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Depression is a common psychiatric disorder. Due to the disadvantages of

current clinical drugs, including poor efficacy and unnecessary side effects,

research has shifted to novel natural products with minimal or no adverse

effects as therapeutic alternatives. The ocean is a vast ecological home, with a

wide variety of organisms that can produce a large number of natural products

with unique structures, some of which have neuroprotective effects and are a

valuable source for the development of new drugs for depression. In this review,

we analyzed preclinical and clinical studies of natural products derived from

marine organisms with antidepressant potential, including the effects on the

pathophysiology of depression, and the underlying mechanisms of these

effects. It is expected to provide a reference for the development of new

antidepressant drugs.
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Introduction

As one of the most common mental illnesses, there are currently at least 50 million

patients with depression in China (Huang et al., 2019). The incidence of depression is

increasing year by year, and it is expected to become one of the major causes of disease

burden in China by 2030 (Huang et al., 2019). Depression imposes a heavy burden on

individuals, families and society due to its high incidence, high disability rate and high

suicide rate (Cipriani et al., 2018). Selective serotonin reuptake inhibitors (SSRIs),

norepinephrine reuptake inhibitors (NRIs), and dopamine reuptake inhibitors (DRIs)

are the main first-line antidepressants used in clinical practice today (Harmer et al., 2017;

Moragrega and Ríos, 2021). These medications either work on the neurotransmitter

systems of serotonin (5-HT), Norepinephrine (NE), and dopamine (DA) or they suppress

the action of the enzyme monoamine oxidase (MAO) to produce antidepressant effects

(Harmer et al., 2017). However, even after adequate and sufficient antidepressant

treatment, about one-third of patients still do not have a significant therapeutic effect.

Patients often experience side effects such as gastrointestinal discomfort and loss of libido,

in addition to poor treatment compliance. Therefore, it is of great significance to find

more effective and safer antidepressant compounds from a wide range of natural

OPEN ACCESS

EDITED BY

Grzegorz Wegrzyn,
University of Gdansk, Poland

REVIEWED BY

Mohamad Taufik Hidayat Baharuldin,
National Defence University of Malaysia,
Malaysia
Łukasz Grabowski,
University of Gdansk, Poland

*CORRESPONDENCE

Chengmin Wang,
chengminwang@tom.com

†These authors have contributed equally
to this work

RECEIVED 15 December 2023
ACCEPTED 08 March 2024
PUBLISHED 30 April 2024

CITATION

Wang X, Yang C, Zhang X, Ye C, Liu W
and Wang C (2024), Marine natural
products: potential agents for
depression treatment.
Acta Biochim. Pol 71:12569.
doi: 10.3389/abp.2024.12569

COPYRIGHT

© 2024 Wang, Yang, Zhang, Ye, Liu and
Wang. This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

Acta Biochimica Polonica
Published by Frontiers

Polskie Towarzystwo Biochemiczne (Polish Biochemical Society)01

TYPE Review
PUBLISHED 30 April 2024
DOI 10.3389/abp.2024.12569

https://crossmark.crossref.org/dialog/?doi=10.3389/abp.2024.12569&domain=pdf&date_stamp=2024-04-30
mailto:chengminwang@tom.com
mailto:chengminwang@tom.com
https://doi.org/10.3389/abp.2024.12569
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/abp.2024.12569


products, and it can also provide new ideas for the development

of antidepressant products.

The living environment of marine organisms is complex,

resulting in a large number of marine natural products

(MNPs). Studies have shown that MNPs have significant

pharmacological activities, and the toxicity and side effects are

significantly lower than those of synthetic compounds (Corona,

2018). These marine-derived active substances have played an

important role in the prevention and treatment of many diseases,

and their pharmacodynamic mechanisms are constantly being

elucidated. In recent years, with the relentless exploration of

researchers, the bioactive substances derived from MNPs have

increased. The metabolites isolated from marine organisms have

diverse chemical structures, including polyketides, terpenoids,

alkaloids, macrolides, cyclic peptides, quinones, polyethers,

sterols, polysaccharides, unsaturated fatty acids, and a wide

range of pharmacological activities, including antibacterial,

antiparasitic, enzyme inhibitor, antioxidant, cytotoxic activity,

etc. The majority of marine drug research and development is

focused on anti-tumor, anti-cardiovascular disease, and

antibacterial agents (Russo et al., 2015; Lima and Medeiros,

2022). Many marine compounds have received clinical approval

for use, including the analgesic ziconotide and the anti-cancer drug

cytarabine (Jimenez et al., 2020; Yang et al., 2021). MNPs and

compounds generated from MNPs are becoming more and more

valuable due to their biological activities. Numerous studies have

recently revealed that MNPs have antidepressant properties and

may slow the course of depression (Subermaniam et al., 2021a).

