGCTTGTGTCATT-3’, sh-p53 (5’-GACUCCAGUG-
GUAAUCUAC-3’) and the negative control (NC, F: 
5’-CCGGCAACAAGATGAAGAGCACCAACTC-
GAGTTGGTGCTCTTCATCTTGTTGTTTTTG-3’ and 
R: 5’-AATTCAAAAACAACAAGATGAAGAGCAC-
CAA CTCGAGTTGGTGCTCTTCATCTTGTTG-3’) 
by using Lipofectamine® 3000 for 48 h.

Western blot

Protein was collected from TNBC tissues and cells. 
Protein concentrated with BCA kit (Beyontine, Shang-
hai). The protein was isolated using 12% SDS-PAGE. 
The separated protein was moved onto the PVDF mem-
brane, which was then blocked using 5% skimmed milk. 
Afterwards, the membranes were incubated with pri-
mary antibodies, such as anti-cyto C (ab133504, 1:2000, 
Abcam, USA), anti-caspase3 (ab32351, 1:5000, Abcam, 
USA), anti-Bcl-2 (ab32124, 1:1000, Abcam, USA), an-
ti-Bax (ab32503, 1:1000, Abcam, USA), anti-BACH1 
(ab300130, 1:1000, Abcam, USA), anti-p53 (ab32389, 
1:10000, Abcam, USA), anti-PARK2 (ab73015, 1:1000, 
Abcam, USA), anti-PINK1 (ab300623, 1:1000, Abcam, 
USA) and anti-GAPDH (ab9485, 1: 2000, Abcam, USA), 
and then with secondary antibodies (ab6721, 1:5000, Ab-
cam, USA). Finally, the bands were captured using an 
ECL kit and analyzed using ImageJ software.

MDA and SOD determination

The release of MDA and SOD was determined using 
specific commercial kits (Beyotime, Shanghai).

Immunofluorescence

Cells were fixed with 4% paraformaldehyde and per-
meabilized with 0.2% Triton X-100. Afterwards, cells 
were sealed with 5% bovine serum. Then cells were incu-
bated with primary antibodies against Hsp60 (ab190828, 
1:200, Abcam, USA), BACH1 (ab300130, 1:100, Abcam, 
USA), cyto-C (ab133504, 1:100, Abcam, USA) and then 
with secondary antibody. Then cells were counterstained 
with DAPI. The results were visualized using an immu-
nofluorescence microscope (Zeiss, Germany).

CCK-8 assay

After 48-hour transfection, cells were collected. Then 
cells were plated into 24-well plates and cultured for 0, 
12, 24, and 48 h. After being supplemented with CCK-8 
regents and cultured for another 2 h, cells were detected 
by a microplate reader at the wavelength of 450 nm.

Colony formation assay

After transfection, cells were plated into a 24-well 
plate. After 2 weeks of culture, cells were fixed and 
stained with 0.1% crystal violet. Subsequently, the colo-
nies were visualized using a microscope.

Propidium iodide (PI) staining

After transfection, cells were plated into a 24-well 
plate. Then cells were treated with PI solution (2 µg/
mL). Finally, PI positive cells were captured by a fluores-
cence microscope (Leica, Germany).

Xenograft assay.

18 BALB/c nude mice (6–8 weeks, 18–22 g) were pur-
chased from the Animal Center of Nanjing Medical Uni-
versity. Mice were randomly divided into three groups: 
control group, NP+FM group, and NP+FM+CDDO-
ME (CDDO-ME) group. Each mouse was inoculated 
subcutaneously with 3×104 cells. The tumor was meas-
ured every three days. Tumor size was calculated as fol-
lowed: V=lw2/2. At 21 days, mice were euthanized, and 
tumor were collected. This study was authorized by the 
Animal Care Broad of People’s Hospital of Dongtai City.

