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Plant transcriptomes are complex entities shaped spatially and temporally by a

multitude of stressors. The aim of this review was to summarize the most

relevant transcriptomic responses to selected abiotic (UV radiation, chemical

compounds, drought, suboptimal temperature) and biotic (bacteria, fungi,

viruses, viroids) stress conditions in a variety of plant species, including

model species, crops, and medicinal plants. Selected basic and applicative

studies employing RNA-seq from various sequencing platforms and single-

cell RNA-seq were involved. The transcriptomic responsiveness of various plant

species and the diversity of affected gene families were discussed. Under stress

acclimation, plant transcriptomes respond particularly dynamically. Stress

response involved both distinct, but also similar gene families, depending on

the species, tissue, and the quality and dosage of the stressor. We also noted the

over-representation of transcriptomic data for some plant organs. Studies on

plant transcriptomes allow for a better understanding of response strategies to

environmental conditions. Functional analyses reveal the multitude of stress-

affected genes as well as acclimatory mechanisms and suggest metabolome

diversity, particularly among medicinal species. Extensive characterization of

transcriptomic responses to stress would result in the development of new

cultivars that would cope with stress more efficiently. These actions would

include modern methodological tools, including advanced genetic

engineering, as well as gene editing, especially for the expression of selected

stress proteins in planta and for metabolic modifications that allow more

efficient synthesis of secondary metabolites.
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Introduction

Higher plants, known as vascular or telome plants (Thelomophyta), appeared during plant

evolution back in the Palaeophytic era. They are characterized by the development of tissues

that distribute water,mineral compounds, and photosynthesis products, and the dominance of

the sporophyte (Kenrick and Crane, 1997; Forster et al., 2007). Due to the sessile life cycle,
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higher plants respond adequately to unfavorable conditions at

multiple levels, including transcriptomic one (Morris et al., 2018).

The plant transcriptome is a complete pool of various RNA

molecules (mRNA, rRNA, tRNA, as well as numerous ncRNAs)

belonging to the translated fraction of the genome that responds to

its environment (Imadi et al., 2015). Transcriptomics belongs to

key “omics” studies that link genomic and proteomic “worlds” by

analyses of RNA, a biopolymer with a central role in the transfer of

genetic information and regulation of gene expression.

Transcriptomics shows a more universal status than other

“omics” disciplines. It offers complex and deep insights into

studying gene expression in whole plants or plant organs/

tissues; factors that regulate the transcriptome spatially and

temporally can also be characterized (Alkan et al., 2011; Lowe

et al., 2017; Zhang, 2019; Athanasopoulou et al., 2021). Moreover,

plant genome assembly is more complex and expensive compared

to RNA sequencing (RNA-seq), and when a reference genome is

absent, the transcriptome can be used to assess plant overall

transcriptional activity. Transcriptomics also allows for the

quantification of low-abundance transcripts or their structural

variants and estimation of the correlation of gene expression

with biological traits. Additionally, the transcriptome

outperforms the genome, allowing the characterization of genes

related to therapeutic compound biogenesis (Wang et al., 2009).

However, transcriptomics seems to be inappropriate for

identifying genes with large impacts on adaptive responses to

the environment due to a small number of genes with large impacts

on fitness. When only transcriptomics is used to identify genes

underlying environmental adaptations, constitutively expressed

regulatory genes that play a major role in setting tolerance

limits are often over-represented (Evans, 2015). Other

disadvantages are serious challenges in analysing large datasets,

as they demand a lot of bioinformatic tools, and most importantly,

costs of sequencing (discussed below). The transcriptomic data

may also contain noise enhanced by technical variations and batch

effects resulting from inter-sample differences that were not rooted

in the experimental design (Sprang et al., 2022).

Tissue-specific transcriptomics offer particularly valuable

information on the underlying molecular processes that govern

tissue-specific functions; furthermore, specific genes and

regulatory mechanisms that display unique roles in diverse

tissues can be better characterized (Booth et al., 2022). Droplet

single cell RNA-seq (with most prominent platforms, including

10x Genomics) and spatial RNA-seq (with microdissection, spatial

imaging and spatial coding approaches) allow the possibility of

getting insight into the heterogeneity of tissue transcriptomes, to

identify cell types and markers, and to analyse gene and regulatory

networks under developmental and environmental factors. Their

strengths include, for instance, the availability of spatial

information and high resolution performance (Cervantes-Pérez

et al., 2022; Chen et al., 2023; Wang et al., 2024).

The recent and prompt development of high-throughput

RNA-seq platforms with a subsequent decrease in sequencing

costs, as well as data meta-analyses, advanced on plant

transcriptome studies (Tyagi et al., 2022). Currently, third-

generation sequencing, including SMRT (single-molecule real-

time) and Nanopore sequencing allows to obtain longer sequence

reads, which challenged transcriptomic analyses. Long read

sequencing is accurate and allows detection of alternative

splicing events. SMRT sequencing employs sequencing by

synthesis, linking of chemical groups to reduce background

noise and is based on properties of zero-mode waveguides. In

SMRT protocol, there is no need for amplification. SMRT

sequencing was used by Pacific Biosciences of California

(PacBio) platform. Nanopore platform is based on electrical

signal sequencing and offers particularly long reads (Li et al.,

2018; Ma L. N. et al., 2019; Huang et al., 2021). However, Illumina

RNA-seq is still the most preferred sequencing platform in

quantitative analyses (Supplementary Table S1).

The study of tissue-specific changes in gene expression under

stress is instrumental in the development of strategies to improve

plant response under environmental conditions (Berkowitz et al.,

2021; Tyagi et al., 2022). In previous years, some reviews focused

on methodological advances in plant transcriptomics (Schliesky

et al., 2012; Tyagi et al., 2022; Chen et al., 2023;Wang et al., 2024).

Species-specific omics analyses characterized the relevance of

transcription factors (TFs), hormones, translational

reprogramming and epigenetic level, as well as phenotypic

and physiological levels in stress response (Singh et al., 2016;

Ahmad, 2022; Bhat et al., 2022; Hu et al., 2022; Kourani et al.,

2022; Son and Park, 2023; Tu et al., 2023). Some studies also

focused on the roles of non-coding RNA in stress response (Yu

et al., 2019; Jin et al., 2024). However, an updated review

discussing transcriptomic responses to various stress

conditions assayed by high-throughput approaches from

various plant species is currently needed.

In this paper, the diversity of transcriptomic responses to

various stressors, both abiotic (including chemical treatments,

UV radiation, drought, cold and heat) and biotic (fungal,

bacterial, and viral/viroid infections) ones, will be presented,

and the results will be discussed in tissue/developmental and

temporal contexts, reflecting the transcriptomic dynamicity. We

will focus on current studies employing high-throughput

analyses, for instance, RNA-seq from various experimental

platforms, as well as microarrays. We will also summarise the

transcriptomic responses of not only the model but also useful

crop and medicinal species, which can be used for the

development of future stress-resistant cultivars by genetic and

metabolic engineering (Figure 1).

Alterations in plant transcriptomes
during abiotic stress

Stress conditions can be defined as internal and external cues

that affect the efficiency of physiological, metabolic, and
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molecular plant processes, leading to a reduction in the efficiency

of energy-to-biomass conversion. They can be divided into

abiotic and biotic ones (Umar et al., 2021).

Abiotic stress results from the action of multiple physical or

chemical stimuli (Gull et al., 2019; Wang et al., 2020). A

comparison of the plethora of enriched functional terms

representing numerous genes and transcription factors (TFs)

responsive to various abiotic stressors from RNA-seq studies is

shown in Figure 2 and additional quantitative details on genes

affected by abiotic stress from high-throughput transcriptomic

studies are also given in Supplementary Table S1, where details

on stress treatments and the respective references to the literature

are also shown. The experimental studies discussed in this review

showed the huge variability of the gene response under those

conditions, even between similar treatments. However, the stress

response involves not only functional terms/ TFs common for all

abiotic stressors discussed here (representing differentially

expressed genes [DEGs] for photosynthetic genes or genes

controlling secondary metabolite biosynthesis as well as MYB

TFs), but also specific ones for each treatment; they were also

presented in Venn diagrams, although depending on the stressor

(Figure 2). Leaves, which are involved in the metabolism of

carbon skeletons and the capture of photosynthetic energy,

belong to plant organs particularly affected by unfavorable

environmental conditions. However, studies on the impact of

stress on leaf tissues, contrary to roots, are still underrepresented

(Berkowitz et al., 2021).