MNPs may be a useful resource for the development of brand-new

antidepressant alternatives. This article examines preclinical and

clinical studies on the antidepressant effects of MNPs and research

on the neuroscience of depression.

Subsections relevant to the subject

Pathogenesis of depression

The pathogenesis of depression is complex and the biological

mechanism is not fully understood (Jesulola et al., 2018).

Currently, the widely accepted pathogenic hypotheses include

the Monoamine hypothesis, the Neural plasticity hypothesis, the

Neuroinflammatory hypothesis, and the Hypothalamic-

pituitary-adrenal (HPA) axis (Figure 1) (Subermaniam et al.,

2021a; Borbély et al., 2022). It should be mentioned that

depression has a complex etiology and may be brought on by

a confluence of various pathogenic variables. The search for

drugs with multiple targets is thus a crucial area of research for

the development of antidepressants.

Monoamine hypothesis

One of the primary causes of depression has been determined to

be decreased levels and functional deficiencies of 5-HT, DA, and NE,

which are typically present in the brains of depressed patients

(Matraszek-Gawron et al., 2019; Wang et al., 2022). The

monoamine hypothesis is strongly supported by the fact that 5-HT

or NERI can alleviate depression (Locher et al., 2017; Rana et al.,

2021). By improving neurotransmission in the central nervous system

and increasing the amount of related monoamine neurotransmitters

in the synaptic cleft, this class ofmedications reduces the symptoms of

depression (Locher et al., 2017; Yohn et al., 2017).

Neural plasticity hypothesis

The pathogenesis of depression is significantly influenced by

neuroplasticity and remodeling failure (Wang et al., 2021a). The

neurotrophic family includes brain-derived neurotrophic factor

(BDNF), which regulates neuronal plasticity (Castrén and

Monteggia, 2021). On the one hand, it might have an impact on

the development of synaptic structures, such as axons and dendrites,

and their growth and remodeling. On the other hand, it might

enhance the long-term synaptic transmission function of the

hippocampus through pre- and post-synaptic pathways (Wardle

and Poo, 2003). Decreased levels of BDNF have been found in brain

samples from depressed patients (Chen et al., 2001; Dwivedi, 2009;

Dwivedi et al., 2009; Carlino et al., 2013). In contrast, antidepressant

treatment increases the expression of BDNF in the brains of

depressed patients (Chen et al., 2001). Therefore, it shows great

potential in the treatment of depression as it increases BDNF levels.

FIGURE 1
The pathogenesis of depression.
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Neuroinflammatory hypothesis

Glial cells and cytokines play a role in the immune response

known as neuroinflammation that occurs in the central nervous

system (Zhou et al., 2022). Depression is an inflammation-related

disease that worsens as inflammation increases and progresses

(Yirmiya et al., 2015; Wang et al., 2021b). According to research,

aberrant glial cell activation in the brains of depressed patients

results in the release of pro-inflammatory cytokines such as

interleukin-6 (IL-6), interleukin 1 beta (IL-1β), and tumor

necrosis factor-alpha (TNF-α), which can lead to

neuroinflammation and neuronal death (Matraszek-Gawron

et al., 2019). In addition, glial cells produce nitric oxide

synthase (NOS), and cyclooxygenase-2 (COX-2) could also

induce neuroinflammation by promoting oxidative stress

levels. Neuroinflammation has emerged as a novel target for

the treatment of depression (Wang et al., 2021b; Zhou

et al., 2022).

Hypothalamic-pituitary-adrenal (HPA) axis

The hypothalamus, pituitary, and adrenal glands work

together as part of the HPA axis to govern the body’s reaction

to physiological or psychological stimuli (Herman et al., 2016;

Lew et al., 2020). Patients with depression have been discovered

to have HPA dysfunction, resulting in high glucocorticoid (GC)

levels, which in turn cause neuronal dysfunction and structural

changes in the hippocampus (Dean and Keshavan, 2017).

Clinical trials have established the antidepressant properties of

glucocorticoid receptor (GR) antagonists and the viability of

targeting HPA regulation in the treatment of depression (Dean

and Keshavan, 2017).

MNPs have anti-depressant potential

A significant number of MNPs are produced by the complex

living environment of marine animals, and a novel entity

structure and enormous diversity are provided by the

chemical structure with strong biological activity (Zhao et al.,

2022a). Some MNPs have participated in antidepressant

preclinical or clinical trials and have proven to be great

sources for novel and effective antidepressants (Tables 1, 2).