Statistical analysis

All data were analyzed using SPSS 20.0. The differ-
ence was analyzed using the Student t-test and ANOVA 
assay. The survival rates of patients were analyzed using 
Kaplan Meier and log-rank test. P<0.05 was deemed as a 
significant difference.

Table 1. Baseline demographics and disease

Characteristics N=88

Female, n (%) 88 (100)

Age, years, median(range) 52 (23-84)

Postmenopausal, n (%) 53 (60.23)

ECOG performance status, n (%)

0 56 (63.64)

1 32 (36.36)

LDH concentration, n (%)

<1 xULN 45 (51.14)

≥1 x ULN to <2.5 x ULN 38 (43.18)

≥2.5xULN 2 (2.27)

Unknown 3 (3.41)

Target lesion size, mm, median (range) 48.5 (9-194)

No. of metastatic organ sites, n (%)

1 26 (29.55)

2 48 (54.55)

≥3 14 (15.90)

Visceral± nonvisceral disease, n (%) 55 (62.50)

Prior NP therapy, n (%) 56 (63.64)

Disease-free interval

<12 months 39 (44.32)

≥12 months 49 (55.68)

Previous FM therapy, n (%) 32 (36.36)

No. of previous lines of therapy for re-
current/metastatic disease, n%)

0 85 (96.59)

1 3 (3.41)
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RESULTS

The characteristics of TNBC patients

As shown in Table 1, the participants were all fe-
male. 68% of the TNBC patients had increased LDH 
levels. 45% showed visceral metastasis and 33% with 
recurrence. Additionally, combined therapy significantly 
improved the overall survival rate of TNBC patients 
(Fig. 1).

FM promotes oxidative stress and mitochondrial 
damage in TNBC

Previous studies reveal that FM suppresses the pro-
gression of multiple myeloma via inducing oxidative 
stress. Then we determined the release of oxidative 
stress in TNBC. FM enhanced the effects of NP on 
the release of MDA and GSH (Figs 2A and B). FM en-
hanced mitochondrial aggregation induced by NP (Fig. 

2C). Moreover, FM+NP markedly increased cyto C pro-
tein expression compared with the NP group (Fig. 2D).

FM suppresses the aggressiveness of TNBC cells.

To further verify the effects of FM on TNBC, we de-
termined the MCF7 cellular functions. Compared to the 
control group, FM treatment significantly suppressed the 
cell viability of MCF7 cells (Fig. 3A). This was consist-
ent with the results from the colony formation assay. 
FM markedly inhibited the proliferation of MCF7 cells 
(Fig. 3B). Additionally, FM significantly enhanced the 
apoptosis of MCF7 cells (Fig. 3C). FM remarkably in-
creased the protein expression of BAX and Caspase3 
and decreased Bcl2 (Fig. 3D).

FM increases BACH1 expression

BACH1 is evidenced to play a vital role in mito-
chondrial function. We then determined the potentials 
of BACH1 in TNBC. The online database showed that 
BACH1 expression was decreased in invasive breast can-
cer tumors (Fig. 4A). To further verify this, we deter-
mined BACH1 expression in TNBC patients. As shown 
in Fig. 4B, BACH1 expression in patients administrat-
ed with NP+FM. Moreover, the protein expression of 
BACH1 was markedly increased in cells treated with 
NP+FM (Figs. 4C and D).

BACH1 transmits ROS signaling to mitochondria

BACH1 suppresses the aggressiveness of cancer cells 
via increasing the release of mitochondrial ROS (Hao 
et al., 2021). We, therefore investigated the potentials 
of BACH1 mitochondrial ROS. Figure 5A showed the 
transcription efficiency of sh-BACH1. BACH1 knock-
down antagonized the effects of FM and increased the 
cell ability of MCF7 cells (Fig. 5B). Moreover, BACH1 
knockdown suppressed the protein expression of cyto-
C, and cleaved caspase3 and -9 (Fig. 5C). Additionally, 
BACH1 knockdown suppressed mitochondrial aggrega-

Figure 1. The survival rates of TNBC patients. 
The overall survival rates of TNBC patients. **P<0.01.

