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Mitochondrial investigations have extended beyond their traditional functions,

covering areas such as ATP synthesis and metabolism. Mitochondria are now

implicated in new functional areas such as cytoprotection, cellular senescence,

tumor function and inflammation. The basis of these new areas still relies on

fundamental biochemical/biophysical mitochondrial functions such as

synthesis of reactive oxygen species, mitochondrial membrane potential,

and the integrity of the inner mitochondrial membrane i.e., the passage of

variousmolecules through themitochondrial membranes. In this view transport

of potassium cations, known as the potassium cycle, plays an important role. It is

believed that K+ influx is mediated by various potassium channels present in the

inner mitochondrial membrane. In this article, we present an overview of the

key findings and characteristics of mitochondrial potassium channels derived

from research of many groups conducted over the past 33 years. We propose a

list of six fundamental observations and most important ideas dealing with

mitochondrial potassium channels. We also discuss the contemporary

challenges and future prospects associated with research on mitochondrial

potassium channels.
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Introduction

When investigating the fundamentals of mitochondrial function within cells, we can

identify several simple cations that form the basis of many processes (Szabo and Zoratti,

2014). It is well known that the proton gradient serves as the driving force for ATP

synthesis in mitochondria. The Ca2+ cations entering the mitochondria not only buffer the

cytosolic pool of these ions but can also contribute to some physiological situations such

as the mitochondrial mega-channel activation (Carraro and Bernardi, 2023; Zoratti et al.,

2024). The effects of Mg2+ on mitochondrial functions such as energy metabolism,

mitochondrial Ca2+ handling, and apoptosis are well established (Liu and Dudley, 2020).

Mitochondrial Na+ have been discovered as a new second messenger regulating inner

mitochondrial membrane (IMM) fluidity and reactive oxygen species (ROS) generation

by respiratory chain complex III (Hernansanz-Agustín and Enríquez, 2022). In this study,

we will focus on the properties and the role of K+ transport, via potassium channels
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(mitoK channels) present in IMM (Szewczyk, 1996; Kicinska

et al., 2000; Debska et al., 2001; O’Rourke, 2007; Singh et al., 2012;

Szabo and Szewczyk, 2023) (Figure 1).

In general, proper mitochondrial function is based on the

integrity of mitochondrial membranes. Peter Mitchell in his

Nobel Lecture delivered in 1978 underlined the importance of

the low permeability of the IMM to ions (Mitchell, 1985).

Consequently, the discovery of multiple potassium channels in

the IMM was for many years considered to be an experimental

artifact. Nowadays, mitoK channels present in the IMM are

recognized as crucial players for regulating some

mitochondrial function (Kravenska et al., 2021; Szabo and

Szewczyk, 2023). The mitoK channels have attracted attention

for many years, especially in the context of the regulation of life/

death processes in the various cell types (Garlid, 2000). For

example, the activation of mitoK channels may induce

cytoprotective phenomena in cardiac tissue and in neurons

(O’Rourke, 2007). On the contrary, inhibition of mitoK

channels may cause cell death (Checchetto et al., 2021).

In this paper, we will present what we consider to be the most

significant discoveries/ideas in the field of mitoK channels over

the past 33 years. These subjective, proposed by author, list of six

the most important observations are as follows: 1). Discovery of

mitoK channels in various tissues and identification of their

molecular identity; 2). Cytoprotection (cardioprotection,

neuroprotection) induced by mitoK channels activation; 3).

Cancer cell death by mitoK channels inhibition; 4). Role of

mitoK channels in aging/senescence/life span; 5). Interactions

of mitoK channels with respiratory chain; 6). Druggability of the

mitoK channels.

Mitochondrial potassium
channel discovery

In 1991, an ion channel selective for K+ was discovered in the

IMM of rat liver mitochondria (Inoue et al., 1991), confirming

previous findings on channels in mitochondria by Catia Sorgato

(Sorgato et al., 1987). However, what significantly altered the

interpretation of this experimental data was the revelation that

the channel exhibited not only K+ selectivity but also

susceptibility to inhibition by ATP and the antidiabetic

sulfonylurea, glibenclamide (Inoue et al., 1991). This discovery

situatedmitoK channels within a similar family to ATP-regulated

potassium channels found in the plasma membrane of pancreatic

beta-cells, cardiomyocytes, neurons, and others (Szewczyk, 1996;

O’Rourke, 2007). Undoubtedly, this observation served as a

pivotal starting point for numerous experiments identifying

ATP-regulated mitochondrial potassium (mitoKATP) channels

across various tissues, notably cardiomyocytes (Szewczyk et al.,

2009; Szabo and Szewczyk, 2023). Following several years of

intensive investigation across multiple laboratories into the

functional role of these channels, it was demonstrated that the

activation of mitoKATP channels (by potassium channel openers)

induces a cardioprotective phenomenon (Liu et al., 1999; Garlid,

2000; Szteyn and Singh, 2020; Lukowski et al., 2022).