The marine environment is a rich source of novel

pharmaceuticals, many of the substances found there can

regulate brain activity, reduce anxiety, and have potential

therapeutic applications for disorders associated with anxiety

and depression (Zhao et al., 2022a). At present, with the

interaction between academia and the pharmaceutical sector, a

large number of MNPs have been discovered and tested using

current analytical methods.

Antidepressant natural products of marine
animal origin

Tilapia skin peptides (TSP)
Tilapia skin peptides (TSP), derived from tilapia

(Oreochromis mossambicus) scraps (Zhao et al., 2022a), have

TABLE 1 Antidepressant Natural Products of Marine animal Origin.

Natural
products

Model
establishment

Behavioral
outcome

Mechanism Ref.

Tilapia skin peptides CP FST, TST, OFT Decreased Iba-1, TNF-α, and IL-1β levels Zhao et al. (2022a)

Increased Keap1, SOD, and GSH-Px levels via the Nrf2/HO-
1 pathway

Increased Bcl-2, Bax, and caspase-3 levels via the BDNF/
TrkB/CREB pathway

Bryostatin-1 CUMS Open water swimming N.A. Alkon et al. (2017)

EPA and DHA CUMS SPT, TST, OFT Decreased IL-1β, IL-6, TNF-α, and CD11b levels Peng et al. (2020)

Increased BDNF, GDNF and NGF levels

Resolvin D1 myocardial infarction FST Anti-inflammation Gilbert et al. (2014)

Krill oil CLET FST Increased BDNF levels Wibrand et al. (2013)

5,6-Br-DMT FST FST, TST N.A. Zhang et al. (2023)

Astaxanthin LPS FST, TST Decreased TNF-α, IL-1β, IL-6, iNOS, nNOS and COX-2 levels
via the NF-κB pathway

Jiang et al. (2016), Jiang
et al. (2017)

EPA, eicosapentaenoic acid; DHA, docosahexaenoic acid; 5,6-Br-DMT, 5,6-dibromo-N, N-dimethyltryptamine; CP, cyclophosphamide; CUMS, chronic unpredictable mild stress; CLET,

conditioned light extinction test; LPS, lipopolysaccharides; FST, forced swim test; TST, tail suspension test; OFT, open field test; N.A., not applicable.
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biological actions that are antioxidant, anti-inflammatory, anti-

apoptotic and hypotensive (Ling et al., 2018; Zhao et al., 2022b;

Song et al., 2022). Hippocampal neurons in mice that received an

intraperitoneal infusion of cyclophosphamide (CP) experienced

oxidative stress, neuroinflammation, and neuronal death (Iqubal

et al., 2019). TSP [1,000 mg/kg/d, intragastrically (i.g.)] could

improve CP-induced depressive-like behaviors such as Sucrose

Preference Test (SPT), Forced Swim Test (FST), Tail Suspension

Test (TST) and Open Field Test (OFT) in mice (Zhao et al.,

2022a). Mechanistically, TSP may reduce CP-induced

neuroinflammation by decreasing the expression of ionized

calcium-binding adaptor molecule 1 (Iba-1), TNF-α, and IL-

1β in the hippocampus of mice. TSP also attenuated CP-induced

oxidative stress by increasing the Nrf2/HO-1 signaling pathway

and increasing the levels of kelch-like ECH-associated protein 1

(Keap1), superoxide dismutase (SOD), glutathione peroxidase

(GSH-Px) and malondialdehyde (MDA). In addition, TSP could

also reduce neuronal apoptosis by increasing Bcl-2/Bax/Caspase-

3 through the BDNF/TrkB/CREB signaling pathway. In

conclusion, the antidepressant effect of the TSP may be

involved in the regulation of synaptic plasticity and anti-

inflammatory activity (Zhao et al., 2022a).

Bryostatin-1
Bugula neritina-derived bryostatin-1 can increase the

expression of protein kinase C (PKC), induce PKC membrane

translocation, and enhance synaptic plasticity (Nelson et al.,

2017). PKC activity was reduced in the brains of depressed

individuals (Pandey et al., 2021). In the rat model of

depression generated by chronic unpredictable mild stress

(CUMS), PKC expression was markedly reduced (Han et al.,

2015). According to these investigations, PKC levels and the

development of depression may be related. Furthermore, PKC

has the ability to significantly alter synaptic transmission

(Wierda et al., 2007; Shen et al., 2021). Bryostatin-1

[100 nmol/kg, intravenous (i.v.)] shortened the immobility

time in the FST in rats. This antidepressant effect of

Bryostatin-1 is largely abolished by 1-(5-

isoquinolinylsulfonyl)-2-methylpiperazine (H-7), a PKC

inhibitor, which suggests that Bryostatin-1 may have an

TABLE 2 Antidepressant compounds derived from marine plants.

