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In recent years, significant advancements in biochemistry, materials science,

engineering, and computer-aided testing have driven the development of high-

throughput tools for profiling genetic information. Single-cell RNA sequencing

(scRNA-seq) technologies have established themselves as key tools for

dissecting genetic sequences at the level of single cells. These technologies

reveal cellular diversity and allow for the exploration of cell states and

transformations with exceptional resolution. Unlike bulk sequencing, which

provides population-averaged data, scRNA-seq can detect cell subtypes or

gene expression variations that would otherwise be overlooked. However, a key

limitation of scRNA-seq is its inability to preserve spatial information about the

RNA transcriptome, as the process requires tissue dissociation and cell isolation.

Spatial transcriptomics is a pivotal advancement in medical biotechnology,

facilitating the identification of molecules such as RNA in their original spatial

context within tissue sections at the single-cell level. This capability offers a

substantial advantage over traditional single-cell sequencing techniques.

Spatial transcriptomics offers valuable insights into a wide range of

biomedical fields, including neurology, embryology, cancer research,

immunology, and histology. This review highlights single-cell sequencing

approaches, recent technological developments, associated challenges,

various techniques for expression data analysis, and their applications in

disciplines such as cancer research, microbiology, neuroscience,

reproductive biology, and immunology. It highlights the critical role of

single-cell sequencing tools in characterizing the dynamic nature of

individual cells.
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Introduction

In recent years, significant progress in genomics,

bioinformatics, biochemistry, material science, engineering,

and computer-aided testing has led to the development of

advanced high-throughput tools for gene profiling and

sequencing from various biological specimens (Wu and

Zhang, 2020). Modern technologies, such as RNA sequencing,

now enable the simultaneous sequencing of multiple DNA

fragments. As a result, researchers can gain a deep and

comprehensive understanding of complex biological processes,

including organism development, tissue regeneration, health and

disease conditions, and cancer formation (Rego and Snyder,

2019; Zhang et al., 2021b).

These technological advancements, in turn, have driven the

widespread adoption of sequencing-based tools to explore

genomic heterogeneity and variations within biological

systems. Among these tools, RNA sequencing (RNA-seq)

stands out due to its exceptional precision. Specifically, it

facilitates the discovery of new RNA species and enhances our

understanding of transcriptomic changes (Choi and Kim, 2019;

Li et al., 2020).

Building on this foundation, low-input RNA-sequencing

methods have recently been adopted for single-cell analysis

(Ding et al., 2020). Notably, single-cell RNA sequencing

(scRNA-seq) provides a high-resolution view of individual

cells within a population. By revealing cell-specific

characteristics and changes that often remain hidden in bulk

sequencing, this method enables the identification of rare cell

subtypes and gene expression variations that would otherwise go

unnoticed (Hwang et al., 2018).

The ability to analyze cells at the single-cell level is

revolutionizing our understanding of organisms. For instance,

it allows researchers to trace cell lineage and study tissue

variability in detail (Teschendorff and Feinberg, 2021). By

examining individual cells, we gain a unique perspective on

the interactions between intrinsic cellular activities and

external factors, such as environmental conditions or

neighboring cell interactions, which influence cell fate. In

clinical settings, single-cell analysis has proven invaluable in

studying how rare “outlier” cells affect disease progression,

drug resistance, and tumor relapse. Furthermore, this

approach holds the potential to discover unknown microbial

species or regulatory mechanisms crucial for biotechnology and

medicine, especially given that many organisms cannot be

cultured in laboratory conditions (Mangiola et al., 2023;

Zhang et al., 2018).

As a result, the efficiency of single-cell RNA profiling has

provided extraordinary insights into cellular heterogeneity across

different organisms. Unlike bulk tissue analysis, which averages

gene expression across many cells, single-cell sequencing

uncovers the variability and probabilistic nature of gene

expression. This approach allows for the sequencing of genetic

material from individual cells, generating genomic,

transcriptomic, or multi-omics data that highlight population

heterogeneity and cell developmental relationships (Cha and Lee,

2020). However, traditional sequencing methods often fail to

capture important cellular variations and struggle to analyze

small cell populations. In contrast, single-cell sequencing excels

at uncovering gene expression differences among individual cells

and mapping cell trajectories. Notably, it was recognized as a

major innovation in 2013 by Nature Methods. Despite its

promise, early applications of single-cell sequencing were

hindered by high costs and labor-intensive protocols (Evrony

et al., 2021; Van den Berge et al., 2020).

Fortunately, advancements in instrumentation sensitivity

and automation have addressed many of these challenges,

making global single-cell analysis feasible. For example, high-

throughput technologies now allow the parallel sequencing of

numerous single cells, enabling the rapid generation of large

datasets. Additionally, complementary techniques such as

fluorescence and mass cytometry can identify expressed

proteins. Meanwhile, messenger RNA (mRNA) can be studied

using probe-based methods such as fluorescence in situ

hybridization (FISH), real-time PCR (qRT-PCR), and

microarrays, providing insights into the variability of gene

expression across multiple genetic materials simultaneously

(Liu et al., 2023; Mitra-Kaushik et al., 2021).

In conclusion, this overview highlights single-cell sequencing

technologies, their development, challenges, and applications in

fields such as cancer research, microbiology, neurology,

reproductive health, and immunobiology. Nevertheless, despite

their immense potential, single-cell RNA sequencing tools face

significant challenges, including the need for specialized expertise

and high costs, which limit their broader use in transcriptomic

studies (Li et al., 2021; Lim et al., 2020).

Single cell RNA sequencing

Single-cell RNA sequencing (scRNA-seq) analyzes the gene

expression profiles of individual cells from both homogeneous

and heterogeneous populations. To achieve this, the method

isolates single cells, typically through encapsulation or flow

cytometry, followed by the amplification and sequencing of

RNA transcripts from each cell independently. Due to its

high-resolution capabilities, scRNA-seq enables researchers to

identify and characterize different cell types, states, and

subpopulations (Stuart and Satija, 2019; Paik et al., 2020).

Currently, scRNA-seq is widely applied in life sciences

research, particularly for comparing gene expression profiles

between individual cells. Through this approach, researchers

can discover and characterize novel or rare cell populations,

refine our understanding of known cell types, and study critical

biological processes such as cellular differentiation, lineage

tracing, and developmental trajectories across various
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organisms. These insights provide a deeper understanding of the

regulatory pathways that govern cellular fate decisions (Li et al.,

2020; Ding et al., 2020).

From bulk to single-cell
transcriptomic dissection

Transcriptomic analysis at the single-cell level began about

20 years ago, pioneered by Norman Iscove, who employed

polymerase chain reaction (PCR) for exponential amplification

of single-cell cDNAs (Jena et al., 1996). Building on this

foundation, James Eberwine advanced the field by developing

a method to amplify cDNAs using T7 RNA polymerase-based

transcription in vitro (Moll et al., 2004). These early innovations

significantly enhanced the exploration of molecular systems

involved in development and the intricate functioning of the

vertebrate nervous system, where cellular diversity is particularly

pronounced. In such cases, analyzing transcriptomes at the

single-cell level, or even within specific regions like extended

axons, has provided invaluable insights (Kulkarni et al., 2019).

The invention and mass production of high-density DNA

microarray chips represented a major breakthrough in advancing

individual cell microarray technologies. These cutting-edge chips

enabled researchers to analyze gene expression with

unprecedented precision, allowing for the study of individual

cells rather than just bulk cell populations. Notably, recent

studies have uncovered significant differences in the

transcriptomes, the complete set of RNA molecules expressed

of genetically identical cells, such as those from the same tissue or

organism. This discovery revealed the remarkable complexity of

cellular behavior and highlighted the critical importance of

studying individual cells to gain a deeper understanding of

biological processes. Furthermore, it exposed a key limitation

of traditional population-level analyses, which often obscure

cellular heterogeneity by averaging data, thereby masking the

true dynamics and diversity of gene expression within cell

populations (see Figure 1) (Gresham et al., 2008; Kurimoto

et al., 2006).