Subsequently, similar findings in neural tissue suggested the

involvement of these channels in neuroprotection (Busija

et al., 2004; Bednarczyk, 2009). In summary, the association

of mitoKATP channels with cytoprotection marked a significant

milestone in the rapid development of the mitochondrial

potassium channel field. Moreover, other mitoK channels

FIGURE 1
Potassium channels identified in the inner mitochondrial membrane. All these types of channels were described in themanuscript. Additionally,
the biophysical role in mitochondria and physiological role within the cell is summarized. VDAC, voltage dependent anion channel (porin).
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(such as large conductance calcium-activated

potassium—mitoBKCa channels) were later implicated in

cytoprotection across various cell types (Xu et al., 2002).

Despite a plethora of observations, however, the biochemical

mechanisms underlying these events remain unclear. It is

probable that the indirect modulation of ROS generation by

mitoK channels (via depolarization of mitochondria) contributes

to this phenomenon.

In recent years, researchers have demonstrated that the

family of mitoK channels constitutes one of the most

numerous classes of mitochondrial channel proteins. They are

also present in plants and in simple organisms (Koszela-

Piotrowska et al., 2009; Matkovic et al., 2011; Laskowski et al.,

2015). It includes not only mitoKATP and mitoBKCa channels but

also intermediate conductance (mitoIKCa), and small

conductance (mitoSKCa), voltage-regulated potassium

(mitoKv1.3, mitoKv7.4) channels, mitochondrial

hyperpolarization-activated cyclic nucleotide-gated (mitoHCN)

channels, mitochondrial sodium-activated potassium (mitoSlo2)

channel and two-pore domain potassium (mitoTASK-3) channel

(Szabo and Szewczyk, 2023). The activity of potassium channels

are regulated by various stimuli, such as pH, Ca2+ and ROS

(Szabo and Szewczyk, 2023). The mitoK channels have been

identified in many tissues but at the same time their number of

molecules in mitochondrial membranes is relatively small

compared to other mitochondrial transport proteins. Probably

low density of mitoK channels and channel run down

phenomenon were reasons for questioning in the 90’s the

presence of these channels at all.

Another issue regarding mitoK channels is the following:

why is such a simple process, like K+ influx into a matrix,

facilitated by a wide variety of potassium channels? For

example, in cardiac mitochondria, six mitoK channels have

been identified: mitoKATP, mitoBKCa, mitoSKCa, mitoSlo2,

mitoHCN channels and mitoKv7.4 channels (Szabo and

Szewczyk, 2023). What is the physiological benefit of using

many different ligands and factors to regulate these channels?

Probably, potassium channels present in cardiomyocyte

mitochondria are activated under specific physiological

circumstances (Kulawiak et al., 2021). An early event

during cardiac ischemia is ATP depletion. This is followed

by mitochondrial membrane depolarization. Moreover,

because of ATP depletion, ion pumps cannot function,

leading to an increase in the cellular Ca2+ concentration.

The rise in Ca2+ during ischemia and reperfusion leads to

an overload of mitochondrial Ca2+, during reperfusion when

oxygen is reintroduced. The decrease in intracellular

pH during severe ischemia promotes the imbalance of

other cations and leading to cellular Na+ overload

(Kulawiak et al., 2021). These complex changes may lead to

channel activation/inhibition possibly explains why there are

few potassium channels in cardiac mitochondria. Most likely,

the timing of ATP, pH, Ca2+, and Na+ concentration changes is

critical to control K+
flux in mitochondria stabilizing structure

of mitochondria.

Molecular identity of mitoK channels for many years was a

mystery. Lack of molecular mitoK identity was an argument

questioning the presence of potassium channels in mitochondria.

Let’s summarize this long way of channel molecular identity

recognition. Today we believe that mitoBKCa channel is one of

the splice variants of KCNMA1 (Slo1) gene (Singh et al., 2013;

Galecka et al., 2021). Properties of mitoBKCa suggest that the

pore-forming subunit is encoded by the same gene coding for

plasma membrane BKCa. Several studies suggested that the

VEDEC BKCa isoform is located in the IMM. With the

mitoKATP channel there is a more complex situation. It can

not be excluded that K+ influx is catalyzed by 2-3 various proteins

in various tissues. Recently, it was shown that the pore-forming

subunit of the mitoKATP channel is a product of the

CCDC51 gene (Paggio et al., 2019). The mitoKATP is inhibited

by the antidiabetic sulfonylurea glibenclamide. Therefore, it was

speculated that the glibenclamide receptor (product of ABC8/

MITOSUR gene) is an integral part of the mitoK channel. Indeed

the mitoKATP channel formed by these two proteins has the

established pharmacological properties of the mitoKATP channel

(Paggio et al., 2019). Previous studies showed that also the

ROMK2 potassium channel isoform of the renal outer

medullary potassium channel could be the component of the

mitoKATP channel (Bednarczyk et al., 2018; Laskowski et al.,

2019). Detailed discussion on mitochondrial potassium channel

molecular identity was recently reviewed (Szabo and

Szewczyk, 2023).