UV radiation and chemical treatments

Variability of Arabidopsis leaf tissue transcriptomic

responses under UV radiation, as well as under chemical

treatments [e.g., antimycin A, 3-amino-1,2,4-triazole, methyl

FIGURE 1
Plant transcriptome as a central stress-responsive entity in the cell. The plant transcriptome is a highly dynamic structure in plant cells (bluish
ovals at the top). It links genomic, proteomic, andmetabolomic levels, responding on amultidimensional scale, across various tissues, and along time
(the center). The response of plant nuclear and organellar transcriptomes is also shaped by a number of factors, including abiotic and biotic stressors
(green and black arrows encompassing the light brown central rectangle), which affect the differential expression pattern of various gene sets
(bottom). For proper organellar biogenesis under stress acclimation, inter-organellar signaling between actively transcribed nuclear, plastid, and
mitochondrial genomes is indispensable (small arrows within marked organelles on the panel in the center and to the left). The diversity of
transcriptomes from model, crop, and medicinal species (bottom) under selected stress conditions was discussed in this paper. More details in
the text.
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FIGURE 2
Comparison of themost relevant gene ontology (GO:) terms of plant genes and transcription factors active under abiotic stress conditions from
various RNA-seq studies. The data were presented in Venn diagrams (drawn by Venny v. 2.1 from https://bioinfogp.cnb.csic.es/tools/venny/). The top
enriched GO: terms (mostly relevant molecular functions and biological procesess) as well as transcription factors for regulated genes from the
discussed studies were indicated. The data specific for the given stressor were denoted in italics and by different font colors (for the chemical

(Continued )

Acta Biochimica Polonica
Published by Frontiers

Polskie Towarzystwo Biochemiczne (Polish Biochemical Society)04

Rurek and Smolibowski 10.3389/abp.2024.13585

https://bioinfogp.cnb.csic.es/tools/venny/
https://doi.org/10.3389/abp.2024.13585


viologen, and salicylic acid (SA)] was characterized by Berkowitz

et al. (2021). Responses of leaf tissues to these stressors were

complex; for example, UV-affected genes were expressed mainly

in the vasculature and epidermis. Treatment with 3-amino-1,2,4-

triazole and SA downregulated genes for photosynthetic proteins

in all tissues of Arabidopsis, while methylviologen upregulated

the genes for the PS subunits, and UV radiation downregulated

the photosynthetic genes in epidermis and upregulated them in

mesophyll. Arabidopsis genes for oxidoreductase activity,

porphyrin metabolism, plastid organization, and carbohydrate

metabolism regulation were also affected by UV-B. Interestingly,

Arabidopsis genes for proteins for chlorophyll biogenesis,

protein folding, oxidoreductase and ligase genes, and

glyceraldehyde-3-phosphate dehydrogenase were differentially

regulated between UV-A and UV-B treatments. Tissues

studied also showed distinct mitochondrial responses to

antimycin A, which affected the expression pattern of

respiratory genes, general oxidoreductase activity genes,

glutathione transferase, as well as genes related to Ser/Thr

kinase activity and membrane transport (Berkowitz et al., 2021).

Among DEGs upregulated in Vaccinium corymbosum, genes

involved in plant hormone signal transduction were significantly

enriched after 1 h, followed by genes involved in

phenylpropanoid biosynthesis after 3 h, and genes involved in

the flavonoid anthocyanin pathway after 6 h of exposure to UV-

B. These results suggest that phytohormone-related genes

contribute to the primary response to UV-B radiation.

However, the highest number of DEGs appeared among V.

corymbosum plants exposed to UV-B treatment for 24 h.

Genes involved in proanthocyanidin and flavanol biosynthesis

(PAL1, 4CL2, CHS, CHI3, VcFLS andVcUFGT) were upregulated

by UV, and their expression level lasted a long time after 24 h of

treatment (Song et al., 2022). These DEGs resembled Arabidopsis

genes affected by radiation (Berkowitz et al., 2021). Common

genes for UV-B response in Arabidopsis and Pachycladon

cheesemanii included genes for amino acid, vitamin, pigment,

and secondary compound metabolism (Dong, 2024).

The impact of UV-B radiation on the transcriptome of

Glycyrrhiza uralensis, a potent medicinal species, was

investigated by Zhang et al. (2018). Participation of amino

acid metabolism and enzymes in secondary metabolite

pathways in the response to radiation at five different time

points was suggested. Genes for various amino acid metabolic

pathways were differentially enriched depending on UV-B

duration, however, DEGs for enzymes of cysteine and

methionine metabolism were mainly enriched in all treatments.

Polygonum cuspidatum, a medicinal plant species used in

traditional Chinese medicine, exhibits numerous medicinal

applications (Ke et al., 2023). The impact of UV-C radiation

on the transcriptome of Polygonum cuspidatum leaves was

studied by Liu et al. (2019); more DEGs (including more

downregulated genes) were involved in shorter radiation

response. Furthermore, this was accompanied by an increased

concentration of resveratrol (the most important stilbene

phytoalexin polyphenolic compounds) in the leaves of P.

cuspidatum. Resveratrol used in the nutraceutical industry

exhibits anticancer and anti-ageing properties. Under UV-C

radiation, upregulated DEGs coded enzymes involved in

proanthocyanidin and flavanol biosynthesis, however,

chalcone synthase (CHS) gene was downregulated.

Furthermore, MYB, bHLH, and ERF TFs appeared to be

potential regulators of resveratrol biosynthesis genes. These

results will help to find more practical applications of

resveratrol synthesis (Liu et al., 2019). Upregulation of PAL,

C4H, 4CL, and STS enzymes by means of genome editing may be

positively associated with the resveratrol levels (Hasan and

Bae, 2017).

Under high light treatment (with the enhanced UV

radiation) of ginseng (Panax ginseng), another medicinal

species, affected DEGs in the leaf transcriptome were mostly

involved in various metabolic pathways and in the stress

response. Stress-responsive functions were enriched among

33% of the upregulated DEGs, and the high light intensity

and/or ROS response was associated with another 6% of the

affected DEGs (Jung et al., 2020).

Lettuce (Lactuca sativa) grown under greenhouse conditions

usually contains a lover level of ascorbic acid (ASC), an essential

antioxidant nutrient for human health, compared to field-grown

plants. To investigate the effect of radiation on ASC level in

plants, lettuce plants were treated with various UV-B doses.

Numerous DEGs were identified within lowly and highly

radiated plants (Zhou et al., 2023). It was suggested that the

expression of MIOX (for myo-inositol oxygenase, a key enzyme

in themyo-inositol pathway), APX, andMDHARmay contribute

to the indirect increase in the level of ASC induced by UV-B

radiation (Lorence et al., 2004).

In general, plant transcriptomic responses to UV and

chemical compound treatments were specifically enriched in

genes for aminoacid biosynthesis, ascorbate and glutathione

metabolism, kinase activity, membrane transport,

mitochondrial electron transport proteins, organellar ribosome

biogenesis and seed development (Zhang et al., 2018; Liu et al.,

FIGURE 2 (Continued)
treatment and UV radiation in blue, for drought in brown, for cold and freeze in green and for heat stress in red). GO: terms and transcription
factors common for responses to all abiotic stressors were displayed within yellow text boxes. More details in the text.
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2019; Berkowitz et al., 2021; Song et al., 2022; Zhou et al., 2023;

Dong, 2024). Interestingly, as shown on the Venn diagram, ERF

proteins belong to TFs active under chemical treatment and UV

radiation (Figure 2).

Water deficiency (drought)

As drought belongs to factors that affect the largest part of

crop productivity, the analysis of multiple molecular responses

by omics studies would allow characterising the mechanisms of

drought in crops that result in the search for stress-resistant

cultivars (Verma et al., 2013; Shanker et al., 2014).

Analysis of sweet potato (Ipomoea batatas) transcriptome in

drought allowed identification of various upregulated genes for

ABA, ethylene, and JA biosynthesis, indicating the relevance of

hormonal signaling in a water deficit. Genes for ABI phosphatase

and Ca2+-ATPase were severely altered, while genes for SA

synthesis appeared not affected (Zhu et al., 2019). Also in

chickpea (Cicer arietinum) numerous genes for AP2-EREBP,

bHLH, bZIP, C3H, MYB, WRKY or MADS TFs that regulate

signaling regulation, secondary metabolism, or transition to the

generative phase were involved in drought acclimation (Kumar

et al., 2019). The transcriptomic response of Phoebe bournei, a

Chinese wood species, to drought also used DEGs for plant

hormone signal transduction in addition to genes for redox

homeostasis (POD, SOD, and CAT), phenylpropanoid,

flavonoid and porphyrin biosynthesis, starch and sucrose

metabolism, chlorophyll a/b binding proteins, and genes for

numerous TFs from 25 families (Li et al., 2022).