Natural products Model
establishment

Behavioral
outcome

Mechanism Ref.

Spirulina FST FST Increased serum BUN and LDH levels Kim et al. (2008)

Neoechinulin A LPS FST N.A. Sasaki-Hamada et al. (2016)

Zeaxanthin diabetic rats OFT, FST Decreased IL-6, IL-1β and TNF-α levels Peng et al. (2020)

Fucoxanthin LPS FST, TST Decreased TNF-α, IL-1β, IL-6, iNOS, and COX-2 level via
the AMPK/NF-κB pathway

Gilbert et al. (2014)

Lutein corticosterone TST, OFT Decreased corticosterone levels Wibrand et al. (2013)

β-Carotene FST FST Decreased TNF-α and IL-6 levels Kim et al. (2016)

Increased DNF and p-ERK levels

Total Sterols and β-
sitosterol

FST and TST FST, TST Increased NE, 5-HT, and the metabolite 5-HIAA Zhao et al. (2016)

Fucoidan LPS and CRS FST, TST Inhibited caspase-1 levels Li et al. (2020)

Increased BDNF levels

Fucosterol FST and TST FST, TST Increased NE and 5-HT levels Zhen et al. (2015)

Alternanthera
philoxeroides

ovariectomized FST, TST Inhibited MAO-A and MAO-B with IC50 values of
252.9 and 90.69 μg/mL, respectively

Khamphukdee et al. (2018)

Botryococcus braunii FST FST Increased BDNF, TH, and PC levels Sasaki et al. (2017)

Padina australis corticosterone N.A. Decreased corticosterone levels Subermaniam et al. (2020)

Ulva species FST FST N.A. Violle et al. (2018)

Chlorella vulgaris patients N.A. N.A. Jiang et al. (2016), Jiang
et al. (2017)

Panahi et al. (2015)

LPS, lipopolysaccharides; CRS, chronic restraint stress; FST, forced swim test; OFT, open field test; TST, tail suspension test; N.A., not applicable.
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antidepressant effect by enhancing synaptic plasticity through

activation of PKC action (Alkon et al., 2017).

Eicosapentaenoic acid (EPA) and
docosahexaenoic acid (DHA)

Eicosapentaenoic acid (EPA) and docosahexaenoic acid

(DHA) are mainly derived from the Omega-3 long-chain

polyunsaturated fatty acids (n-3 PUFA) of deep-sea fish and

shrimp, which play a key role in brain development (Andraka

et al., 2020). Continuous oral administration (p.o.) of EPA or

DHA for 45 days reduced the weight loss and depressive-like

behavior caused by CUMS in SPT/OFT/FST. Mechanistically,

EPA and DHA effectively reduced CUMS-induced expression of

IL-1β, IL-6, TNF-α, microglial marker α M Integrin alpha M

(CD11b), and increased expression of astrocyte marker glial

fibrillary acidic protein (GFAP) by regulating the NF-κB/
p38 signaling pathway (Peng et al., 2020). Additionally, EPA

and DHA modulated the BDNF/TrkB signaling pathway to

upregulate the production of BDNF, glial cell-derived

neurotrophic factor (GDNF), nerve growth factor (NGF), and

Bcl-2 and reduce the expression of Bax, reversing the effects of

CUMS-induced neurotrophic factor deficiency and apoptosis

(Peng et al., 2020). Moreover, EPA and DHA can also reduce

the serum total cholesterol (STC) contents of serum total

cholesterol and corticosterone (a glucocorticoid), and induce

5-HT and NE deficiency in the hippocampus, suggesting that

EPA and DHA exert antidepressant activity by regulating HPA

(Peng et al., 2020). Notably, EPA was more effective than DHA in

reducing depressive-like behavior, which was also confirmed in

clinical studies. Lipopolysaccharide (LPS) activates

BV2 microglia, and docosapentaenoic acid (DPA, a PUFA)

balances microglial M1 and M2 polarization, inhibiting NF-κB
and p38 while activating neuronal BDNF/TrkB-PI3K/AKT