To date, most transcriptomic analyses have been conducted

at the population level, offering an average transcriptome derived

from many cells. However, for specific conditions such as stem

cells, tumor cells, or rare cell populations, obtaining sufficient

material for analysis presents significant challenges. Additionally,

traditional methods fail to capture the subtle but biologically

significant variability that exists among seemingly identical cells

(Fan et al., 2020). Although vertebrate cells are estimated to

contain approximately 10⁵–10⁶ expressed mRNA molecules, the

FIGURE 1
Mass and single cell RNA sequencing technique procedures.
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proportion of different transcriptomic groups within a

population can vary greatly (Avila Cobos et al., 2020). This

variability underscores the importance of single-cell RNA

sequencing, which addresses these limitations. Figure 1

illustrates the workflow of mass versus single-cell RNA

sequencing, emphasizing the distinct types of data generated

by each method.

Single-cell RNA sequencing (scRNA-seq) has proven to be an

invaluable tool for characterizing complex and diverse cell

populations. By providing a detailed understanding of

population composition, it enables the discovery of new

subtypes and rare cell types. In the context of dynamic

biological processes, scRNA-seq has been instrumental in

reconstructing cell trajectories, offering insights into transient

intermediate cell states and identifying key regulatory genes that

drive these processes (Pokhilko et al., 2021; Li et al., 2021).

In addition to its role in trajectory analysis, scRNA-seq holds

significant potential for studying probabilistic transcriptional

bursting and unraveling gene regulatory systems. However,

deriving hypotheses from scRNA-seq data presents

computational challenges and difficulties in validation. To

address these issues, system models inferred from the data

must undergo rigorous testing and practical validation.

Furthermore, mRNA expression levels can vary across a cell

population due to either deterministic regulatory processes or

random fluctuations, a phenomenon referred to as

transcriptional noise. This variability is particularly important

as it can have a significant impact on cell fate decisions (Luo et al.,

2023; Edwards et al., 2023).

More broadly, scRNA-seq enables researchers to explore the

distinct characteristics of individual cells within complex tissues

and organ systems. This capability provides critical insights into

how cellular subpopulations respond to environmental changes.

Moreover, scRNA-seq has revealed the extent of transcriptomic

variability, including both coding and non-coding RNAs, on a

genome-wide scale. By offering a powerful approach to unravel

time-dependent transcriptional networks during transitional

processes or in response to external stimuli, scRNA-seq

overcomes the limitations of population-level analyses, which

often obscure such dynamics (Li et al., 2021). Table 1 compares

bulk RNA sequencing with single-cell RNA sequencing,

summarizing their key differences (Zhao et al., 2021).

Progresses in single-cell RNA
profiling techniques and innovations

Advances in life science research continue to accelerate, with

scientists increasingly leveraging single-cell RNA sequencing

tools to reduce the costs of dissecting cellular information.

These advancements enable a more detailed exploration of the

molecular behavior of individual cells, thereby enhancing our

understanding of cellular biology (see Figure 2). Among these

innovations is the Single-Cell Integrative Label Sequencing tool

(SCI-seq), which simultaneously constructs multiple single-cell

information libraries and analyzes cellular copy number

heterogeneity. By significantly increasing the number of tissue

cells that can be analyzed while reducing library preparation

costs, SCI-seq offers substantial benefits for studying cellular

diversity (Vitak et al., 2017; Chen et al., 2021).

Building on these developments, another study (Chen et al.,

2017) introduced a novel single-cell whole-genome amplification

technique capable of detecting copy number variations (CNVs)

at the kilobase level. This method also facilitates the efficient

identification of mutations associated with various diseases.

Similarly, additional research (Guo et al., 2017) presented the

scCOOL-seq technique, a parallel sequencing method for single

cells. This tool provides simultaneous insights into genomic

conditions, nuclear micro-environment organization,

chromosome set duplications, and DNA methylation. Notably,

TABLE 1 Key differences between bulk and single-cell RNA sequencing.

Bulk RNA seq Single cell RNA seq

Measures the average gene expression across heterogeneous cells Analysis gene expression profiles of individual cells

RNA from many different cell types are extracted RNA from individual cells extracted

Millions of cells are pooled together into a single RNA sample Each RNA transcripts investigated separately

Multiple elements (cells) are combined and sequenced together in a
single run

Sequenced individually

Low resolution approach Low resolution approach

Mask the important information’s available at small scale cellular level Can show cellular heterogeneity and rear cell populations

Applied for gene expression profiling Study cellular heterogeneity

Used for transcriptome annotation Used for cell type identification and characterization

Typically less expensive and easier to perform More technically challenging, requiring higher costs, advanced computational tools, and data
analysis
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scCOOL-seq can detect a range of genomic activities and DNA

structures, including heritable epigenetic methylation, where a

methyl group binds to specific gene locations (Clark et al., 2017).

Furthermore, Topographic Single-Cell RNA Sequencing (TSCS)

(Casasent et al., 2018) represents another groundbreaking

approach. TSCS offers highly sensitive spatial information for

individual cells, particularly cancer cells, allowing researchers to

study their positional data and malignant behavior with

remarkable precision.

Another notable technique highlights a highly efficient and

minimally variable single-cell RNA sequencing approach that

utilizes droplet-based microfluidics. This method isolates,

amplifies, and barcodes the genetic material of individual cells,

enabling a more comprehensive analysis of genetic material

across diverse cell populations (De Jonghe et al., 2023). In

addition, Microwell-seq, developed by another researcher

(Han et al., 2018), is a sophisticated and cost-effective single-

cell RNA sequencing method. It not only advances the study of

various single-cell RNA tools but also significantly reduces

examination costs by using multi-dimensional analysis

encapsulated within oil droplets.

Similarly, SPLiT-seq, another cost-efficient tool based on the

concept of barcoding, further reduces the expense of single-cell

RNA transcriptomic sequencing to as low as one cent per cell. By

lowering the cost barrier for single-cell analysis, SPLiT-seq makes

this technology more accessible to a broader range of researchers

(Rosenberg et al., 2018). Currently, no universally standardized

single-cell sequencing techniques exist, so researchers typically

select methods based on their specific study goals and available

resources (Pullin and McCarthy, 2024).

Single-cell transcriptome sequencing tools can generally be

categorized into various types based on the portion of the

transcript they cover. These categories include full-length

transcriptome sequencing methods, such as MATQ-seq

(Sheng et al., 2017), SMART-seq2 (Picelli et al., 2013),

ICELL8 (Goldstein et al., 2017), and SUPeR-seq (Fan et al.,

2015), as well as 5′-end transcriptome sequencing techniques,

exemplified by STRT-seq (Islam et al., 2011). Additionally, 3′-
end transcriptome sequencing techniques, such as Chromium

(10X Genomics) (Zheng et al., 2017) (10X Genomics), Fluidigm

C1 (DeLaughter, 2018), Drop-seq (Macosko et al., 2015), and

inDrop (Klein et al., 2015), offer distinct benefits depending on

the research objectives.

Full-length transcriptomic sequencing techniques in single-

cell RNA sequencing (scRNA-seq) offer a unique advantage by

capturing complete RNA molecules, including their 5′ and 3′
ends. This holistic approach allows for the simultaneous analysis

of both transcriptomic and genotypic data at the single-cell level.

By detecting full-length isoforms and single nucleotide variants

(SNVs), these methods enable researchers to directly correlate

genetic variations with their effects on gene expression. This is

particularly useful in studies examining the effects of pathogenic

genetic variants, as it provides essential insights into how specific

mutations affect gene expression, splicing, and cellular functions.

These integrated results are crucial for understanding disease

mechanisms and informing the development of targeted

therapies (Chen G. et al., 2019; Choi et al., 2020).