Recent investigation of transcriptomes of two rice (Oryza

sativa) cultivars that varied with stress resistance revealed that

genes for hormone signaling (in line with Kumar et al., 2019; Zhu

et al., 2019; Li et al., 2022 studies), LEA proteins, proteins related

to redox homeostasis and NAC and ZIP TFs played crucial roles

in developing drought tolerance (Tyagi et al., 2023). Additionally,

in the transcriptome of Medicago falcata seedlings, DEGs for

hormone signaling (ABA biosynthesis, JA biosynthesis), nucleic

acid helicases, and diverse genes for RNA polymerases and DNA

repair proteins were enriched. In contrast, gibberellin biogenesis

genes were antagonistically expressed compared to ABA-related

genes (except for the GID1 gene). Numerous TFs were also

affected (Miao et al., 2015).

In Ceratostigma plantagineum, a resurrection species, studied

by Xu et al. (2021), affected DEGs encoded proteins also active in

hormone signaling, and in photosynthesis, stress response,

amino acid catabolism, sucrose and fatty acid biogenesis, RNA

processing and regulation, energy metabolism (distinctive in

mild drought), protein modification and transport, and

membrane organisation. Those data indicate the flexibility of

primary and secondary metabolism in water shortage and re-

watering, using, among others, an alternative respiratory

pathway, the C3-CAM switch, and the GABA shunt. During

global reanalysis of the Glycine max transcriptome, DEGs for

proteins for hormone signaling, cell division, cell cycle, cell wall

organization, stress responses, signal transduction, and

regulation of gene expression, were regulated by progressing

drought (De Oliveira-Busatto et al., 2022).

Mild drought-affected Arabidopsis genes code proteins that

participate in ABA signaling, ROS biogenesis, response to

osmotic stress, and also in cell wall remodelling and cell

growth, among which multiple genes were previously not

associated with drought-responsive mechanisms. Hormone

signaling genes for PYRABACTIN RESISTANCE/ ABA

receptors, two ACC oxidases and four ethylene response

factors were downregulated and protein phosphatases 2C,

HAB proteins, some ABA-responsive element-binding factors

as well as some their target genes were all upregulated. Cell wall-

loosening expansins, pectin lyases were also upregulated (Clauw

et al., 2015). These data, which allowed insight into the

transcriptomic landscape of six Arabidopsis accessions in

drought, were further re-analysed by Benny et al. (2019), who

underlined the importance of hydrogen peroxide, water

deprivation, salinity, osmotic stress, and ABA-responsive

proteins among upregulated genes. Transcriptomic analysis of

rapeseed (Brassica napus), another representative of

Brassicaceae, revealed that upregulated DEGs were related to

the response to water deprivation, ABA signaling, osmotic stress,

and other abiotic stimuli and lipid metabolism, as well as cutin,

suberin, and wax biogenesis, fatty acid degradation, and

secondary compound metabolism (Fang et al., 2022).

The multitude of various TFs was associated with the

response to drought of Dendrobium sinense, an endemic

species (Zhang et al., 2021). DEGs coded proteins for

carbohydrate derivative and nucleotide binding, ATPase and

oxidoreductase activity, pectin metabolism, and multiple TFs.

Interestingly, more DEGs participated in a mild drought

response, where detrimental downregulation prevailed (Zhang

et al. (2021). Furthermore; Xia et al. (2024) broadened the

analysis of Dendrobium drought responses by three additional

species; the highest count of DEGs appeared in D. fimbriatum.

Multiple DEGs among various Dendrobium species were

involved in carbon metabolism and anthocyanin biosynthesis.

Noticeable differences in the expression level of the PEPC gene

(for phosphoenolpyruvate carboxylase) were associated with

CAM and improved drought tolerance.

Artemisia annua, a medicinal species, is a potent worldwide

source of artemisinin, an antimalarial compound. Attempts

have been made to significantly increase artemisinin yield,

and stress tolerance engineering would be one of such

strategies. Drought response of A. annua leaf

transcriptome employed many DEGs, including those

coding for Δ-1-pyrroline-5-carboxylate synthetase,

aquaporins, glyceraldehyde-3-phosphate dehydrogenase,

LEA proteins, HSPs, glyoxalase I, glutathione-S-transferase,

PR proteins, Ca2+-dependent protein kinases, as well as
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proteins involved in ethylene and oxylipin biosynthesis as

well as NAC and MYB-related TFs (Vashisth et al., 2018).

Transcriptomes of two wheat (Triticum aestivum) varieties

with contrasting drought resistance were compared; in stress

resistant cultivars, the drought response involved genes for the

synthesis of secondary metabolites and important transcription

coregulators and TFs (Kumar et al., 2018).

Growth regulator 5-aminolevulinic acid (ALA) has been used

to alleviate drought in grapevine (Vitis vinifera), by increasing

antioxidative responses (Yang et al., 2023). Chlorophyll

metabolism and photosynthetic apparatus were primarily

affected by ALA, which uses synergistic mechanisms to

alleviate drought. In the presence of ALA, alterations in the

expression pattern of DEGs for chlorophyll biogenesis and

Rubisco-related genes played an important role that allowed

ALA to maintain cell homeostasis under water scarcity.

Little was known about the combined action of drought and

cold on the plant transcriptome. Sharma et al. (2018) provided a

comparative study of the impact of both stressors on the

Arabidopsis transcriptome by meta-analysis of publicly

available transcriptomic data. Responsive DEGs encoded

proteins related to photosynthesis, respiratory burst, hormone

response, signal transduction, and water deprivation, as well as

some stress-specific genes. Furthermore, at least 43 diverse TFs

were expressed in both treatments. Coolen et al. (2016) analysed

Arabidopsis plants under drought combined with biotic

treatments. The water deficit alone increased expression level

of DEGs coding for proteins responding to oxygen-containing

compounds and cell wall biogenesis. As the drought progressed,

the more pronounced were the alterations in gene profiles. Each

of the stressors induced specific expression profiles over time. In

sequential stress application, Arabidopsis displayed

transcriptome profiles similar to those of the second

treatment, regardless of the nature of the first stressor.

Overall, this study highlights the importance of stress

signatures in identifying key molecular responses that act

between various response pathways.

In general, hormone signaling pathways belong to the

common terms for UV treatment (as discussed above;

Figure 2; Song et al., 2022) and drought (Figure 2; Miao et al.,

2015; Sharma et al., 2018; Kumar et al., 2019; Zhu et al., 2019;

Fang et al., 2022; Li et al., 2022). The transcriptomic response in

drought specifically affects a multitude of genes involved in

alternative respiratory pathways, aminoacid catabolism and

carbohydrate metabolism, developmental processes, DNA

metabolism, kinase binding, membrane organisation,

postranslational modifications, protein turnover, regulation of

protein synthesis, RNA processing, and stress response. It is also

specifically regulated by a particularly broad variety of TFs and

transcriptional coactivators of various families (Figure 2; Kumar

et al., 2018; Kumar et al., 2019; Benny et al., 2019; Zhu et al., 2019;

Xu et al., 2021; De Oliveira-Busatto et al., 2022; Yang et al., 2023;

Xia et al., 2024).

Elevated temperature (heat stress)

Elevated temperature affects cereal productivity, particularly

male generative organ development and pollen maturation and

viability (Young et al., 2004; Asseng et al., 2011; Wu et al., 2015).

Heat stress leads to an increase in the level of reactive oxygen

species (ROS) and a simultaneous decrease in ROS scavenger

activity, leading to biomolecul damage and apoptosis (Bita and

Gerats, 2013; Guan et al., 2013). Chrysanthemum leaf

transcriptomes were analyzed in heat with or without

melatonin (to alleviate the consequences of heat treatment;

Xing et al., 2021). Heat alone resulted in massive

downregulation of DEGs. In contrast, heat combined with

melatonin increased expression level of several DEGs.

Melatonin affected HSF and HSP, starch and sucrose

metabolism, cell signaling, chlorophyll, flavonoid, carotenoid

biosynthesis genes, and genes for various TFs.