pathways to protect neurons from neuroinflammatory damage

(Liu et al., 2021). By increasing the expression of DA, decreasing

the expression of NE and gamma-aminobutyric acid (GABA),

and reducing the turnover rate of 5-HT in the mouse

hippocampus, PUFAs may also enhance CUMS-induced

depressive-like behaviors in the SPT, OFT, and FST (Yang

et al., 2019). More importantly, a previous clinical trial has

been carried out as a result of the positive safety and

antidepressant characteristics of EPA and DHA (Su et al.,

2014). Nobody left the study during the 2 weeks due to

adverse events and, as determined by the investigators, the

incidence of Interferon-alpha (IFN-α)-induced depression in

patients with hepatitis C virus infection was significantly

lower in those treated with EPA but not in those treated with

DHA (Su et al., 2014). In a population-based study to prevent the

risk of postpartum depression in Brazilian pregnant women, a

daily intake of 1.8 g of PUFAs (1.08 g of EPA and 0.72 g of DHA)

for 16 weeks starting at 22–24 weeks of gestation had no

significant effect on early depressive symptoms during

pregnancy or postpartum (Vaz et al., 2017). However, the

Edinburgh Postnatal Depression Scale (EPDS) scores of

women in the EPA/DHA group with a history of depression

showed a greater decrease from the second trimester to the

postpartum period. Additionally, there were no changes

between the EPA/DHA groups and control groups in terms of

gestational duration or birth weight (Vaz et al., 2017). According

to a recent meta-analysis, both EPA and DHA have

antidepressant effects, although EPA’s are more potent

(Sublette et al., 2011).

Resolvin D1
Resolvin D1, a PUFA metabolite mostly found in deep-sea

fish and shrimp, is effective in reducing inflammation by

activating Akt and binding to 2 G-protein-coupled receptors

(ALX and GPR32) (Serhan and Chiang, 2008; Nelson et al.,

2014). Resolvin D1 reduces the depressive-like behavior seen in

experimental models of myocardial infarction when

administered before ischemia or 5 minutes after reperfusion

(Gilbert et al., 2014). In the FST, there was a statistically

significant relationship between infarct size, and immobility

time (Gilbert et al., 2014). After myocardial infarction,

inflammation is indeed well-documented, especially in the first

hours of reperfusion (Sharma and Das, 1997; Nah and Rhee,

2009). Therefore, the anti-inflammatory effect may be the reason

for its antidepressant-like function.

Krill oil
Antarctic krill (Euphausia superba), a zooplankton that

resembles shrimp and is rich in EPA, DHA, and astaxanthin,

is used to produce krill oil (Wibrand et al., 2013). The

conditioned Light Extinction Test (CLET) - induced

depressive-like behavior in the FST was reduced in rats after

7 weeks of krill oil administration. Additionally, krill oil reduced

depressive-like behaviors by modifying the expression levels of

synaptic plasticity-related genes in the prefrontal cortex and

hippocampus (Wibrand et al., 2013). Moreover, krill oil

supplementation in mice ameliorated chronic unpredictable

mild stress (CUMS)-induced depressive-like behaviors by

prompting the metabolism of glycerophospholipids and

sphingolipids through regulation of differentially expressed

genes mainly enriched in the membrane structures and

neuroactive ligand-receptor interaction pathway (Zhang et al.,

2023). Additionally, Krill oil facilitated fear extinction and

reduced depressive-like behaviors by increasing hippocampal

calcineurin A levels in mice (Alvarez-Ricartes et al., 2018).

5,6-dibromo-N, N-dimethyltryptamine (5,6-
Br-DMT)

5,6-dibromo-N, N-dimethyltryptamine (5,6-Br-DMT) was

isolated as a pale light yellow crystal. The precise mechanism

underlying how 5,6-Br-DMT [20 mg/kg, intraperitoneally, (i.p.)]

ameliorated depressive-like behaviors in the FST and TST in

mice has not been determined. Indole alkaloids related to 5,6-Br-
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DMT have been found to have a strong affinity for 5-HT2

receptors, indicating that their antidepressant effects may be

caused by inhibition of 5-HT reuptake (Hu et al., 2002).

Astaxanthin
The red carotenoid pigment astaxanthin is abundant in

microalgae, salmon, trout, and marine invertebrates (Ávila-

Román et al., 2021). It has numerous pharmacological

properties, such as anti-inflammatory and antioxidant

activities (Wu et al., 2015; Balietti et al., 2016). Trans-

astaxanthin (20–80 mg/kg, p.o.) for 7 days prevented mice

from displaying depressive-like symptoms after being exposed

to LPS (Jiang et al., 2016). Neurochemical analysis showed that

trans-astaxanthin could also reverse LPS-induced overexpression

of IL-1β, IL-6, and TNF-α, and reduce the expression of inducible
nitric oxide synthase (iNOS), neuronal nitric oxide synthase

(nNOS), and COX-2 by modulating the NF-κB pathway

(Jiang et al., 2016). In conclusion, trans-astaxanthin may

produce antidepressant effects through its potent anti-

inflammatory properties (Jiang et al., 2016). Similarly,

administration of astaxanthin (20–80 mg/kg, i.g.) to mice

improved their depressive-like behavior and reduced

immobility time during the FST and TST (Jiang et al., 2017).