However, full-length transcriptomic sequencing methods

also face several challenges, including lower accuracy, slower

processing speeds, and higher costs (Byrne et al., 2019). While

alternative approaches that focus solely on the 5′ or 3′ ends of
transcripts can mitigate some of these issues, they restrict the

ability to investigate allele-specific gene expression and

alternative splicing. Many full-length sequencing techniques,

such as MARS-seq, depend on flow-activated cell sorting

(FACS), which requires a large starting sample volume. This

limitation makes these methods impractical for small sample

sizes, such as those from fine-needle aspiration. Additionally,

FACS necessitates the use of antibody beads for cell sorting,

which can hinder the classification of rare cell subtypes. Thus,

FIGURE 2
Timeline of some of improvements in single cell sequencing methods as a base for technology progressions to the next level.
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each method comes with trade-offs that influence data depth,

quality, and the subsequent biological and numerical

interpretations (Keren-Shaul et al., 2019; Li et al., 2012).

Unlike mass sequencing, single-cell RNA sequencing is not a

“one-size-fits-all” approach. The depth of analysis varies

depending on the protocols used, the types of cells being

studied, isolation techniques, sequencing methods, and the

stringency applied during library preparation (Pedersen and

Olsen, 2020). The process begins with isolating individual cells

from biological samples, but this step poses a significant

challenge due to the need for accurate cell capture. To

improve the precision of transcriptome expression analysis,

highly sensitive isolation techniques and skilled personnel are

essential. Several methods are available for isolating single cells

from biological samples, including limiting dilution, FACS,

micromanipulation, laser capture microdissection (LCM), and

microfluidics (Gautam et al., 2021).

The limiting dilution method uses pipettes to isolate targeted

cells from mixed populations by diluting the sample. While

simple, this technique is less productive compared to other

methods. In contrast, microdissection or microinjection is

typically employed for isolating cells from very small

quantities, such as early embryos or uncultured

microorganisms. Although effective for these small samples,

these methods are labor-intensive and have low throughput

(Fuadiyah et al., 2022).

Fluorescence-Activated Cell Sorting (FACS) is widely used for

selecting individual cells, but it requires processing large volumes

(typically >10,000 cells) in suspension. Known for its efficiency,

FACS is, however, hindered by slow sample processing (Sutermaster

and Darling, 2019). On the other hand, Laser Capture Micro-

Dissection (LCM) is a sophisticated technique that uses a laser,

guided by a computer, to select individual cells from solid tissue

specimens. While offering rapid processing, LCM requires optical

microscopy for identifying single cells within complex tissues, as well

as specialized expertise (Griesser et al., 2020).

Emerging as a popular technique, microfluidics offers

minimal specimen usage, precise fluid control, and low costs.

This method is advantageous for isolation efficiency and clarity

in targeting cells. Ultimately, each method has its own strengths

and weaknesses, making them suitable for different applications

in single-cell isolation (Lamanna et al., 2020).

Different single-cell RNA sequencing (scRNA-seq) methods

offer distinct advantages and limitations, and numerous analyses

have compared these techniques extensively. For example,

Smart-seq2 is recognized for its ability to identify a larger

number of expressed genes compared to other scRNA-seq

tools, including CEL-seq2 (Hashimshony et al., 2016), MARS-

seq (Jaitin et al., 2014), Smart-seq (Ramsköld et al., 2012), and

Drop-seq (Ziegenhain et al., 2017). However, recent work by

Sheng et al. has shown that MATQ-seq, another full-length

transcriptome sequencing method, can outperform Smart-seq2

in detecting genes with low expression levels (Sheng et al., 2017).

Full-length single-cell RNA sequencing techniques, such as

MATQ-seq, are particularly valuable for investigating isoform

usage, allelic expression, and RNA editing due to their

comprehensive coverage of the transcriptome. These methods

offer distinct advantages over 3′-end or 5′-end sequencing

approaches, especially when studying lowly expressed

transcripts (Hagemann-Jensen et al., 2020). On the other

hand, droplet-based tools like Drop-seq (Macosko et al.,

2015), InDrop (Klein et al., 2015), and Chromium (Zheng

et al., 2017) excel in providing high-throughput parallel

sequencing at a lower cost per cell. These techniques are ideal

for analyzing large numbers of cells, making them particularly

effective in detecting sub-populations within complex tissues or

cancer specimens. Additionally, some single-cell RNA

sequencing methods, such as SUPeR-seq (Fan et al., 2015)

and MATQ-seq (Sheng et al., 2017), can capture both polyA+

and polyA− RNAs. This ability is crucial for sequencing long

non-coding RNAs and circular RNAs, further enhancing the

utility of these advanced techniques.

To assess technical differences between various cell types and

spike-ins, such as External RNA Controls Consortium (2005),

UniqueMolecular Identifiers (UMIs) are commonly employed in

single-cell RNA sequencing techniques. RNA spike-ins

transcripts with known sequences and quantities—are used to

calibrate RNA hybridization assays like RNA sequencing. UMIs

improve the accuracy of molecular counts by distinguishing

between unique RNA molecules (Ziegenhain et al., 2022).

While spike-ins are used in methods such as Smart-seq2 and

SUPeR-seq, they are not compatible with droplet-based

techniques. Conversely, UMIs are predominantly employed in

3′-end sequencing methods like Drop-seq (Macosko et al., 2015),

InDrop (Klein et al., 2015), and MARS-seq (Jaitin et al., 2014).

Therefore, researchers can choose the most suitable single-cell

RNA sequencing method based on practical factors, such as the

number of cells to be sequenced and cost considerations.

Current progresses in single-cell RNA
sequencing tools

The investigation of cells dates back to the 16th century,

beginning with early observations through rudimentary

microscopes invented by Zacharias Janssen and Hans

Lippershey (Hawaldar, 2017). In the 17th century, pioneers

like Robert Hooke and Anton van Leeuwenhoek observed the

first living cells. However, it took nearly two centuries before cells

were fully understood as both structural and functional units of

life. Early research aimed to enhance the perception and study of

cells within complex multicellular networks (Mazzarello, 1999).

The development of single-cell RNA sequencing (scRNA-

seq) began with the sequencing of transcripts from single

blastomeres and oocytes (Tang et al., 2009). This

breakthrough led to the introduction of new methods for
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scaling up cell quantities and improving RNA sequencing

techniques (see Table 2). Over time, significant reductions in

costs and advancements in automation have greatly enhanced

scRNA-seq technologies. Despite these improvements, the core

concept of single-cell RNA sequencing analyzing gene expression

at the single-cell level has remained consistent (Wang S.

et al., 2023).

Single-cell investigations in humans have profoundly

advanced our understanding of developmental processes,

biological activity, aging, and disease characterization,

including tumor development (Puram et al., 2017). However,

creating universal standards for single-cell RNA transcript

analysis continues to present challenges. Each method requires

careful decision-making to ensure meaningful results. This

includes selecting the appropriate specimen types, determining

cell quantities and preparation methods, choosing suitable

single-cell RNA sequencing techniques and protocols, and

designing effective computational analysis frameworks.

Ultimately, successful single-cell RNA transcriptomic analysis,

yielding interpretable data and relevant scientific insights,

depends on well-defined experimental protocols (Lafzi et al.,

2018; Zhang Z. et al., 2021).

Single-cell isolation process and library
preparation

Single-cell isolation and library preparation are critical steps

in single-cell RNA sequencing (scRNA-seq), enabling the study

of gene expression at the individual cell level. The first step is

isolating individual cells from tissues or heterogeneous

populations, which is essential for capturing high-quality

single cells while preserving their genomic and biochemical

integrity. This isolation process allows for a detailed analysis

of specific genomic and molecular operations. There are several

methods to achieve this, including Fluorescence-Activated Cell

Sorting (FACS), Microfluidic Devices (e.g., Drop-Seq or 10x

Genomics), Laser Capture Microdissection (LCM), Limiting

Dilution, Magnetic-Activated Cell Sorting (MACS), and

manual pipetting (Arsenio, 2020; Sant et al., 2023).