Comparison of microspore transcriptomes under heat in two

tomato (Solanum lycopersicum) cultivars with contrasting stress

tolerance revealed among upregulated DEGs at least 11 HSP

genes. Increased expression of the HSP and APX genes pinpoints

the key role of antioxidant enzymes in the heat response (Frank

et al., 2009). Valdés-López et al. (2016) studied dynamics of root

hair transcriptome in soybean (G. max) subjected to heat at

various time points. Responsive genes were classified into

10 functional modules regulated by a few TFs. In general, heat

affected the expression pattern of DEGs for protein folding genes,

but also for genes coding proteins for chromatin remodeling, and

lipid and ATP synthesis, indicating for the importance of

controlling water/nutrient intake by roots and the relevance of

maintaining high ATP level under heat response.

Rice leaf transcriptome under thermal shift was studied by

Rashid et al. (2020). Multiple genes were affected for the abiotic

stress response and metabolite biosynthesis. Among the DEGs

affected, only a few photosynthetic/ OXPHOS genes as well as

some genes for glycolytic enzymes were present. Chen and Li

(2017) investigated Brachypodium distachyon leaf transcriptome

in heat. Affected DEGs coded proteins that participate in

alternative RNA splicing, spliceosome, and PS biogenesis,

indicating an increased extent of such events in response to

high temperature in order to synthesize protein isoforms

alleviating heat detrimental effects.

To describe thermotolerance and protective mechanisms

against thermal stress in desert species, the Rhizya stricta

transcriptome, the evergreen shrub, was analysed at elevated

temperature. Upregulated genes coded HSPs, chaperones, UDP-

glycosyltransferase, aquaporins and transparent protein testa 12,

suggesting the distinctness of thermotolerance in leaves of Rhizya

stricta, which is controlled primarily by improving protein

folding and preventing protein degradation (Obaid et al.,

2016). HSP genes and genes for flavonoid biosynthesis were

upregulated in leaves of three tea cultivars (Camellia sinensis),

important medicinal species, under heat (Huang et al., 2024).
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Studied cultivars differed in stress tolerance and exhibited mainly

upregulated DEGs under heat acclimation, however, among the

affected DEGs in all cultivars, the genes for photosynthetic

activity were the most notable. In heat-tolerant cultivars at

elevated temperatures, genes for proteins containing the

chaperone domain, including universal stress proteins (USPs),

small heat shock protein sHSP18.1, chaperonin-like protein 2

(CLP2), and the LEA5 protein were preferentially expressed.

Additionally, the level of flavonols increased in heat-tolerant

varieties, accompanied by increased expression of FLS genes.

Therefore, in accordance with Obaid et al. (2016), Xing et al.

(2021) and Frank et al. (2009) reports, the study by Huang et al.

(2024) highlights the importance of chaperones and secondary

metabolism in the heat response.

Heat stress often acts simultaneously with water deficit.

Mikołajczak et al. (2023) focused on investigating the impact

of heat stress, drought, and their joining effects on transcriptome

of barley (Hordeum vulgare) flag leaves. In medium-sized leaves,

short heat stress (similarly to drought) affected multiple genes,

regardless of the duration of the stress. However, under longer

heat and drought, more DEGs were affected in large leaves.

Investigated stressors affected mainly the LEA and HSP genes.

Overall, Mikołajczak et al. (2023) provided novel data on the

molecular mechanisms of barley flag leaf that determine the

response to drought and heat. Furthermore, according to

Mahalingam et al. (2022), the number of DEGs increased in

barley heads in the stress-tolerant genotype as heat progressed.

Heat response involved genes for transporter proteins, and ABA

response, and resulted in differential expression of LEA genes in

stress-sensitive genotype. In contrast, genes for nonspecific lipid

transfer proteins and carbonate dehydratase were enriched in a

stress-tolerant cultivar. Heat with drought resulted in a notable

increase in DEG number only in the stress-sensitive cultivar. In

particular, at least 900 TFs controlled transcriptional

reprogramming in two barley cultivars in all treatments.

Cellular signalling, including hormone signaling, is

particularly important in multiple treatments, when heat is

combined with other stressors. Martin et al. (2021) pointed

out the broadening range of DEGs affected by double

treatment (heat and drought) of Lolium temulentum, which

encoded proteins for cell signaling, cell cycle, organellar

biogenesis, binding, transport, oxidoreductase and

antioxidative activit, as well as chaperones and multiple TFs.

When heat stress acted together with an elevated level of CO2,

detrimental effects were only partially alleviated by deregulation

of primary and secondary metabolism genes in flag leaves of

durum wheat (Triticum durum) flag leaves. Most affected DEGs

coded proteins involved also in cellular signaling but also in stress

response and nucleic acid metabolism. In particular, genes

upregulated by CO2 were often downregulated by heat (they

coded, among others, photosynthetic and OXPHOS proteins,

proteins for hormone signaling, enzymes of lipid and amino acid

metabolism and the glutathione-ascorbate cycle, nucleic acid

metabolism, and transport proteins (Vicente et al., 2019).

Suzuki et al. (2016) investigated the impact of heat and

salinity on Arabidopsis transcriptome. DEGs regulated by heat

and salt stress were enriched in genes coded proteins for ABA

signaling, stress response, developmental processes, protein

metabolism, and DNA-dependent transcription. However, in

heat, DEGs for ABA-responsive proteins, glyoxylase 17 and

catalase, among others, appeared to be responsive, indicating

the importance of the antioxidative response.

Arabidopsis leaf transcriptome under various stress conditions

(salinity, osmotic stress, and heat) was also investigated by

Sewelam et al. (2020). Of all these treatments, elevated

temperature appeared to have the most notable effect on

transcriptomic profiles. DEGs affected by heat covered

induction of eleven HSP genes, late embryogenesis abundant

(LEA) proteins, receptor-like kinases (RLKs), glutathione

S-transferases, genes for carbohydrate binding, UDP-

galactosyltransferases, membrane transporters, and programmed

cell death (PCD), and genes for WRKY TFs. However, heat

treatment repressed several cell cycle genes, ribosomal protein

genes, and genes involved in DNA synthesis and repair. In

particular, osmotic stress and heat acted antagonistically, while

double treatment largely reprogrammed the gene expression

pattern. Heat in combination with salinity and osmotic stress

also induced numerous mitochondrial genes, presumably as a

compensatory response to excessive protein degradation (Rurek

et al., 2018).

In general, multiple stress treatment (including heat) in plant

transcriptomes results in different and distinct transcriptomic

responses under single treatments. In particular, although

drought often accompanies heat, those stressors result in the

upregulation of different gene sets in various plant species

(Mahalingam et al., 2022; Mikołajczak et al., 2023). The

transcriptomic response to heat stress specifically engages DEGs

for cellular signaling (particularly inmultiple stress treatments and

under melatonin supplementation; Suzuki et al., 2016; Vicente

et al., 2019; Martin et al., 2021; Xing et al., 2021), and also genes for

chromatin remodelling, DNA synthesis, endopeptidase activity,

heat response, regulation of protein phosphorylation and

dephosphorylation, RNA metabolism, spliceosome biogenesis,

transcription regulation, volatile compound biosynthesis as well

as AP2/EREBP, C2H2, G2-like, GRAS, HSF, MADS-box and

RWP-RK TFs (Figure 2; Frank et al., 2009; Obaid et al., 2016;

Suzuki et al., 2016; Valdés-López et al., 2016; Chen and Li, 2017;

Rurek et al., 2018; Vicente et al., 2019; Rashid et al., 2020; Sewelam

et al., 2020; Martin et al., 2021; Xing et al., 2021; Mahalingam et al.,

2022; Mikołajczak et al., 2023; Huang et al., 2024).

Low temperature (cold, freeze)

Similarly to heat, also cold treatment and freeze result in

plant growth and development aberrations, as well as direct
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inhibition of metabolic reactions. Due to the limited osmosis, cell

dehydration and oxidative stress occur simultaneously with other

detrimental responses. Most plants can gain tolerance to ice

formation by gradually being exposed to reduced (non-freezing)

temperatures under cold acclimation (Chinnusamy et al., 2007).

In general, genes for the early cold response encoded a wide

variety of TFs that regulate other gene expression (Gull

et al., 2019).