Pretreatment with para-chlorophenylalanine (PCPA) (a 5-HT

synthesis inhibitor) abolished the anti-immobility effect of

Astaxanthin in FST and TST, suggesting that the mechanism

of the antidepressant-like effects of Astaxanthin may involve the

5-HT system (Jiang et al., 2017). More importantly, a clinical

trial investigated the effects of Astaxanthin on 28 adults

diagnosed with depression and fatigue. The study also

recruited healthy, active, and non-depressed adults. Subjects

who received 12 mg of Astaxanthin daily for 8 weeks

significantly reduced depression and fatigue, compared to

the group who received a matching placebo (Talbott

et al., 2019).

Natural antidepressants derived from
marine plants

Spirulina
Spirulina is a kind of true filamentous spiral cyanobacteria

protoplasm that has the biological activities of enhancing

immunity, antioxidation, reducing cholesterol levels, and

relieving hyperlipidemia (Kim et al., 2008; Subermaniam et al.,

2021b). Hydrolyzed Spirulina by malted barley reduces

immobility time on FST in mice and increases serum blood

urea nitrogen (BUN) and LDH levels (Kim et al., 2008).

Moreover, Spirulina improved adolescent stress-induced

anxiety and depressive-like symptoms via oxidative stress and

alterations in prefrontal cortex BDNF and 5HT-3 receptors in

female rats (Moradi-Kor et al., 2020). The specific mechanism

needs to be further explored.

Neoechinulin A
Aspergillus amstelodami yielded Neoechinulin A, an

isoprenyl indole alkaloid with antioxidant, anti-tumor, and

anti-apoptotic properties from Aspergillus fumigatus

MR2012 from the Red Sea. Neoechinulin A [300 ng/kg,

Intracerebroventricularly, (i.c.v.)] significantly ameliorated

memory decline caused by LPS and restored immobility time

in the FST in mice. This effect may be due to modulation of the 5-

HT system by direct or indirect action on the 5-HT1A receptor

(Sasaki-Hamada et al., 2016).

Zeaxanthin
Zeaxanthin, a yellow-orange xanthophyll, has been extracted

from the cyanobacteria Synechocystis sp. and Microcystis

aeruginosa and the microalgae Nannochloropsis oculate (Lee

et al., 2006; Wojtasiewicz and Stoń-Egiert, 2016). Daily oral

zeaxanthin administration from weeks 6–19 could reduce

depressive-like behaviors in the OFT and FST of diabetic rats.

Zeaxanthin administration could also reduce IL-6, IL-1, and

TNF-α overproduction, indicating that it has anti-

inflammatory characteristics that help minimize depressive-

like behaviors in diabetic rats (Zhou et al., 2018a).

Fucoxanthin
Fucoxanthin, a natural carotenoid, is abundant in edible

brown seaweed and has been shown to have excellent

antioxidant, anti-inflammatory, and anti-diabetic effects

(Méresse et al., 2020; Bustamam et al., 2021). In the FST and

TST of mice, fucoxanthin (200 mg/kg, i.g.) significantly reversed

LPS-induced depressive-like behaviors (Jiang et al., 2019).

Biochemical analysis showed that Fucoxanthin could inhibit

LPS-induced overexpression of IL-1β, IL-6, TNF-α, iNOS, and
COX-2 in the hippocampus, frontal cortex, and hypothalamus by

regulating the AMPK-NF-κB signaling pathway (Jiang

et al., 2019).

Lutein
Lutein, orange-yellow, is mainly found in microalgae and

Chlorella vulgaris (Jalali Jivan and Abbasi, 2019; Wang et al.,

2020), and has neuroprotective effects (Stringham et al., 2019). In

the TST, OFT, and Splash test (ST), lutein (10 mg/kg, p.o.)

administered once daily for 7 or 21 days significantly reversed

corticosterone-induced depressive-like behaviors. This suggests

that Lutein may regulate the HPA to exert neuroprotective effects

by reducing the level of glucocorticoids (Zeni et al., 2019).

β-Carotene
β-Carotene has been extracted mainly from the microalga

Dunaliella salina (Han et al., 2019). β-Carotene has also been

shown to be a potent inhibitor of oxidative stress and

inflammation (Zhou et al., 2018b). Oral administration of β-
carotene once daily for 28 days significantly reduced immobility

time during the FST in mice (Kim et al., 2016). When compared
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to the control group, β-Carotene significantly reduced the levels

of TNF-α and IL-6, and increased the levels of BDNF and pERK

(Kim et al., 2016).