The methods used for isolating single cells and capturing

their profiles vary depending on the organism, tissue, or cell type

being studied. Cells can be isolated by selecting whole cells,

isolating specific cell nuclei or organelles, or targeting cells

expressing specific marker proteins. Each isolated cell’s

transcriptome is then uniquely barcoded before its RNA is

converted into complementary DNA (cDNA) (Sant et al.,

2023). However, scRNA-seq methods are not without

challenges, including the issue of ’artificial transcriptional

stress responses.’ These responses occur when the cell

separation process inadvertently activates stress-related genes,

leading to synthetic alterations in the cell’s transcriptional profile.

For instance, protease-based cell separation at 37°C has been

shown to induce stress-related gene expression, potentially

resulting in inaccuracies in cell type identification (van den

Brink et al., 2017).

Once the cells are isolated, the next critical step is library

preparation, which converts RNA into a form suitable for

sequencing. The isolated cells are lysed to release their

contents, including RNA. mRNA is then captured, and

TABLE 2 Advancements in single-cell RNA sequencing technologies.

Methods Applications in single cell RNA sequencing

SCI-seq Can simultaneously construct multiple single cell information libraries and analysis heterogeneity in body cell copy number

scCOOL-seq Sequencing single cells by parallel method and analysis of methylated DNA

TSCS Enabling precise spatial positional data for individual cells

Microwell-seq Significantly reduce the cost of examination by one cent

SMART-seq2 Enable entire length transcriptome sequencing mechanisms

Drop-seq and Chromium Can give huge parallel sequencing of single cells

SPLiT-Seq Analyzing single cells in tissues where isolation is challenging

InDrops Identifying transcriptional changes in response to stimuli and high-throughput gene expression profiling

sci-RNA-seq Mapping developmental trajectories

CITE-Seq Simultaneous profiling of gene and protein expression

ATAC-Seq + scRNA-Seq Investigating the interplay between chromatin state and transcriptional activity

Seq-Well Profiling rare cell types or small tissue samples and studying cellular dynamics in resource-limited settings

10x Genomics Chromium Mapping cellular heterogeneity in tissues and analyzing immune responses in cancer or infectious diseases
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subsequently converted into cDNA. Full-length cDNA is

synthesized from mRNA transcripts using reverse

transcriptase with terminal transferase activity. This enzyme,

in combination with a second “template-switch” primer,

produces cDNAs with two universal priming sequences. The

cDNA is then fragmented and ligated to sequencing adapters,

making it compatible with high-throughput sequencing

platforms. The adapters used are specific to the sequencing

technology, such as Illumina or PacBio. Once barcoded

cDNAs from each isolated cell or nucleus are generated, they

can be sequenced using various high-throughput sequencing

techniques, yielding reads for downstream bioinformatics

analysis (Trombetta et al., 2014).

Single-cell transcriptomic sequence
data analysis

Analyzing single-cell RNA sequencing (scRNA-seq) data

enables the discovery of novel cellular subpopulations,

pathways, and mechanisms, thereby transforming biomedical

research with advances in computational tools and techniques (Li

et al., 2020). As scRNA-seq techniques continue to evolve,

particularly in the context of clinical specimens, the analysis

of resulting large datasets has become increasingly challenging.

However, this step is crucial for fully leveraging these advanced

techniques in life sciences and clinical studies. The landscape of

scRNA-seq data analysis is rich with tools and methods designed

to handle the complexity and scale of single-cell data. Notably,

nearly 1,000 bioinformatics tools have been developed and made

available as of 28 May 2021 (Hwang et al., 2018). Among these,

several software tools, including Seurat, Scanpy, Monocle, and

CellRanger, are widely used to facilitate tasks such as clustering,

dimensionality reduction, and trajectory analysis. For

visualization, methods like UMAP, t-SNE, and violin plots are

extensively employed to display data and highlight gene

expression patterns. Additionally, data repositories such as the

Human Cell Atlas and Single Cell Portal provide valuable

reference datasets for cell-type identification and cross-study

comparisons (Zappia et al., 2018; Holland et al., 2020).

The analysis of single-cell transcriptomic sequencing data

involves several critical steps. First, data preprocessing ensures

quality by filtering out low-quality cells and normalizing read

counts to correct for technical variability. Following this, highly

variable genes are selected for further analysis. To simplify data

visualization while preserving essential features, dimensionality

reduction techniques like PCA, t-SNE, or UMAP are applied.

Subsequently, clustering algorithms identify groups of cells with

similar expression patterns, and these clusters are annotated

using marker genes to determine cell types. Differential gene

expression analysis is then performed to highlight genes with

significant changes between populations. Furthermore, for

studying dynamic processes, trajectory or pseudotime analysis

reconstructs cellular differentiation paths. Finally, integrating

data from multiple experiments ensures consistency and

broader insights while addressing challenges such as batch

effects and dropout events (Wu and Zhang, 2020; Shi, 2021).

In scRNA-seq data analysis, several challenges must be

addressed. For example, batch effects, arising from technical

variability across experiments, can be mitigated using

integration tools to ensure consistent results. Additionally,

dropout events, where some RNA molecules are not captured,

contribute to data sparsity and require specialized handling to

avoid bias. Moreover, the computational complexity of analyzing

large datasets often demands high-performance computing

resources to manage processing requirements efficiently.

Together, these approaches are crucial for ensuring the

reliability and efficiency of scRNA-seq data analysis (Kiselev

et al., 2019; Kharchenko, 2021).

During the preparation of single-cell mixtures, issues such as

cell death, membrane damage, or multi-cellular adhesion can

arise due to natural conditions and experimental challenges. To

mitigate the impact of low-quality cells on gene expression data,

quality control (QC) measures are essential. Techniques like

Seurat (Stuart et al., 2019), scran (Lun et al., 2016), and

scanpy (Wolf et al., 2018) are commonly used for this

purpose. Seurat has become an extensively utilized R package

designed for the analysis and interpretation of single-cell RNA

sequencing (scRNA-seq) data. It provides a variety of

functionalities for quality assessment, preprocessing, and

dimensionality reduction. For instance, it enables filtering cells

based on parameters like mitochondrial gene content and

normalizes datasets to mitigate technical inconsistencies. The

package facilitates the clustering of cells into specific

subpopulations by examining gene expression profiles and

supports differential expression analysis between these groups.

Furthermore, Seurat allows the integration of diverse data types,

such as gene expression and protein markers, while offering

visualization methods like t-SNE and UMAP to uncover cellular

diversity. It also incorporates advanced tools for trajectory

analysis, spatial transcriptomics, and gene set enrichment

analysis, positioning itself as an all-in-one solution for

scRNA-seq data processing (Huang et al., 2021). For instance,

Seurat assesses several metrics to determine whether a cell should

be retained, including the number of genes, the number of unique

molecular identifiers (UMIs), the proportion of mitochondrial

genes, and the ratio of ribosomal protein genes (Pereira

et al., 2021).

Notably, there is no one-size-fits-all filter threshold, as it

depends on the cell types and tissues being analyzed. For

example, some studies suggest thresholds such as a maximum

of 100 or a minimum of 6,000 expressed genes, a maximum of

200 UMIs, and a minimum of 10% mitochondrial genes

(Lambrechts et al., 2018). Another study recommended

thresholds of 200–2,500 genes per cell, 300–15,000 UMIs per

cell, and less than 10% mitochondrial genes (Fan et al., 2019).
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In scRNA-seq analysis, each cell is treated as an individual

sample. However, raw expression data often cannot be used

directly due to systemic biases and technical noise, such as

variations in sequencing depth and transcript capture

efficiency. Thus, normalization is essential to address these

issues and ensure comparability across cells. An evaluation of

seven normalization techniques, including BASiCS, GRM,

Linnorm, SAMstrt, SCnorm, scran, and Simple Norm,

highlights the importance of proper normalization (Lytal

et al., 2020; Hafemeister and Satija, 2019).