Signal transduction and hormone signaling appeared also to

be important for the low-temperature response. Amur vine (Vitis

amurensis) transcriptomic response under cold used DEGs that

encode proteins for signal transduction, transcription regulation,

and alternative splicing. At least 38 major families of TFs (with

326 genes for TFs) involved in the regulation of cold response

were detected, including several previously uncharacterized TF

families homologous to Arabidopsis proteins (e.g., HAP2,

ABI3VP1, ARF, PLATZ, LIM, atypical HD and MYB factors,

BBR-BPC, zinc Dof, C3H-type I, EIL, GARP G2-like and

Trihelix). Genes for CBL-interacting protein kinases

participating in signal transduction were upregulated (Xu

et al., 2014). Du et al. (2017) analysed the cold response of

Agropyron mongolicumABA receptors and upregulated genes for

bZIP and NAC TFs. Most DEGs participated in carbohydrate

metabolism, hormonal and phosphatidylinositol signaling, as

well as biogenesis of numerous secondary metabolites. Also,

the cold response of M. falcata focused on phytohormone and

nodulation signaling, revealing some similarities with the

drought replies; however, ABF1, GID1, and AUX genes were

downregulated. Interestingly, GH3 auxin-responsive gene was

extensively upregulated in cold (similarly to DIMI1, but contrary

to DIMI2 and DIMI3, all of which encode important nodulation

factors). Furthermore, at least 16 genes for MYB and 12 genes for

NAC TFs were induced by cold, indicating their participation in

cold tolerance (Miao et al., 2015). The transcriptomic response to

cold in two rape cultivars (Brassica rapa) cultivars, varying with

stress tolerance, also involved DEGs coding proteins for plant

hormone signal transduction (MAPK signaling pathway) and

also for photosynthesis, phenylpropanoid biosynthesis, lipid

binding, plant-type cell wall, positive regulation of circadian

rhythm, abaxial cell fate specification and basal TFs (Ma L.

et al., 2019).

Arabidopsis chilling response covered almost half of

expressed genes (Calixto et al., 2018; Liu et al., 2022). Cold

response also involved genes for plant hormone signaling, but

also for glucosinolate biosynthesis, transporter proteins, long

ncRNA, RNA splicing, and spliceosome biogenesis, as well as

multiple TFs from 52 families. Cold downregulated

photosynthetic genes and short cold-induced quickly

responding DEGs coding proteins for chloroplast organisation,

ribosome biogenesis, and rRNA processing, which may activate

cold tolerance. On the contrary, long cold affected DEGs for the

cell response to hypoxia, fatty acid and flavonoid biosynthesis, as

well as redox homeostasis and diverse HSP genes (Liu et al.,

2022). Massive alternative splicing events occurred in the first few

hours of cold treatment, including mobilisation of cold-

responsive TFs, splicing factors, and selected RNA-binding

proteins (Calixto et al., 2018). Interestingly, in P. cheesemanii,

contrary to Arabidopsis, the cold response employed genes for

glucosinolate metabolism. For Arabidopsis and P. cheesemanii,

genes for wound-like circadian clock, as well as for secondary

metabolite biogenesis, responded under the early cold response

(Dong et al., 2023).

Cheng et al. (2019) described the effects of MeTCP4 (a

specific cassava [Manihot esculenta] TF) overexpression in

Arabidopsis plants during cold stress. Affected genes were

classified as stress-responsive under all tested conditions, to

DNA binding and TF activity in control, and to

oxidoreductase, peroxidase, and antioxidative activity under

cold treatment. Analysis of transcriptomic response of leaves

of Lavandula angustifolia to cold revealed DEGs coding for

photosynthetic proteins among affected genes. The most

important functions of DEGs were also associated with the

decreased stomatal conductance, ROS scavenging, and the

development of cold tolerance. In general, these findings may

allow for further engineering of cold tolerance in L. angustifolia

to improve its medicinal potential, as this species is a source of

aromatic compounds in traditional Chinese medicine (Li L. et al.,

2023). In the leaf transcriptome of another medicinal species, A.

annua, cold induced a multitude of genes for kinases,

peroxidases, ABA biosynthesis, LEA and LEA-like proteins,

various desaturases, glyoxalase I family protein, proteins for

oxylipin and polyamine biosynthesis, Δ-1-pyrroline-5-
carboxylate synthetase, NAC and MYB TFs (Vashisth

et al., 2018).

Important metabolic regulations occur in plant organelles

under cold acclimation. Naydenov et al. (2010) investigated the

mitochondrial and nuclear transcriptomes of germinated wheat

(T. aestivum). The upregulated genes encoded mitochondrial

proteins, including Mn superoxide dismutase (SOD) and

alternative oxidase (AOX); however, the level of expression of

nuclear genes essential for mitochondrial biogenesis was visibly

reduced. This indicates a fine-tuning of gene expression between

mitochondrial and nuclear transcriptomes, executed by

anterograde and retrograde signaling, affected by stress

conditions.

On the whole, the cold response of plant transcriptomes

specifically employs DEGs involved in abaxial cell fate

specification, lipid binding, nucleic acid metabolism, post-

translational modifications, protein degradation, regulation of

transcription, and biomolecule transport. Cold response also

specifically mobilizes a variety of TFs, including BBR-BPC,

C3H-type I, EIL, GARP G2-like, HAP, LIM, NIN-like, PcG,

PLATZ, TUB, and WHIRLY proteins (Figure 2; Naydenov et al.,

2010; Xu et al., 2014; Miao et al., 2015; Du et al., 2017; Calixto

et al., 2018; Vashisth et al., 2018; Cheng et al., 2019; Gull et al.,

2019; Ma L. et al., 2019; Liu et al., 2022; Dong et al., 2023; Li L.
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FIGURE 3
Comparison of the most relevant gene ontology (GO:) terms of plant genes and transcription factors active under biotic stress conditions from
various RNA-seq studies. The data were presented in Venn diagrams (drawn by Venny v. 2.1 from https://bioinfogp.cnb.csic.es/tools/venny/). The top
enriched GO: terms (mostly relevant molecular functions and biological procesess) as well as transcription factors for regulated genes from the
discussed studies were indicated. The data specific for the given stressor were denoted in italics and by different font colors (for bacterial

(Continued )
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et al., 2023). Hormone signalling is also affected by the cold

response in numerous studies, including members of Fabaceae

and Brassicaceae (Miao et al., 2015; Du et al., 2017; Vashisth et al.,

2018; Gull et al., 2019; Ma L. et al., 2019; Liu et al., 2022).

Plant transcriptomic responses under
biotic stress

Under global climate alterations, crop species are gradually

exposed to increasing biotic stress. The findings discussed below

may help develop plant cultivars that are highly resistant to

fungal, bacterial and virus infections. To cope with biotic stress,

plants have developed defensive responses precisely induced by

pathogen attack (Verma et al., 2013). Plant cells contain plasma

membrane receptors, which recognize pathogen-associated

molecular patterns (PAMP). Subsequently, PAMP-triggered

immunity (PTI) usually stops the infection before it spreads

throughout the plant. Due to the constant combat between

pathogens and their victims, pathogens can neutralize PTI by

secreting special effector proteins into the cytosol. In response,

plants developed the ability to detect microorganisms by effector-

triggered immunity (ETI). Interactions between intracellular

receptors designed to recognize effector molecules produced

by pathogens and effectors trigger a complex network of cell

responses to achieve infection resistance (McDowell and Dangl,

2000). To protect against pathogens, plants use an “oxidative

outbreak” that initiates a hypersensitive response (HR) limiting

the pathogen spread (Sato et al., 2010).

A comparison of the multitude of enriched functional terms

representing numerous genes and transcription factors (TFs) that

respond to various biotic stressors (fungal, bacterial, and virus/

viroid infections) from RNA-seq studies is shown in Figure 3 and

further quantitative details on genes affected by abiotic stress

from high-throughput transcriptomic studies are also given in

Supplementary Table S1, where details on various biotic

treatments and references from the respective literature were

given. Fungal, bacterial, and virus/ viroid infections involve

common DEGs for carbohydrate metabolism, defence

response, photosynthesis, protein phosphorylation, ribosome

biogenesis, secondary metabolite biosynthesis, and

transcription regulation. Biotic stress influence also expression

patter of genes for hormone signaling/ signal transduction (more

details below). All conditions of biotic stress mobilize WRKY

factors responding to pathogen infection (Figure 3).

Interestingly, terms for photosynthesis and secondary

metabolite biosynthesis overlap with those for abiotic stress

response; however, most functional terms and TFs in biotic

infections differ from those of abiotic stressors (Figures 2, 3).

Fungal infections

Pathogenic fungi can be divided into biotrophic,

necrotrophic, and hemibiotrophic species (biotrophic in their

early stages and necrotrophic in their later stages of the life cycle).