Total sterols and β-sitosterol
Total Sterols and β-sitosterol have been extracted from

Sargassum horneri, a brown seaweed found in the

Northwestern Pacific Ocean and adjacent seas of Korea,

Japan, and China (Zhao et al., 2016). Total steroids and β-
sitosterol have been used to treat scrofula, gall, goiter, and

edema (Shao et al., 2014; Shao et al., 2015). In both the FST

and TST, mice who received total sterols (100–200 mg/kg, p.o.)

and β-sitosterol (10–30 mg/kg, i.p.) had significantly shorter

immobility times. Additionally, NE, 5-HT, and the metabolite

of 5-Hydroxyindoleacetic acid (5-HIAA) were all considerably

elevated by total sterols and β-sitosterol in the mouse brain,

suggesting that these neurotransmitters may be involved in

mediating the antidepressant-like function (Zhao et al., 2016).

Fucoidan
Fucoidan is a bioactive sulfated polysaccharide abundant in

brown seaweed with anti-inflammatory activity (Li et al., 2017).

Fucoidan (50–100 mg/kg, p.o.) significantly attenuated LPS and

chronic restraint stress (CRS) induced depressive-like behaviors

in the TST and FST in mice (Li et al., 2020). Fucoidan also

reduced the downregulation of BDNF-dependent synaptic

plasticity in the mouse hippocampus and decreased caspase-1-

mediated inflammation (Li et al., 2020). Furthermore, blocking

BDNF abolished the antidepressant-like effects of fucoidan in

mice, indicating that fucoidan ameliorates depression by

inhibiting inflammation and modulating synaptic plasticity (Li

et al., 2020).

Fucosterol
Fucosterol is a bioactive compound belonging to the sterol

group that can be isolated from algae, seaweed and diatoms

(Meinita et al., 2021). Fucosterol exhibits various biological

activities including anticancer, anti-inflammatory, anti-

neurological, and antioxidant characteristics (Lee et al., 2003;

Jung et al., 2013; Gan et al., 2019). Fucosterol (10–40 mg/kg, i.p.)

significantly shortened the immobility time in the FST and TST

of mice. The expression of NE and 5-HT was strongly

upregulated by fucosterol in the mouse brain, suggesting that

fucosterol may act via these neurotransmitters (Zhen et al., 2015).

Alternanthera philoxeroides
Alternanthera philoxeroides is a true puree of filamentous,

spiral-shaped, blue-green freshwater microalgae (Kim et al.,

2008). The crude ethanolic extract of A. philoxeroides

(250–500 mg/kg, p.o. once daily for 8 weeks) significantly

ameliorated antidepressant-like behaviors in the FST and TST

of ovariectomized mice (Khamphukdee et al., 2018).

Additionally, it was discovered that the crude extract

controlled the levels of BDNF in the frontal cortex and

hippocampus. In addition, the crude ethanol extract of A.

philoxeroides was found to inhibit both MAO-A and MAO-B

with IC50 values of 252.9 and 90.69 μg/mL, respectively. These

findings suggest that the antidepressant effect of the A.

philoxeroides extract may be involved in regulating synaptic

plasticity and inhibiting MAO activity (Khamphukdee

et al., 2018).

Botryococcus braunii
Botryococcus braunii is a pyramid-shaped green colonial

microalga that contains triterpenes (Cheng et al., 2019). Daily

administration of B. braunii ethanol extract (100 mg/kg, for

14 days, p.o.) ameliorated depressive-like behaviors with

decreased immobility in the FST (Sasaki et al., 2017). The

administration of B. braunii ethanol extract induced

upregulation of gene expression associated with energy

metabolism (polyribonucleotide nucleotidyltransferase 1/

PNPT1), dopamine production (arginine/serine-rich coiled-

coil 1/SRC1), and neurogenesis (short stature homeobox 2/

SHOX2, paired-like homeodomain transcription factor 2/

PITX2, teashirt zinc finger family member 1/TSHZ1, LIM

homeobox 9/LHX9). In addition, the expression of BDNF,

tyrosine 3-monooxygenase (TH), and pyruvate carboxylase

(PC) was also upregulated (Sasaki et al., 2017). The

antidepressant effect of B. braunii in animal models of

depression is mediated by enhancing energy promotion,

neurogenesis, and dopamine synthesis in the brain.