Typically, scRNA-seq datasets include thousands of cells and

millions of genes. Many of these genes are housekeeping genes

with little variation, which may obscure meaningful biological

information (Choudhary and Satija, 2022). To overcome this,

identifying highly variable genes (HVGs) with significant cell-to-

cell expression differences is critical for detecting biological

stimuli and reducing computational burden. The quality of

HVGs significantly affects cell grouping accuracy. A study

evaluating seven techniques for identifying HVGs, including

BASiCS, Brennecke, scLVM, scran, scVEGs, and Seurat, found

significant differences in performance and operational times. For

example, scran identified a reliable number of HVGs with good

performance, while Brennecke showed stable results across

various datasets. Moreover, scran and Seurat performed well

in certain datasets, whereas BASiCS and scLVM_LogVar were

noted for their stability compared to other methods (Yip et al.,

2019; Miao et al., 2020).

Data preprocessing
Proper preprocessing is essential to ensure the quality and

accuracy of scRNA-seq data. The process begins with stringent

quality control to exclude low-quality cells, often identified by

irregular metrics such as elevated mitochondrial gene expression

or reduced unique molecular identifiers (UMIs). Next,

normalization is performed to adjust raw read counts,

compensating for differences in sequencing depth and

technical biases, thus enabling meaningful comparisons

between cells. This step is critical for achieving consistent

gene expression measurements by scaling raw data to a

standard baseline. Common normalization methods include

library size scaling, log transformation, and advanced

approaches like SCTransform or scran. Accurate

normalization is vital for subsequent analyses, such as

clustering, differential gene expression, and trajectory

inference, as it reduces technical noise and highlights genuine

biological differences (Hafemeister and Satija, 2019). Next,

feature selection is performed to identify highly variable genes

that capture the most biologically relevant variations in the

dataset, thus setting the stage for downstream analyses

(Choudhary and Satija, 2022).

Dimensionality reduction follows preprocessing as an

essential step to simplify the complexity of scRNA-seq

datasets. Techniques such as Principal Component Analysis

(PCA), t-SNE (t-Distributed Stochastic Neighbor Embedding),

and UMAP (Uniform Manifold Approximation and Projection)

are commonly employed to transform high-dimensional data

into fewer dimensions while preserving essential biological

information. By doing so, these methods facilitate the

visualization and interpretation of data, revealing patterns and

relationships between cells, such as the clustering of similar cell

populations, in a more comprehensible two- or three-

dimensional space (Townes et al., 2019; Raimundo et al., 2020).

Building on dimensionality reduction, clustering group’s

cells with similar gene expression profiles to uncover distinct

cell populations. To achieve this, algorithms like k-means or

Louvain are commonly used to identify clusters based on shared

patterns in the data. After clustering, cell-type annotation assigns

biological identities to each group by comparing their gene

expression signatures with known marker genes or reference

datasets. This step is fundamental for understanding the

functional roles of the identified cell populations within their

biological context (Chen L. et al., 2020; Hozumi et al., 2023).

In many studies, integrating datasets from multiple samples

or experiments is a critical step to gain a comprehensive

understanding of biological variability across different

conditions or subjects. Tools like Seurat and Harmony are

often utilized for merging scRNA-seq data, correcting batch

effects, and addressing technical discrepancies between

datasets. This integration allows for more robust analysis and

facilitates clearer comparisons of cellular features, ultimately

improving the generalizability of findings across diverse

experimental settings (Butler et al., 2018; Ryu et al., 2023).

The initial processing of unprocessed single-cell

transcriptome sequencing datasets often begins with handling

data in FASTQ and BCL formats, depending on the source and

sequencing platform. For standard quality control, data must first

be in FASTQ format (Andrews et al., 2021). When dealing with

BCL data, conversion is required, and tools such as the cellranger

mkfastq pipeline, which leverages the banded bcl2fastq program,

are commonly employed. This process requires a CSV matrix

dataset with at least three columns: lane, sample, and index

alongside the path to the BCL extracts. After conversion to

FASTQ format, tools like FastQC can assess the quality of raw

single-cell RNA sequencing data. This step ensures data integrity

and identifies potential issues early in the analysis pipeline,

thereby supporting reliable downstream analyses (Brown

et al., 2017; Andrews et al., 2021).

Exploratory analysis
To uncover functional errors and biological significance

within cell populations, conducting functional enrichment

analyses on differentially expressed genes is essential. Among

the widely used methods, Gene Ontology (GO) and Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathway

analysis stand out as effective tools for interpreting single-cell

datasets. Numerous techniques for functional enrichment have
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been developed, with Huang et al. providing a comprehensive

evaluation of 68 methods, highlighting their respective strengths

and limitations (Fang et al., 2021).

Building upon functional enrichment, trajectory and

pseudotime analysis reconstructs dynamic biological processes,

such as cell differentiation or disease progression, by arranging

cells along a continuum based on their gene expression profiles.

Algorithms like Monocle and Slingshot are instrumental in

inferring the order and relationships between cells, offering

insights into temporal changes or developmental pathways.

This approach is particularly valuable for understanding

transitions between cell states and identifying key regulatory

genes driving these processes (Cheng et al., 2023). For pathway-

based investigations, Gene Set Variation Analysis (GSVA) is

especially valuable. GSVA evaluates enrichment outcomes across

various signaling pathways, thereby elucidating the sources of

morphological variations. When combined with KEGG pathway

analysis, GSVA provides physiologically informative results that

enhance our understanding of cellular dynamics (Zhong

et al., 2022).

To identify enriched transcription factors within each cell

group, the SCENIC (Single-Cell Regulatory Network Inference

and Clustering) technique is a widely used method. SCENIC

identifies transcription factors by detecting enrichment of TF

motifs and their relationships with target genes (Van de Sande

et al., 2020). While SCENIC can be implemented in both R and

Python, pySCENIC is recommended for large datasets due to its

superior performance. The latest version of SCENIC supports

analysis for Homo sapiens, Mus musculus, and Drosophila

melanogaster, with the flexibility to construct custom

databases for other species. Despite its versatility, SCENIC has

faced criticism for its limited ability to capture dynamic changes

in gene regulation across different cell types (Van de Sande et al.,

2020). An alternative to SCENIC is IRIS3, a cell-class-specific

regulon reasoning server. IRIS3 is particularly appreciated for its

user-friendly web interface, making it accessible to users with

limited programming experience. However, there remains room

for improvement in its reliability and efficiency, which could

enhance its adoption and impact in single-cell RNA sequencing

studies (Ma et al., 2020).

Overall, scRNA-seq data analysis has revolutionized our

understanding of cellular biology by enabling the discovery of

novel cell types, developmental pathways, and gene regulatory

mechanisms. Its integration with other data types and

application in disease research, particularly in cancer and

cardiovascular diseases, underscores its transformative impact

on biomedical research (Hwang et al., 2018; Zhang et al., 2021b).

Spatial single-cell RNA sequencing

The spatial context of cells within multicellular organisms is

vital for understanding their functions and interactions. For

instance, stem cell differentiation during development is

shaped by cell-to-cell interactions and signaling, which are

regulated by the cells’ relative positions within the embryo.

This spatial localization influences transcription factor

expression and contributes to cellular organization and

functionality (Bingham et al., 2020). To explore such spatial

relationships, spatial transcriptomics has emerged as a powerful

collection of technologies. Unlike single-cell RNA sequencing

(scRNA-seq), which isolates cells from their native

environments, spatial transcriptomics retains spatial

relationships, offering valuable insights into how gene

expression is influenced by cellular microenvironments and

tissue architecture (Rao et al., 2021; Liao et al., 2021).

While scRNA-seq provides high-resolution gene expression

data, it loses the spatial context of tissue architecture during cell

dissociation. This disruption complicates the study of tissue-

specific functions, cell-to-cell interactions, and spatially defined

disease progression. Consequently, scRNA-seq alone may fail to

offer a complete picture of cellular interactions or the influence of

spatial localization on gene expression within tissues. To address

this limitation, spatial transcriptomics preserves tissue

organization while enabling gene expression analysis. This

allows researchers to examine the spatial distribution of cells

and their interactions in a more natural and meaningful context

(Longo et al., 2021; Ahmed et al., 2022).