The presence of various auxiliary β subunits in mitoBKCa

channels and sulfonylurea receptors in the mitoKATP channel

causes that, despite undoubted progress in the identification of

channel proteins, the problem of their detailed identification is

still a challenge for the future (Piwonska et al., 2008).

From cytoprotection to cell death

The mitoK channels have been described as an important

player in cellular pro-life and death signaling. The activation of

mitoK channels (by potassium channel openers), such as ATP-

regulated or calcium-activated large conductance potassium

channels, may have cytoprotective effects in cardiac or

neuronal tissue (Liu et al., 1999; Busija et al., 2004). This

concept was a strong driving force of studies in many

laboratories. Potassium channel opener induced cytoprotection

is also induced by endogenous signaling via protein kinases

(Frankenreiter et al., 2017).

It has also been shown that inhibition with channel blockers

of the mitochondrial Kv1.3 channel may lead to pancreatic

cancer cell death (Leanza et al., 2014). But still there is an

open question to what extent mitoK channels are promising

drug targets in various organs and tissues? Future prospects of
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the druggability concept of mitoK channels was evaluated

recently (Wrzosek et al., 2020).

Searching for new functions of
mitochondrial potassium channels

The putative functional roles of these channels involve

alterations in mitochondrial matrix volume, mitochondrial

respiration, and protonmotive force (membrane potential)

(Czyz et al., 1995). Furthermore, the activity of these channels

influences the generation of ROS by mitochondria (Kulawiak

et al., 2008; Kulawiak et al., 2023). The activity of mitochondrial

potassium channels is subject to modulation by various intrinsic

signals, including Ca2+ concentration, membrane potential,

phosphorylation, and membrane stretching (Szabo and

Szewczyk, 2023).

It was demonstrated that BKCa channels are present in

Drosophila melanogaster mitochondria, and channel mutants

induce structural and functional defects in mitochondria

leading to an increase in ROS (Gururaja Rao et al., 2019). It

was found that the absence of BKCa channels reduced the lifespan

of Drosophila, and overexpression of human BKCa channels in

flies extends their life. This suggested a potential role of mitoK

channels and ROS in regulating mitochondrial functional

integrity, and lifespan (Gururaja Rao et al., 2019). Probably

mitoBKCa play a role in cellular senescence induced by

oxidative stress (Gluchowska et al., 2023).

Mitochondrial context of potassium
channel regulation

The mitochondrial respiratory chain comprises a series of

complex organized redox reactions generating a protonmotive

force and, consequently, ATP synthesis. Certain redox centers,

such as complexes I and III of the mitochondrial respiratory

chain are sources of ROS. Mitochondrial generated ROS can

influence remotely the activity of mitoK channels. But there are

some indications proposing an alternative, a direct mechanism

for the regulation of mitoK channels by the respiratory chain.

It is well-known that mitoK channels interact with various

mitochondrial proteins, some of which are involved in the

respiratory chain. These observations were recently

summarized (Lewandowska et al., 2024). For instance, it has

been suggested that mitoKATP channels interact with succinate

dehydrogenase. In cardiac mitochondria, it was found that the

β1 subunit of the mitoBKCa channels interacts with Cytochrome

c Oxidase (COX) subunit I. Furthermore, studies have

demonstrated that other respiratory chain protein complexes

interact with mitoBKCa channels in both cardiac and brain

mitochondria. Additionally, mitochondrial tandem pore

domain K+ channels TASK-3 interact also with the respiratory

chain. A recent report revealed a similar interaction between the

mitoKv1.3 channel and respiratory chain complex I (for review

see Lewandowska et al., 2024).

We found that the activity of mitoBKCa channels in

glioblastoma cells is regulated by substrates and inhibitors of

the respiratory chain (Bednarczyk et al., 2013). This study

suggested that COX is a key element of this kind of channel

regulation (Bednarczyk et al., 2013). Moreover, given that COX is

the primary infrared-absorbing protein, it raises questions about

the potential light regulation of mitoK channels (Szewczyk and

Bednarczyk, 2018).

Further research will be important to clarify the functional

consequences of these interactions. Undoubtedly, this form of

regulation may prove to be unique for mitoK channels. The exact

nature and functional implications of these interactions remain

unclear. This kind of direct functional coupling between the

energy generating system (respiratory chain) with the energy

dissipation system (potassium channels) may lead to an

interesting putative regulatory mechanism in mitochondria.