Padina australis
Padina australis is a species of brown macroalgae belonging

to the class Phaeophyceae (Subermaniam et al., 2021a). P.

australis has been reported to possess numerous biological

activities including antioxidant, anti-neuroinflammatory, and

anti-acetylcholinesterase properties (Gany et al., 2014).

pretreatment with P. australis (0.25 mg/mL) attenuated high-

dose corticosterone-mediated oxidative damage in a PC12 cell

model mimicking depression (Subermaniam et al., 2020). P.

australis reversed the effects of corticosterone, which

decreased cell viability, glutathione levels, aconitase activity,

and mitochondrial membrane potential while increasing the

release of lactate dehydrogenase. This finding indicates that P.

australis could be developed as a mitochondria-targeted

antioxidant to mitigate antidepressant-like effects

(Subermaniam et al., 2020).

Ulva species
Ulva species are green macroalgae found in marine, fresh, and

brackish waters. U. species are widely distributed throughout the

world with 18 species identified in Japan (Shimada et al., 2008).

Acute and subchronic oral toxicity studies showed that

10–40 mg/kg body weight/day of hydrophilic extract of U.

species for 14 days significantly reduced the immobility time
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in the FST in rats (Violle et al., 2018).U. species have the potential

to be a useful supplement or replacement for currently prescribed

antidepressants. Further studies are necessary to confirm the

mechanism of action of MSP and its modulation of brain

function (Violle et al., 2018).

Chlorella vulgaris
Chlorella vulgaris is a unicellular green microalgae with many

pharmacological properties that include antioxidant, anti-

inflammatory, antihypertensive, detoxifying, and anti-

atherosclerotic effects (Panahi et al., 2012a; Panahi et al.,

2012b). A clinical trial investigated the effects of C. vulgaris

Beijerinck on 92 patients with major depression. 42 patients were

assigned to adjuvant therapy with C. vulgaris, while 50 patients

received standard antidepressant therapy. Participants in the C.

vulgaris intervention group received six 300 mg tablets per day

for 6 weeks, and the intervention group showed improvements in

somatic and cognitive symptoms of depression and anxiety

(Panahi et al., 2015).

Current regulatory situation and
commercialization of MNPs

MNPs are the source of modern marine pharmaceuticals.

The study of MNPs, which originated in the 1930 s, can be

regarded as the starting point of modern marine drug research.

So far, about 33,200 new MNPs have been reported. Based on

these new MNPs, the FDA has approved eight marine drugs,

i.e., Cefalotin, Alexan, Zikonotide, Omega-3 fatty acid ethyl ester,

Ericline mesylate, Brentuximab vedotin, and Trabectedin.

Research on MNPs in China began in the 1970 s. In China,

the first Marine Pharmaceutical Symposium was held in 1979. In

1982, the journal “Chinese Marine Drugs” was founded. In 1985,

the first marine polysaccharide new drug, alginate diester sodium

(for cardiovascular disease), was successfully developed and

approved for marketing in China in 1990. In view of the

unique structure and significant activity of MNPs, the

Ministry of Science and Technology launched the Marine

“863” Science and Technology Project (“863” Marine

Biotechnology Research Program) in 1996. The National

Natural Science Foundation of China also separated marine

drugs from medicinal chemistry and funded them separately

in 2008. These initiatives have greatly promoted the development

of marine natural products in China and trained a group of

excellent marine drug researchers. So far, about 6,700 newMNPs

have been found in China, accounting for approximately 20% of

the world’s new MNPs.

Discussion

With the continuous development of modern society, the

incidence of depression is increasing, but the existing

antidepressant drugs are not effective enough to meet the

clinical needs. Therefore, the need for novel, effective

antidepressant treatments is critical. In total, 95% of

biodiversity and 71% of the Earth’s surface are in the oceans

(Haefner, 2003; Sagar et al., 2010). The physical and chemical

conditions of the ocean provide marine organisms with unique

active compounds that offer new possibilities for the

development of new drugs. The data presented in this review

shows the great value of MNPs and their derivatives in the

prevention and treatment of depression, demonstrating the

potential of MNPs as a promising source of antidepressant

drugs. Through a variety of processes, such as the modulation

of neurotransmitter systems, synaptic plasticity, anti-inflammatory

qualities, and the modulation of HPA function, these MNPs

exhibit antidepressant properties. However, most of the current

efficacy of MNPs and derivatives in the treatment of depression is

based on data from in vitro and in vivo studies, and a large number

of clinical studies are still needed to prove their safety and efficacy,

which will help to develop promising new medicines. With the in-

depth exploration of marine organisms by mankind, an increasing

number of new compounds will be continuously extracted and

isolated from marine organisms, which will bring new impetus to

the treatment of depression, a disease that plagues the world.
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