Analysis of transcriptome of pumpkin leaves (Cucurbita

moschata) infected with powdery mildew (Blumeria graminis)

24 and 48 h after the infection onset showed a downregulation of

multiple DEGs, including genes coding for resistance to powdery

mildew and various TFs for ethylene signaling. Numerous host

photosynthetic genes were also regulated. Upregulation of

photosynthetic genes after 48 h of infection was associated

with the appearance of initial fungal hyphae, which was also

shown in infected wheat (T. aestivum) (Guo et al., 2018).

The transcriptomes of wheat leaves infected with powdery

mildew (Erysiphales species) and striped rust (Puccinia

striiformis) were analysed by Zhang et al. (2014). In powdery

mildew infection, DEGs coded proteins for α-linolenic acid

metabolism, as well as phenylpropanoid, flavonoid,

phenylalanine, tyrosine and tryptophan biosynthesis. However,

striped rust upregulated DEGs for photosynthetic proteins and

proteins for ubiquinone biosynthesis. These results indicate the

participation of different genes in response to various fungi

(Zhang et al., 2014). Coolen et al. (2016) investigated

Arabidopsis transcriptome under infection of the necrotrophic

fungus, Botrytis cinerea, alone or in combination with drought.

DEGs responding to chitin, defence response, incompatible

interactions, and RNA methylation were upregulated, and

photosynthetic ones were deregulated up to 1 day after

infection. Massive upregulation of core DEGs coding proteins

that respond to oxygen-containing compounds according to the

impact of drought. Kumar et al. (2022) compared two

transcriptomic data sets of maize (Zea mays) silk infected

with different fungal species. Set A contained data for silk

samples affected by F. graminearum and U. maydis, while set

B contained data from samples infected with F. verticillioides and

Trichoderma atroviride. Interestingly, only 21 DEGs were found

in all variants tested. Among these DEGs, peroxidase genes that

control the lengthening of the germ tube to protect maize kernels

from fungal disease were upregulated. The differential expression

pattern was also found for the osmotine-like protein gene, which

FIGURE 3 (Continued)
infections in blue, for virus/viroid infections in brown and for fungal infections in green). GO: terms and transcription factors common for
responses to all abiotic stressors were displayed within yellow text boxes. More details in the text.
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improves host defense and immune defense against stress, and

for genes coding the receptor-like protein kinase subfamily.

These genes appeared to be upregulated under infection with

Fusarium verticillioides, Fusarium graminearum, and Ustilago

maydis and downregulated when samples infected with T.

atroviride.

Generally, host DEGs specifically regulated during fungal

infections code proteins related to α-linolenic acid metabolism,

aminoacid biosynthesis, cell wall organisation, chitin response,

osmotin-like protein activity, pollen-pistil interactions, receptor-

like protein kinases, resistance genes, RNA methylation, sterol

biosynthesis process, as well as valine, leucine, and isoleucine

degradation. SA signaling is believed to be mainly involved in

resistance to biotrophic and hemibiotrophic pathogens. On the

contrary, JA and ethylene signaling appeared to be indispensable

for necrotrophic resistance (Pieterse et al., 2009; Guo et al., 2018).

In addition, ERF belong to main TFs specifically regulating gene

expression of plant host under fungal infections (Figure 3; Zhang

et al., 2014; Coolen et al., 2016; Guo et al., 2018; Kumar

et al., 2022).

Bacterial infections

Analysis of rice (Oryza indica) infected with Xanthomonas

oryzae revealed multiple upregulated genes that encode proteins

involved in signal transduction, carbohydrate metabolism, and

transcription regulation. On the contrary, the downregulated

genes encoded TFs and proteins necessary for lipid catabolism,

oxidative burst, and cell cycle (Kottapalli et al., 2007).

Furthermore, analysis of the transcriptome of tomato

(Solanum lycopersicon) infected with Clavibacter michiganensis

allowed the identification of upregulated genes that encode

proteins that also participated in hormonal signaling, but also

in protein phosphorylation, and the plant defence response

(including numerous TFs, such as WRKY, NAC, HSF, and

CBP60). Resistance gene analogues (RGA) that included RLK

genes were also upregulated. Exogenous treatment with SA

resulted in induction of genes for WRKY TFs, therefore, SA-

driven gene expression resulted in improved quality of the plant

immune response (Yokotani et al., 2021).

Analysis of transcriptomes of rice (O. sativa) cultivars

resistant and susceptible to infection with Xanthomonas

oryzaena, which causes a cereal disease called bacterial leaf

streak (BLS), revealed more DEGs among the infection-

susceptible cultivar. Upregulations of genes encoding proteins

involved in secondary metabolism, as well as participation of

selected WRKY, NAC, MYB, and bHLH TFs in plant response to

bacterial infection were notable (Lu et al., 2020). Deng et al.

(2023) study on resistant (“IBL2353”) and susceptible

(“Ohio88119”) tomato (S. lycopersicum) cultivars infected by

C. michiganensis identified new gene families that participate

in antibacterial defence. The key role of WRKY TFs in this

process was revealed. At least 25 genes for proteins associated

with the plant defense response andWAKL20 gene (for the wall-

associated receptor kinase similar to wall 20 and the only

member of the WAKS subfamily that participates in innate

resistance to pathogens) were upregulated in “IBL2353”

cultivar. Viral-induced silencing of WAKS20 gene in the

“IBL2353” cultivar resulted in the appearance of susceptibility

to C. michiganensis infection, suggesting an important role for

the WAKS20 gene in antibacterial defence (Deng et al., 2023).

In general, plant host genes specifically affected by bacterial

infections code proteins related to the cell cycle, lipid catabolism,

oxidoreductase activity, and positive regulation of ubiquitin

protein ligase activity as well as transferase activity. Hormone

signaling is also important for the antibacterial response of host

plants (Kottapalli et al., 2007; Yokotani et al., 2021). Additionally,

the host response to bacterial infections specifically mobilizes

MYB and NAC TFs (Figure 3; Kottapalli et al., 2007; Lu et al.,

2020; Yokotani et al., 2021; Deng et al., 2023).

Viral and viroid infections

Plant transcriptomes also respond to the plethora of viral and

viroids, which may leave their genome fragments within the host

genome/transcriptome (Jo et al., 2018; Mifsud et al., 2022; Raza

and Wu, 2022). The enriched functional terms for genes affected

by viral and viroid infections are presented in Figure 3 and the

summary of quantitative data from discussed experimental

reports is available in Supplementary Table S1. Most viral

proteins interact with host proteins, which promote the

appearance of symptoms. Plants counteract this initial

symptom development by using adaptive immunity; defence

hormones are also active, resulting in hampering of virus

biogenesis (Malavika et al., 2023).

Viroids are among the smallest and most infectious

pathogens of crops, having short ssRNA genomes. They can

affect host genes whose products participate in defense response,

phytohormone signaling, cell wall modification, photosynthesis,

secondary metabolism, transport, gene expression, and protein

modification (Joubert et al., 2022).

Tobacco transcriptomes (Nicotiana tabacum) infected with

seven genotypes of tobacco etch potyvirus (TEV) varying in

fitness were compared. Host genes (including those for hormone

signaling and RNA silencing-mediated pathways of plant

defense) whose expression was correlated with the fitness level

of TEV were examined (Cervera et al., 2018). The relevance of

hormone signalling and signal transduction in the host response

under virus attack was also pinpointed by other reports. Recently,

Li Z. et al. (2023) focused on the analysis of antiviral response of

bottle gourd (Lagenaria siceraria) under cucumber green mottle

mosaic virus (CGMMV) infection. Affected DEGs were involved

in the biosynthesis of secondary metabolites, hormone signal

transduction (JA biogenesis), plant–pathogen interactions, and
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carbohydrate metabolism. Méndez-López et al. (2023)