Building on this concept, Location-Based Transcriptomics

maps the spatial distribution of RNA molecules within tissue

sections or individual cells. This technique enables the

identification of specific transcript expressions within intact

tissue, thereby providing a detailed spatial context at the

cellular or sub-cellular level. Consequently, it enhances our

understanding of tissue heterogeneity, cellular diversity, and

the spatial distribution of gene expression, offering deeper

insights into tissue function and sub-cellular RNA localization

(Longo et al., 2021).

Despite its advantages, spatial transcriptomics has notable

limitations compared to scRNA-seq. One major drawback is its

lower resolution, as many spatial techniques analyze gene

expression at the tissue region or spot level, encompassing

multiple cells rather than individual ones. For example,

methods like Visium capture gene expression from spatially

barcoded regions of tissue, each containing multiple cells,

thereby producing aggregated data rather than single-cell

resolution. This aggregation can obscure cellular heterogeneity

and complicate the identification of individual cell types or

interactions in densely packed tissues. Moreover, spatial

transcriptomics often focuses on a limited set of genes due to

technical constraints, whereas scRNA-seq provides genome-wide

expression profiles (Longo et al., 2021; Lee et al., 2022).

Additionally, spatial transcriptomics faces challenges related

to sensitivity, as low-abundance transcripts can be difficult to

detect. The experimental complexity and resource demands,

including specialized equipment and meticulous tissue
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handling, further contribute to the limitations of this technology.

Interpreting the data can also be challenging, as the blending of

gene expression from multiple cells within a spatial spot masks

finer cellular details. In densely packed tissues like the brain or

tumors, spatial transcriptomics may fail to resolve intricate

cellular interactions, making it less effective in such contexts.

Despite these challenges, spatial transcriptomics complements

scRNA-seq by preserving tissue context, albeit with trade-offs in

resolution, sensitivity, and gene coverage (Cable et al., 2022; Li

et al., 2023).

To categorize spatial transcriptomics techniques, they can be

divided into two main approaches: Next-Generation Sequencing

(NGS)-based methods and Imaging-based methods. Each has

unique principles and applications, offering complementary

ways to spatially resolve gene expression (Rao et al., 2021).

NGS-based spatial transcriptomics focuses on RNA transcript

localization within tissue sections before high-throughput

sequencing. This involves placing tissue samples on slides

embedded with spatially barcoded capture probes, which bind

RNA molecules, preserving their spatial coordinates. Sequencing

then generates comprehensive transcriptomic data mapped back

to the original spatial locations. Prominent examples like 10x

Genomics Visium and Slide-seq exemplify NGS-based methods.

However, these methods often lack single-cell resolution, limiting

their ability to capture fine cellular heterogeneity (Larsson et al.,

2021; Liu et al., 2020).

Imaging-based spatial transcriptomics utilizes approaches

like in situ sequencing (ISS) and in situ hybridization (ISH) to

examine RNA directly within tissue sections. These techniques

amplify RNA molecules and identify target genes through

sequencing or hybridization. For example, RNAscope employs

fluorescent probes to detect specific RNA targets with exceptional

spatial resolution. Similarly, methods such as MERFISH

(Multiplexed Error-Robust Fluorescence In Situ

Hybridization) and seqFISH (Sequential Fluorescence In Situ

Hybridization) enable visualization of the spatial distribution of

hundreds or even thousands of transcripts simultaneously. The

key advantage of these imaging-based methods is their ability to

achieve near single-cell resolution while maintaining the

structural integrity of the tissue. However, they are limited by

their focus on predefined gene sets rather than providing a

comprehensive view of the entire transcriptome (Gyllborg

et al., 2020; Petukhov et al., 2022).

Spatial transcriptomics has diverse applications across

biomedical fields. In neurology, it maps gene expression in

brain tissues, revealing insights into neuronal organization,

connectivity, and function. This has been particularly valuable

in understanding disorders like Alzheimer’s disease, Parkinson’s

disease, and autism, where spatially defined gene expression

changes play significant roles in disease mechanisms (Ya

et al., 2023).

In embryology, spatial transcriptomics gives significant

insights into gene expression models during development,

helping researchers to explore processes like cell

differentiation, tissue morphogenesis, and organ formation.

Similarly, in cancer research, this technology uncovers tumor

heterogeneity, maps the tumor microenvironment, and

investigates interactions between cancer cells and their stromal

or immune counterparts. These insights improve our

understanding of cancer biology and inform better diagnostic

and therapeutic strategies (Rao et al., 2021; Yu et al., 2022).

In the context of cancer, spatial transcriptomics enables for a

detailed analysis of tumor heterogeneity by identifying particular

gene expression patterns across different tumor regions. This

helps to elucidate why certain tumor areas are more aggressive or

treatment-resistant. Moreover, it facilitates the investigations of

interactions between cancer cells and their microenvironment,

including stromal cells, immune cells, and extracellular matrix

components. By preserving tissue architecture, spatial

transcriptomics maps critical cellular processes including

angiogenesis, immune evasion, and therapy resistance within

the tumor’s spatial context. It also aids in detecting spatially

distinct biomarkers, enhancing cancer diagnosis, prognosis, and

the assessment of therapeutic impacts on gene expression and cell

interactions (Hu et al., 2022; Wang N. et al., 2021).

By preserving tissue architecture, spatial transcriptomics

allows the mapping of key cellular processes like angiogenesis,

immune evasion, and therapy resistance within the tumor’s

spatial context. It also supports the identification of spatially

distinct biomarkers that can improve cancer diagnosis and

prognosis. Additionally, this technology aids in assessing the

impact of therapies at the molecular level by visualizing how

treatments affect gene expression and cell interactions within

specific tumor regions. These applications make spatial

transcriptomics a powerful tool for advancing precision

oncology and developing more effective cancer treatments (Li

et al., 2022; Yu et al., 2022).

Overall, spatial transcriptomics integrates spatial

information with transcriptomic data, providing a

comprehensive understanding of cellular functions within

native tissue architecture. By preserving spatial context, this

technology enables the study of complex biological processes,

including cellular differentiation, tissue development, and

microenvironment interactions. Its ability to correlate gene

expression with structural features makes it a transformative

tool for advancing basic research and translational medicine (Rao

et al., 2021; Liao et al., 2021).

Single-cell sequencing applications in
the field of biomedical research

Single-cell RNA transcriptomic investigation has emerged as

a transformative tool in modern science, celebrated for its

precision and efficiency in unraveling cellular complexity

across various fields, including human, animal, and plant
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research. By enabling the detailed analysis of individual cells, this

technology offers unparalleled insights into rare cell types, their

unique gene expression profiles, and the intricate interactions

within cellular ecosystems. These capabilities have revolutionized

our understanding of biological systems, offering new

perspectives on cellular configurations and their roles in

health and disease. For instance, the ability to identify elusive

subpopulations of cells and uncover molecular mechanisms

driving pathological processes has opened new research

frontiers, facilitating advancements in personalized medicine,

developmental biology, and agricultural science. As its

applications continue to expand, single-cell transcriptomics

provides critical tools for addressing complex biological

challenges (Shojaee et al., 2021).

Although initially developed for the study of animal and

human cells, single-cell RNA sequencing is now gaining traction

in plant science. However, its application in this domain remains

relatively novel and underexplored. Transitioning to plant

systems presents unique challenges, such as practical

limitations and a less comprehensive understanding of plant

cell diversity compared to animal cells. Despite these obstacles,

researchers have made significant progress, particularly with

Arabidopsis thaliana, a model organism extensively used in

molecular genomics. Arabidopsis is favored for its manageable

cell count, well-characterized gene markers, and robust cell

isolation methods. For example, enzymatic degradation of the

cell wall has emerged as an effective technique for isolating plant

cells, enabling the detailed study of their gene expression profiles.