Figure 2. FM increases oxidative stress and mitochondrial damage in TNBC. 
The release of MDA (A) and GSH (B) in MCF7 cells. (C) Mitochondrial aggregation determined by immunofluorescence. (D) The protein 
expression of cyto C in MCF7 cells determined using western blot. **P<0.01, ***P<0.001.
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Figure 3. FM suppresses the aggressiveness of MCF7 cells.
(A) MCF7 cell viability determined using CCK-8 assay. (B) The proliferation of MCF7 cells detected using a colony formation assay. (C) The 
apoptosis of MCF7 cells detected using PI staining. (D) The protein expression determined using western blot. **P<0.01.

Figure 4. FM increases BACH1 expression. 
(A) The expression of BACH1. (B) The expression of BACH1 in TNBC patients determined using immunohistochemistry. (C and D) BACH1 
protein expression detected using western blot. **P<0.01.

Figure 5. BACH1 transmits ROS signaling to mitochondria. 
(A) BACH1 protein expression detected using western blot. (B) MCF7 cell viability determined using CCK-8 assay. (C) Caspase3 and -9 
protein expression detected using western blot. (D) Mitochondrial aggregation determined by immunofluorescence. (E) The apoptosis of 
MCF7 cells detected using PI staining. (F) BACH1 protein expression detected using western blot. **P<0.01, ##P<0.01.
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tion (Fig. 5D). The apoptosis rates were significantly 
decreased in the sh-BACH1 group (Fig. 5E). To further 
confirm the roles of BACH1 in mitochondrial ROS. 
Cells were exposed to NAC (an ROS inhibitor). As 
shown in Fig. 5F, NAC antagonized the effects of FM 
and decreased the protein expression of BACH1.

FM regulates mitophagy via inducing BACH1-mediated 
activation of p53

We further investigated the potential underlying mech-
anisms. The online database STING predicted the po-

tential genes interacting with BACH1 (Fig. 6A). Then we 
found that BACH1 may regulate the expression of p53. 
To further verify this, cells were treated with FM and/
or sh-p53. As shown in Figs 6B and C, FM promoted 
p53 translocation from cytoplasm to mitochondria. p53 
deficiency suppressed protein expression of cyto C and 
Caspase9 mitochondrial aggregation (Fig. 6D) as well 
as mitochondrial aggregation (Fig. 6E). Moreover, p53 
knockdown decreased the protein expression of PINK1, 
PARK2 (Fig. 6F). p53 knockdown promoted the cell 

Figure 6. FM suppresses mitophagy via inducing BACH1-mediated activation of p53.
(A) The interaction between BACH1 and p53 predicted using STING. (B) p53 expression determined using immunofluorescence. (C) p53 
protein expression determined using western blot. (D) Mitochondrial aggregation determined by immunofluorescence. (E) cyto-C and 
caspase-9 protein expression determined using western blot. (F) PINK1 and PARK2 protein expression determined using western blot. (G) 
Cell viability determined using CCK-8 assay. (H) The apoptosis of MCF7 cells detected using PI staining. **P<0.01, ##P<0.01.

Figure 7. FM suppresses the tumor growth of TNBC via regulating BACH1. 
The tumor size (A), volume (B), and weight (C) of TNBC in vivo. **P<0.01, ***P<0.001, ##P<0.01.
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viability and inhibited the apoptosis of MCF7 cells 
(Figs 6G and H).

FM suppresses the tumor growth of TNBC via 
regulating BACH1

To further verify the effects of FM on TNBC, in vivo 
assay was performed. As shown in Fig. 7A–C, FM sup-
pressed the tumor size, volume and weight, which was 
abated by BACH1 deficiency.