investigated the impact of the pandemic infection of the

Pepino mosaic virus (PepMV) on two tomato cultivars. The

SlGSTU38 protein belongs to PepMV-specific susceptibility

factors. The transcriptomes of healthy and virus-infected

knocked out plants (gstu38) were examined. When gstu38

plants were compared with healthy wild-type plants, some key

stress-related genes (including those for WRKY TFs) were

upregulated and genes for intracellular signal transduction

proteins, various TFs, HSP70, and proteins involved in sugar

metabolism and transport were downregulated. Among DEGs

affected in both tomato cultivars, genes for peroxidases, various

kinases, RNA binding proteins, resistance proteins, PDH, DNA

repair, recombination proteins, and chaperonins and GATA TFs

were also notable. Furthermore, the rice transcriptome was

assayed during planta overexpression of the OsNF-YA protein

displaying antiviral defense against rice stripe virus (RSV) and

Southern rice blackstreaked dwarf virus (SRBSDV). Interestingly,

the expression pattern of genes for JA biogenesis was decreased in

plants overexpressing NF-YA under viral infection, due to

interference between the NF-YA protein and TFs that regulate

JA signaling (Tan et al., 2022). On the other hand, Arabidopsis

cabbage leaf curl virus (CaLCuV) infection triggered the SA-

dependent pathogen response and induced the expression of

genes involved in PCD, genotoxic stress, DNA repair, and cell

cycle (Ascencio-Ibáñez et al., 2008).Signal transduction is also

crucial when plant viruses could alter host plant traits so that they

modify their insect behavior. When Myzus persicae aphids were

foraging in Arabidopsis and Camelina sativa plants, cauliflower

mosaic virus (CaMV) infection appearedmore severe than turnip

yellows virus (TuYV) and affected DEGs that encode proteins for

photosynthesis, oxidation reduction proteins, microtubule-based

movement, as well as enzymes for JA, ethylene, and glucosinolate

biogenesis. TuYV infection in Arabidopsis plants resulted in

alterations in DEGs for carbohydrate transport, defence and

stress response proteins (Chesnais et al., 2022).

Zhu et al. (2018) investigated the impact of cucumber mosaic

virus (CMV) infection on hot pepper (Capsicum annuum)

transcriptome. Affected genes were involved in stress and

defence response, and plant-pathogen interactions. DEGs for

chitinase, pathogenesis-related protein (PR), tobacco mosaic

virus resistance protein (TMV), WRKY TFs, and jasmonate

ZIM-domain protein, were upregulated after inoculation.

Intron retention for WRKY23 transcripts indicated a deep

reprogramming in alternative splicing pattern under

viral infection.

Zhou et al. (2019) studied transcriptomes of tomato (S.

lycopersicum) plants grown from neutron-irradiated seeds and

infected with tomato yellow leaf curl virus (TYLCV).

Transcriptomes of plants grown from presoaked seeds were

highly altered compared to those developed from dry seeds.

Various doses of neutron irradiation affected the expression

pattern of various DEGs. At least regulated DEGs that were

common for all irradiated mutants encoded proteins for

metabolism, transport, binding and responses to various

stimuli, photosynthesis, and transcription. Spanò et al. (2020)

applied the RNA sequence to study the transcriptomic profiles of

tomato cultivars varying with resistance level, as well as their

graft combinations, exposed to potato virus Y recombinant

strain. Graft wounding and virus Y infection had various

impacts on the tomato transcriptome, depending on genotype.

Roy et al. (2023) have used 3′RNA-seq to identify

transcriptomic alterations in N. benthamiana plants infected by

two strains of grapevine fanleaf virus (GFLV). During appearance

of peak vein clearing symptom at 7 days post-inoculation (dpi), the

genes involved in the immune response, gene regulation, and

secondary metabolite production were over-represented. In other

stages, DEGs related to chitinase activity, hypersensitive response,

and transcriptional regulation were notable. Previously,

Medzihradszky et al. (2019) investigated the transcriptomic

reprogramming in the shoot apical meristem of Nicotiana

benthamiana plants infected with Cymbidium ringspot virus

(CymRSV). Upregulated genes coded proteins indispensable for

cell defense, and downregulated DEGs were related to DNA

replication and organization, shoot meristem development and

plasmodesmata functions.

On the whole, plant host genes specifically affected under

virus and viroid infections are related with carbohydrate

transport, cell cycle regulation, DNA binding, DNA repair

and recombination, DNA replication, glutathione binding,

lipid metabolism, microtubule-based movement, oxidation-

reduction proteins, OXPHOS activity, programmed cell death

regulation, protein domain specific binding, protein folding and

processing, regulation of hydrogen peroxide metabolism,

senescence as well as signal transduction (with hormone

signaling, highlighting relevance of JA signaling in host

antiviral defence, e.g., Chesnais et al., 2022; Tan et al., 2022;

Li Z. et al., 2023). Among TFs specifically mobilized under virus/

viroid infection, GATA proteins were discernible (Figure 3;

Ascencio-Ibáñez et al., 2008; Cervera et al., 2018; Zhu et al.,

2018; Medzihradszky et al., 2019; Zhou et al., 2019; Spanò et al.,

2020; Chesnais et al., 2022; Tan et al., 2022; Li Z. et al., 2023;

Méndez-López et al., 2023; Roy et al., 2023).

Discussion

Transcriptomic datasets, together with proteomic and

metabolomic analyses, belong to the valuable and prospective

components of modern systems biology in the functional

network study (Figure 1; Cramer et al., 2011). In plant cells,

in addition to the transcriptome being a product of nuclear

genome expression, plastid and mitochondrial transcriptomes

are also present (Barkan and Goldschmidt-Clermont, 2000;

Daniell et al., 2016; Rurek, 2016; Rurek et al., 2018; Best et al.,

2020a). They are dynamically shaped by multiple factors at
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multiple levels of biological diversity (Zhu, 2002; Wang et al.,

2020). Studies on plant transcriptomes, which participate in

stress response, may thus allow for better understanding how

plants properly react to changing environmental conditions

(Zhu, 2002).

Plant stress studies employing RNA-seq

Extensive research on the plant transcriptome is being

developed at various levels. Transcriptomic data can be

acquired both from differential expression studies in tissue/

organs or even from single cells, and modern RNA-seq

approaches. From 2010 the number of experimental reports

on RNA-seq and stress response among diverse plant species

increased almost exponentially. In total, between 2010 and

2024 at least 4,710 plant studies related to RNA-seq and UV,

drought, cold, heat and pathogen response were published

(Figure 4; the data valid to 25 September 2024). This indicates

the growing interest of these topics in plant molecular biology.

Interestingly, reports on pathogen attack and drought using

RNA-seq dominate in number from at least 2014 and those

for temperature treatments (cold, heat) are generally in the third

place in each year indicated (Figure 4).

Similarities and differences in
transcriptomic response under various
stressor conditions

The plant transcriptomic response depends greatly on the

quality of the stressor and its duration, leading to metabolic

flexibility (Supplementary Table S1; Wang et al., 2020; Xu et al.,

2021; De Oliveira-Busatto et al., 2022). Commonly regulated

genes under the action of almost all abiotic stressors often encode

proteins for the photosynthetic apparatus and enzymes for

secondary metabolism; interestingly, limited TFs (MYB

mostly) overlap for all abiotic stressors (Figure 2).

In contrast, all conditions of biotic stress employ a large

number of DEGs that represent a particularly broad landscape of

enriched functional terms. DEGs for carbohydrate metabolism,

defence response, protein modifications, ribosome biogenesis,

transcription regulation, and secondary metabolism overlap both

for bacterial, virus/viroid infections and for fungal infections

across a plethora of host species (Figure 3). Furthermore, the

WRKY proteins belong to universal TFs that regulate gene

expression in biotic stress.

In general, photosynthesis and secondary metabolite

biosynthesis belong to commonly enriched functional

categories for all stress treatments discussed here.

From abiotic stressors, drought and heat stress employ the

highest number of specific terms for these stressors (twelve and

eleven terms, respectively, Figure 2). Drought stress appeared to

be particularly detrimental at the transcriptomic level (Kumar

et al., 2019; Zhu et al., 2019; Tyagi et al., 2023). Chemical

treatments and UV as well as cold/freeze stress resulted in a

lower quantity of terms specific to DEGs affected under action of

those stressors. Furthermore, double stress treatments led to

highly specific responses, sometimes increasing the number of

DEGs (Zhou et al., 2019; Sewelam et al., 2020; Martin et al., 2021).

It should be underlined that highly specific TFs from different

families regulate gene expression under each abiotic stress

conditions (with the highest number of TFs participating in

drought and cold and freeze). Therefore, the most harmful

FIGURE 4
The detailed number of publications per year related to RNA-seq and specified stressors (values indicated above each bar; subterms indicated
by the various color and checking pattern in the histogram). The key words used in the NCBI PubMed search (https://pubmed.ncbi.nlm.nih.gov/)
included: plant, RNA-seq, and the given subterm (indicated in the legend below the histogram). The data for “UV” (in dark magenta), “drought” (in
gray), “heat” (in orange), “cold” (in blue) and “pathogen” (in green; the joint data for bacterial, fungal and viral/viroid infections) were presented
from 2010 onwards. The analysis was performed in September 2024.
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stressors employ particularly numerous TFs within adaptive

responses (Figure 2; Mahalingam et al., 2022).