These advances in single-cell transcriptomics are unlocking

unprecedented insights into plant biology, with applications

ranging from developmental studies and stress responses to

crop improvement (Bawa et al., 2022; Sun et al., 2024).

Single-cell transcriptomic analysis provides an in-depth

understanding of cellular processes, revealing how individual

cells interact with their surroundings and respond to local factors

and neighboring cells. This detailed approach is particularly

valuable in clinical diagnostics, as studying the behavior of

unique “outlier” cells can yield critical insights into disease

progression, antimicrobial resistance, and tumor dynamics.

Since atypical cells often play a central role in driving

pathological conditions, their investigation is vital for creating

targeted therapies. The emergence of advanced single-cell RNA

sequencing technologies has transformed this field, allowing

researchers to uncover the molecular basis of cellular behavior

with unparalleled accuracy. Consequently, single-cell analysis has

become essential for deciphering complex disease mechanisms,

refining treatment strategies, and advancing drug discovery. By

linking molecular insights to clinical applications, single-cell

technologies are setting the stage for more personalized and

effective therapeutic solutions (Algabri et al., 2022; Mohammadi

et al., 2019).

Tissues and organs are composed of highly organized and

functionally diverse groups of cells, with variations influenced by

physiological changes, differentiation pathways, and spatial

contexts. While these microenvironments typically remain

stable under normal conditions, they can be disrupted in

extreme scenarios, such as tumor formation. To better

understand tumors—including their development, cell origins,

growth, malignancy, and treatment responses—it is essential to

analyze the tumor microenvironment, with a particular focus on

immunological and stromal components (Hinshaw and

Shevde, 2019).

Single-cell transcriptomic sequencing enables detailed

analysis of both healthy and tumor cells across different stages

of tumor development. This capability facilitates accurate

comparisons and assessments of treatment efficacy, ultimately

leading to more effective therapeutic strategies. Initially, single-

cell RNA sequencing (scRNA-seq) focused on analyzing distinct

tissue regions and cell types, generating extensive datasets for

deeper insights (Lei et al., 2021). Furthermore, single-cell RNA

sequencing data can be utilized to infer gene regulatory networks

(GRNs) by clustering genes into co-regulated “modules” based

on similarities in their expression patterns. This approach

enhances our understanding of the regulatory relationships

and interactions among genes, further advancing the field of

tumor biology (Dautle et al., 2023).

Applications in cancer research

Single-cell RNA sequencing (scRNA-seq) has significantly

transformed cancer research by offering detailed insights into

tumor heterogeneity, the tumor microenvironment, malignancy,

and resistance to treatments. Unlike traditional bulk sequencing,

which averages data across all cells, scRNA-seq examines

individual cancer cells, revealing genetic and phenotypic

variations that may be overlooked by conventional methods.

This high-resolution technology uncovers differences between

cancer cells, including rare subpopulations that drive tumor

growth and resist therapies. By focusing on single cells,

scRNA-seq provides a clearer understanding of oncogenic

pathways, gene expression, and cellular behaviors, offering

valuable information for cancer biology research (Zhang et al.,

2021b; Hong et al., 2020).

In addition to deciphering tumor cell diversity, scRNA-seq

offers a comprehensive view of the tumor microenvironment,

uncovering interactions between cancer cells and their

surrounding non-cancerous environments, including immune

cells, stromal cells, and the extracellular matrix. This detailed

analysis allows the identification of specific cell types, molecular

markers, and dynamic processes, loke oncogenesis, proliferation,

and metastasis. Furthermore, scRNA-seq’s capacity to pinpoint

rare resistant cells contributing to treatment failure makes it an

invaluable techniques for developing targeted therapies. By

enhancing the precision of cancer diagnostics and providing

insights into novel therapeutic approaches, scRNA-seq is

Acta Biochimica Polonica
Published by Frontiers

Polskie Towarzystwo Biochemiczne (Polish Biochemical Society)12

Molla Desta and Birhanu 10.3389/abp.2025.13922

https://doi.org/10.3389/abp.2025.13922


reshaping our strategies to this complex disease (Bridges and

Miller-Jensen, 2022).

For example, scRNA-seq has been utilized to investigate

T cell receptors in colorectal tumors, revealing subclass

groupings, tissue organization, cancer variability, and gene

expression related to drug responses. This capability solidifies

scRNA-seq as an essential tool in developing new diagnostic and

therapeutic strategies for cancer (Castellanos-Rueda et al., 2021).

In another study, potential associations and transformations

among T cell classes and subclasses within tissues were

identified. Similarly, scRNA-seq was employed to explore

genomic copy number variations, DNA methylation

irregularities, and gene expression changes during colorectal

tumor onset and progression, all at a single-cell level (Bian

et al., 2018).

Furthermore, scRNA-seq is highly effective at detecting gene

expression changes throughout cancer proliferation. By analyzing

transcriptomes from individual cells in healthy tissues and

adenomas at various progression stages, researchers have

uncovered genomic variations, clonal structures, and metabolic

instabilities involved in tumorigenesis. This approach provides

valuable insights into cancer development (Li et al., 2021). For

instance, Chen et al. highlighted that in the progression from familial

adenomatous polyposis to adenocarcinoma, malignant cells retained

epithelial characteristics while rapidly migrating, emphasizing the

complexity of cancer evolution (ChenY.-C. et al., 2019). In a study of

treatment-resistant bladder cancer patients, single-cell

transcriptomic sequencing was used to explore the cancer

microenvironment, including immune cells, extracellular matrix,

blood vessels, and fibroblasts (Lee et al., 2020). A similar approach

was taken in renal cell carcinoma research, where cancerous tissues

were compared with benign kidney tissues to better understand

tumor progression and treatment responses (Zhang et al., 2021a).

Single-cell analysis plays a crucial role in identifying

molecular control points and potential treatment targets

within cancers, revealing insights often overlooked by

traditional methods. By enabling the detailed examination of

individual cancer cells, this approach allows researchers to

pinpoint key genetic and epigenetic changes that drive tumor

growth and resistance to therapies. One particularly powerful

application is the genome-wide tracking of DNA mutations,

which uncovers specific alterations that influence treatment

efficacy. These mutations can identify vulnerabilities in cancer

cells, aiding the development of targeted therapies that address

the unique molecular profiles of individual tumors (Shalek and

Benson, 2017). This approach is especially critical in cases where

standard therapies fail, due to the complex and variable nature of

individual tumors. Thus, single-cell transcriptomic sequencing

holds great promise for advancing personalized treatment

strategies (Mustachio and Roszik, 2022).

Beyond mutation tracking, single-cell investigation also

offers insights into the regulatory networks and signaling

pathways that govern cancer cell behavior. This includes

detecting dysregulated genes, transcription factors, and other

molecular mechanisms that could serve as potential intervention

points. By mapping these control points, researchers can gain a

better understanding of how cancers evolve and adapt, paving the

way for more personalized and effective treatment mechanisms.

Ultimately, single-cell sequencing technologies are not only

advancing our understanding of cancer biology but are also

transforming the precision and success of therapeutic

intervention strategies (Wang R.-Q. et al., 2021; Chen

et al., 2023).

Implications in the area of immunology

Single-cell RNA sequencing (scRNA-seq) has revolutionized

immunological research by offering detailed insights into the

immune system. This powerful technology allows the

investigations of particular immune cell types, the discovery of

novel populations, and the tracking of their interactions within

complex immune networks. By revealing the roles of specific

immune cell subsets, scRNA-seq enhances our elucidations of

immune responses in various conditions, such as infections,

autoimmune diseases, and cancer. This knowledge is pivotal

for developing targeted treatment approaches, like optimizing

cancer immunotherapy and addressing chronic inflammation,

paving the way for more precise and effective treatments (Kuksin

et al., 2021). For instance, scRNA-seq has been employed to

explore sub-populations of natural killer (NK) cells in both mice

and humans. This research identified key characteristics that

differentiate NK cells in the blood from those in the spleen and

revealed two primary subclasses, NK1 and NK2, across different

organs and species. These findings provide valuable insights into

the biological roles of NK cells and improve the translation of

animal research to human studies (Crinier et al., 2018).