Recently other functional/structural coupling within the

mitochondrial potassium channel was observed. It was found

that mitochondrial potassium channel ROMK2 may interact

with two lipid kinases: acylglycerol kinase (AGK) and

diacylglycerol kinase ε (DGKE), which are localized in

mitochondria (Krajewska et al., 2024). Additionally, it was

found that the products of AGK and DGKE, lysophosphatidic

acid (LPA) and phosphatidic acid (PA), stimulated the activity of

ROMK2 potassium channels reconstituted in planar lipid

bilayers (Krajewska et al., 2024).

The structure/function interplay of mitoK channels

alongside other mitochondrial proteins suggests a new

dimension in mitoK channels regulation. The exceptionally

high membrane potential of the IMM and its potential for

ROS generation may characterize significant signaling

pathways within cells.

The troublesome pharmacology of
mitochondrial potassium channels

In order to influence activity of various mitoK channels,

numerous research groups continually explore novel compounds

hoping to findmolecules with high specificity for mitoK channels

(Szewczyk and Marban, 1999; Augustynek et al., 2017; Leanza

et al., 2019). The existing literature already reports positive

protective effects on ischemia/reperfusion processes through

the activation of mitoKATP channels by the potassium channel

opener - diazoxide, and the mitoBKCa channels by potassium

channel opener NS1619 and its follower NS11021 (Szewczyk

et al., 2006). Nevertheless, it is noteworthy that these compounds

exhibit limited specificity towards mitoK channels. Application

of these substances in the micromolar concentration range

unmasks a variety of side effects (Wrzosek et al., 2022). It is
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important to remember that molecules with some

hydrophobicity of positive charge (in physiological pH) will

be accumulated by mitochondria. It is due to very high

membrane potential (up to—180 mV) on the IMM, with

negative polarization of the mitochondrial matrix. For

example, a 10 nM drug present in cytosol could accumulate

up to 10 µM concentration in a matrix (Kowaltowski and

Adbulkader, 2024). At this concentration range the probability

of nonspecific interaction with some of ~1,500 mitochondrial

proteins is very high. In contrast, toxins isolated from the

venom of various scorpion species such as iberiotoxin

specifically (at low concentration) inhibit the activity of

mitoBKCa channels (Augustynek et al., 2017). But

application of this peptide to block mitoBKCa channels on

intact cells is practically impossible.

Developing very selective channel blockers and potassium

channel openers targeting mitoK channels is a significant

challenge in this field. Recently it was shown that selective

targeting of mitoIKCa channel (Bachmann et al., 2022),

mitoTASK channel (Bachmann et al., 2021) and mitoKv

channel (Severin et al., 2022) is possible.

Discussion

Over the past 33 years since the identification of the first

potassium channel in the IMM, research in this field has

made significant progress (Kulawiak and Szewczyk, 2022).

This pathway started from identification of the mitoK

channels that met with skepticism by the bioenergetics

community to current research placing these channels in

the phenomena of cytoprotection, cellular senescence, and

neoplastic cell death. What limits further development of

this field?

First, access to good pharmacology is the “dark side” of this

field (Szewczyk et al., 2010; Olszewska and Szewczyk, 2013;

Leanza et al., 2019). Because mitoK channels are similar to

those located in plasma membranes, it is very difficult to

identify pharmacological modulators specific only for mitoK

channels (Szewczyk and Wojtczak, 2002; Citi et al., 2018). The

unique high membrane potential of mitochondria may help to

discriminate targeting of some drugs to mitoK channels (Testai

et al., 2015; Wrzosek et al., 2020).

The second limiting factor for further progress is the

development of new techniques to measure channel activity

in situ, that is, within an intact cell. Majority of techniques

currently applied in the studies are based on cell fractionation

and mitochondria isolation (Walewska et al., 2022). By

definition in this process we lose a network of signaling

pathways where mitoK channels are potentially involved

(Walewska et al., 2018). Probably progress in synthesis of

potassium specific fluorescent probes may solve this problem.

Unfortunately, there are other potassium transport proteins in

mitochondria.

The third challenge for the future involves further identifying

the molecular identity of various mitoK channels. This aim will

not only expand our understanding of the system but also will

start new avenues of research, such as in vitro translation with

lipid nanodiscs and the application of various biophysical

techniques. Additionally, it will aid in the identification of

protein neighborhoods, clarification of the import

machinery, and more.

In summary, mitoK channels, considered the “younger

siblings” of the potassium channels found in plasma

membranes, play a crucial role in some cellular signaling

pathways. The mitoK location within mitochondria, which

serve as hubs for fundamental metabolic and signaling

functions, highlight their significance. The author believes that

the future of this field holds exciting prospects.
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