DISCUSSION

In this study, FM suppressed improved the clinical 
outcome of TNBC patients. FM induced oxidative stress 
and apoptosis of MCF7 cells suppressed tumor growth. 
Additionally, FM suppressed mitophagy via inactivating 
BACH1/p53 signaling pathways.

Formononetin (FM) possesses anti-tumor proper-
ties in various cancers (Tay et al., 2019). For instance, 
FM suppressed the proliferation and metastasis of ovar-
ian cancer cells (Zhang et al., 2018). FM suppresses the 
growth and migration of gastric cancer (Yao et al., 2019). 
In breast cancer, FM induced breast cancer cell cycle rest 
(Chen et al., 2011). FM inhibits Taxol-chemoresistance 
of breast cancer cells via suppressing autophagy signal-
ing (Wu et al., 2021). However, seldom study focuses on 
the mitochondrial functions in breast cancer cells. In this 
study, FM transmitted ROS to mitochondria to release 
cyto C and induced the cascades of caspase-3 and cas-
pase-9, the activation of which induced the apoptosis of 
MCF7 cells. These findings suggest that FM may exert 
its anti-tumor functions via impeding the mitochondrial 
function in breast cancer cells.

BACH1, a member of the cap’n’collar (CNC) b-Zip 
family, plays a key role in regulating oxidative stress 
(Wiel et al., 2019). BACH1 is a key regulator of mito-
chondrial metabolisms in cancer (Lignitto et al., 2019). 
For instance, BACH1 knockdown induces mitochondrial 
respiration and increases the chemosensitivity of papil-
lary thyroid cancer cells to metformin (Yu et al., 2022). 
Moreover, BACH1 is overexpressed in TNBC patients 
and High levels of BACH1 predict poor overall survival 
and disease-free survival rates (Ou et al., 2019). Overex-
pressed BACH1 inhibits glycolysis as well as suppresses 
lactate catabolism in the tricarboxylic acid (TCA) cy-
cle, and promotes breast cancer bone metastasis (Lee et 
al., 2019; Padilla et al., 2022). These studies dictate that 
BACH1 may function as an oncogene in breast cancer. 
In this study, BACH1 was overexpressed in TNBC pa-
tients and MCF7 cells. Moreover, overexpressed BACH1 
suppressed the release of oxidative stress and cancer cell 
apoptosis. Moreover, BACH1 alleviated FM-induced mi-
tochondrial damage.

Mitochondrial metabolism plays a vital role in mito-
chondrial function, requiring intensive integration of mi-
tochondrial morphology and dynamics (Chan, 2020). Mi-
tophagy, erasing damaged mitochondria via autophagy, is 
a key process to maintaining mitochondrial quality (Srini-
vasan et al., 2017). However, dysfunction of mitophagy 
may induce the pathogenesis of cancer, such as hepato-
cellular carcinoma, colon as well as breast cancer (Chen 
et al., 2019; Deng et al., 2021; Yin et al., 2021). Therefore, 
to unraveling the underlying mechanisms may provide a 
novel target for cancer therapy. In this study, FM treat-
ment induced the overexpression of p53. As a tumor 
suppressor, p53 suppresses tumorgenesis via inducing ap-
optosis, pyroptosis, ferroptosis as well as autophagy. In 
this study, FM stimulated p53/PINK1/PARK2 signaling 

pathways via inactivating BACH1, which promoted the 
release of cyto C and caspases as well as mitophagy-me-
diated mitochondrial dysfunction.

However, there are several limitations to this study. 
A large number of patients could make the results more 
convincing. Therefore, future studies will recruit more 
metastatic TNBC patients. Additionally, mitochondrial 
damage and mitophagy may induce other forms of death, 
such as ferroptosis and pyroptosis. Whether FM induced 
ferroptosis or pyroptosis. This needs further study.

In conclusion, FM improved the clinical outcomes 
of TNBC patients. Additionally, FM suppressed the ag-
gressiveness of TNBC via regulating BACH1 signaling. 
Therefore, FM may be an alternative strategy for TNBC.
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