Regarding biotic stress, virus and viral infections employ

DEGs for host proteins with broadening functional categories

that are specific only to those stressors. Less quantities of

functional GO terms were also observed from the data

representing fungal and bacterial infections (comparing with

virus infections) were also notable. Genes for hormone

signaling appeared to be important for both bacterial and

fungal infections, and DEGs for signal transduction proteins

were notably over-represented in virus/viroid infections

(Figure 3). Overall, such a pattern differs from the one for

abiotic stress treatments, where only a limited number of

common GO terms for all treatments was evident (Figure 2).

Furthermore, distinct TFs specifically regulate host gene

expression under various biotic stressors, with MYB/NAC

proteins mainly for bacterial infections and GATA and ERF

factors for virus/virus and fungal infections,

respectively (Figure 3).

As shown in Supplementary Table S1, stress-sensitive

cultivars engage more DEGs in their stress responses;

however, these patterns are highly tissue dependent

(Mahalingam et al., 2022). Plant responses to biotic stress

indicated the challenging importance of plant-microorganism

interactions, which can generally influence stress tolerance

(Rivero et al., 2022).

Future outlines

From the data discussed within the present review, few

conclusions for future actions can be presented. Hopefully,

they will increase both the quantity and quality of the data.

First, more organellar transcriptomes for important crop

species should be analysed to better understand the

responses of the plastome and mitogenome to stress and

their relevance in plant developmental steps. Furthermore,

due to the peculiar under-representation of transcriptomic

data on stress in some plant organs, future studies should

improve such biases (Best et al., 2020a; Best et al., 2020b;

Berkowitz et al., 2021).

Most of the transcriptomic data discussed here came from

plant material grown under controlled conditions. Therefore,

field experiments that test the variations of multiple stress

responses are still awaited. Additionally, both the complexity

of plant viromes and impact of the plant microbiome on stress

response at the transcriptional level should be widely investigated

(Jo et al., 2018; Mifsud et al., 2022; Raza and Wu, 2022).

Due to the importance of DEGs for secondary metabolite

synthesis in the analysed data, it would also be important (1) to

investigate further the biogenesis of active compounds, (2) to

better understand how metabolic pathways contribute to various

stress acclimation strategies, and (3) to develop new more stress-

resistant cultivars after genetic and metabolic engineering of

medicinal and crop plant species. These actions should

include modern methodological tools, for example, genetic

engineering and gene editing, as well as metabolome

engineering (Singh et al., 2016; Yan et al., 2020; Guo et al.,

2021; Kumar et al., 2023; Dong, 2024).
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Glossary
ABA abscisic acid

ABI3VP1 ABSCISIC ACID INSENSITIVE 3 VIVIPAROUS 1

ABF ABSCISIC ACID RESPONSIVE ELEMENT-BINDING FACTOR

ACC 1-aminocyclopropane-1-carboxylic oxidase

ALA 5-aminolevulinic acid

AOS allene oxide synthase

AOX alternative oxidase

AP APETALA

APX ascorbate peroxidase

ARF auxin response factor

ARID AT-rich interactive domain

ASC L-ascorbic acid

AUX auxin receptor

BBR-BPC Barley B Recombinant/Basic PentaCysteine

BIM BES1-INTERACTING MYC-LIKE

bHLH basic helix–loop–helix

BLS bacterial leaf streak

BPM BTB/POZ and MATH domain-containing protein

BT BTB and TAZ domain protein

bHLH basic helix-loop-helix

bZIP basic (region) leucine zipper

CaLCuV cabbage leaf curl virus

CAM crassulacean acid metabolism

CaMV cauliflower mosaic virus

CAT catalase

CBP calmodulin-binding protein

CDP CAAT displacement protein (transcriptional repressor)

CGMMV cucumber green mottle mosaic virus

C2H zinc finger protein

C3H zinc finger CCCH domain-containing protein

C4H 4-cinnamate hydroxylase

CHI chalcone isomerase

CHS chalcone synthase

4CL 4-coumarate: CoA ligase

Clp caseinolytic protease

CLP chaperonin-like protein

CMV cucumber mosaic virus

CRISPR/
Cas

clustered regularly interspaced short palindromic repeats/
CRISPR-associated

CRK cysteine-rich receptor-like kinase

CXIP CAX-interacting protein

CymRSV Cymbidium ringspot virus

DEGs differentially-expressed genes

DIMI DIMINUTO

Dof DNA-binding with one finger

EIL ethylene insensitive-like

ER endoplasmic reticulum

EREBP ethylene-responsive element binding protein

ERF ethylene response factor

ETI effector-triggered immunity

FLS flavonol synthase

FRS FAR1-RELATED SEQUENCE

FT FLOWERING LOCUS T

G2-like GOLDEN2-LIKE

GABA γ-aminobutyric acid

GARP GOLDEN2, ARR-B and Psr1 superfamily

GFLV grapevine fanleaf virus

GH3 Gretchen Hagen3

GID GA-INSENSITIVE DWARF

GRAS GIBBERELLIC-ACID INSENSITIVE, REPRESSOR of GAI
and SCARECROW

GRF growth regulating factor

GSTU glutathione S-transferase belonging to the tau class

HAB HYPERSENSITIVE TO ABSCISIC ACID

HAP CCAAT-box binding protein

HD homeodomain

HLH helix-loop-helix

HR hypersensitive response

HSF heat shock factor

HSP heat shock protein

JA jasmonic acid

LEA late-embryogenesis abundant

LHC light-harvesting complex

LIM homeobox transcription factor

LOX lipoxygenase

MADS MINICHROMOSOME MAINTENANCE 1/AGAMOUS/
DEFICIENS/SERUM RESPONSE FACTOR

MAPK mitogen-associated protein kinase

MDHAR monodehydroascorbate reductase

MIOX myo-inositol oxygenase

MYB myeloblastosis
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NAC no apical meristem/ATAF1/cup-shaped cotyledon

NF-Y nuclear factor Y

NIN nodule inception

OXPHOS oxidative phosphorylation

PAL phenylalanine ammonia-lyase

PAMP pathogen-associated molecular pattern

PCD programmed cell death

PcG Polycomb group

PDH proline dehydrogenase

PEPC phosphoenolpyruvate carboxylase

PepMV pepino mosaic virus

PLATZ plant AT-rich sequence and zinc-binding protein

POD peroxidase

PR pathogen-related

PS photosystem

PTI PAMP-triggered immunity

RGA resistance gene analogue

RLK receptor-like kinase

ROS reactive oxidative species

RR response regulator

RSV rice stripe virus

RWP-RK transcription factor with RWPxRK motif

SA salicylic acid

SBP SQUAMOSA-PROMOTER BINDING PROTEIN

SOD superoxide dismutase

SMRT single-molecule real-time

SRBSDV Southern rice blackstreaked dwarf virus

STS stilbene synthase

TCP bHLH DNA-binding domain

TEV tobacco etch potyvirus

TF transcription factor

TMV tobacco mosaic virus

TUB Tubby family of bipartite transcription factors

TuYV turnip yellows virus

TYLCV tomato yellow leaf curl virus

UFGT UDP-glucose:flavonoid 3-O-glucosyltransferase

USP universal stress protein

WAKL wall-associated receptor kinase-like

WAKS wall-associated kinases

WRKY transcription factor family

WT wild type

WUS WUSCHEL

ZIM zinc-finger inflorescence meristem

ZIP leucine zipper

Acta Biochimica Polonica
Published by Frontiers

Polskie Towarzystwo Biochemiczne (Polish Biochemical Society)21

Rurek and Smolibowski 10.3389/abp.2024.13585

https://doi.org/10.3389/abp.2024.13585

	Variability of plant transcriptomic responses under stress acclimation: a review from high throughput studies
	Introduction
	Alterations in plant transcriptomes during abiotic stress
	UV radiation and chemical treatments
	Water deficiency (drought)
	Elevated temperature (heat stress)
	Low temperature (cold, freeze)

	Plant transcriptomic responses under biotic stress
	Fungal infections
	Bacterial infections
	Viral and viroid infections

	Discussion
	Plant stress studies employing RNA-seq
	Similarities and differences in transcriptomic response under various stressor conditions
	Future outlines

	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Supplementary material
	References
	Glossary