Another notable application of scRNA-seq is in analyzing

dendritic cells and monocytes in the human bloodstream. One

study identified a new type of dendritic cell that shares features

with plasmacytoid dendritic cells but exhibits a unique ability to

activate T lymphocytes. This discovery highlights the potential of

scRNA-seq to uncover previously unknown immune cell

populations with critical functional roles (Villani et al., 2017).

Furthermore, scRNA-seq is invaluable for studying immune

responses during active infections. For example, research on

IL-10-expressing CD4+ T cells demonstrated that variability in

IL-10 production among helper T cells plays a vital role in

enhancing humoral immunity across different diseases. This

insight underscores the importance of single-cell approaches

in understanding immune regulation and variability (Xin

et al., 2018).

Beyond infectious diseases, scRNA-seq is instrumental in

investigating immune cell variability induced by disease agents

and other factors, such as aging. By enabling precise

identification of the genetic and transcriptional profiles of
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individual immune cells, scRNA-seq provides unprecedented

insights into the complexity of immune system functioning

(Papalexi and Satija, 2018). Aging, for example, significantly

impacts immune cell dynamics. A study utilizing scRNA-seq

on CD4+ T cells from young and aged mice revealed that aging

increases transcriptomic variability, leading to greater

heterogeneity in gene expression within immune cells. This

highlights how scRNA-seq can illuminate the molecular basis

of age-related immune system changes (Martinez-Jimenez

et al., 2017).

Implications in the gastro-intestinal
system and urinary tract system

Single-cell RNA sequencing (scRNA-seq) has become an

indispensable techniques for examining the cellular complexity

and functional dynamics of the gastrointestinal (GI) and urinary

tract systems. In the GI system, scRNA-seq uncovers the varied

functions of epithelial, immune, and stromal cells in critical

processes including digestion, nutrient absorption, and

immune defense. Additionally, it offers detailed insights into

molecular changes associated with diseases like inflammatory

bowel disease (IBD) and colorectal cancer. Likewise, in the

urinary tract, scRNA-seq maps the intricate cellular

composition of the kidney, bladder, and ureter, elucidating

mechanisms involved in filtration, reabsorption, and urine

formation. This technology also sheds light on cellular

responses in pathological conditions like chronic kidney

disease (CKD) and urinary tract infections (UTIs) (Haque

et al., 2017; Li et al., 2021).

By capturing cellular heterogeneity and dynamic states,

scRNA-seq significantly enhances our understanding of

normal physiology and disease processes, driving

advancements in precision medicine for both systems. For

example, Haber et al. utilized scRNA-seq to identify novel

subclasses of gut epithelial cells, providing insights into their

roles in maintaining intestinal homeostasis and responding to

pathogenic challenges (Haber et al., 2017). Additionally, Gao

et al. applied high-resolution scRNA-seq to investigate gene

regulatory processes in the digestive organs during human

embryonic development and within adult large intestines.

Their work has expanded knowledge on tissue-specific gene

expression and developmental trajectories, offering valuable

perspectives on organ function and maturation (Gao

et al., 2018).

Implications in the area of neurology

Single-cell RNA sequencing (scRNA-seq) has revolutionized

neuroscience by revealing the cellular and molecular diversity

within the nervous system. This cutting-edge technology enables

precise mapping of neuronal and glial cell types, shedding light

on their roles in brain development, function, and plasticity. In

neurodegenerative diseases such as Alzheimer’s, Parkinson’s, and

multiple sclerosis, scRNA-seq has uncovered disease-associated

cell states, neuroinflammatory pathways, and potential

biomarkers. Similarly, in psychiatric disorders like

schizophrenia and autism, it provides critical insights into the

mechanisms underlying neural circuit dysfunction. By offering a

high-resolution view of the nervous system’s cellular landscape,

scRNA-seq facilitates the discovery of novel therapeutic targets

and supports the development of personalized approaches in

neurology (Ofengeim et al., 2017; Cuevas-Diaz Duran

et al., 2022).

The variability among individual neurons, often driven by

specific copy number variations, poses challenges to

understanding brain circuitry and neuronal connections.

ScRNA-seq addresses these challenges by capturing different

stages of neuronal differentiation and enabling the

classification of neuron subtypes based on their molecular

signatures. Advanced methods like single-cell methylation

sequencing have further enhanced this understanding by

redefining neuronal subclasses in both mouse and human

frontal cortices through methylation pattern analysis (Xing

et al., 2023).

In addition, innovative single-cell nuclear sequencing

approaches have been applied to trace cell lineages within the

adult brain. These methods have provided crucial insights into

principal cell classes and their functional roles, deepening our

comprehension of brain organization and cellular diversity.

ScRNA-seq has also played a pivotal role in cerebellar

development research, identifying key subsets of cerebellar

cells and elucidating their roles in this complex process. Such

findings lay the groundwork for future studies in neurobiology,

offering new avenues for investigating neurological diseases and

developmental disorders (Cardona-Alberich et al., 2021;

Rosenberg et al., 2018).

Implications in the area of reproductive
and embryonic medicine

Single-cell RNA sequencing (scRNA-seq) plays a crucial role

in studying small populations of cells, with significant

applications in prenatal diagnostics and reproductive health.

By analyzing egg cells and early embryonic stages, scRNA-seq

helps select healthy embryos, potentially reducing the incidence

of genetic disorders and preventing hereditary diseases in

newborns (Hou et al., 2013; Li et al., 2017). This technology is

especially valuable for investigating embryonic development,

from the zygote stage to full maturity. It has transformed

research in early mammalian development, shifting the focus

from hypothesis-driven to discovery-driven approaches (Yan

et al., 2013).
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In model organisms like zebrafish and African cockroaches,

scRNA-seq has provided key insights into cell growth and

developmental biology (Briggs et al., 2018). Moreover, single-

cell multi-sequence sequencing has been applied to map human

embryos before implantation, uncovering the complex epigenetic

processes involved in pre-implantation development (Alanis-

Lobato et al., 2024). For example, Vento-Tormo et al. (Vento-

Tormo et al., 2018) used scRNA-seq to analyze placental cells

prior to gestation, creating detailed cell maps that identified sub-

populations and key regulatory interactions crucial for successful

placental development and modulating maternal

immune responses.

In male reproductive biology, scRNA-seq has been used to

trace gene expression during spermatogenesis, focusing on

alternative splicing patterns and identifying key regulators

involved in male germ cell development (Chen et al., 2018).

The technology has also been applied to analyze both normal and

diseased human testicular cells, uncovering hierarchical patterns

of spermatogonial subclasses, spermatocyte subtypes, and sperm

cell subclasses, along with specific markers for human germ cells.

Additionally, scRNA-seq has revealed changes in expression

profiles in testicular somatic cells from non-obstructive

azoospermia (NOA) patients, providing new insights into the

disease’s pathogenesis (Wang M. et al., 2018).

Challenges in single-cell RNA
sequencing technologies

Single-cell RNA sequencing (scRNA-seq) provides a

detailed view of transcriptomic interactions within

individual cells. However, several challenges remain with

this technology. One major issue is limited capture

efficiency; current scRNA-seq methods capture only a small

fraction (approximately 10%) of each cell’s transcriptome,

which leads to reduced sensitivity and difficulties in detecting

low-abundance transcripts (Saliba et al., 2014; Deng et al.,

2014). Additionally, the minimal input material required for

scRNA-seq libraries introduces high technical noise,

complicating data analysis and potentially obscuring true

biological variations (Kolodziejczyk et al., 2015; Marinov

et al., 2014). Efforts have been made to address technical

noise by using spike-in controls to calibrate datasets.

However, these techniques assume that spike-in transcripts

behave stably, which may not always be the case since spike-in

RNAs do not always mimic the behavior of cellular RNAs

(Mendelevich et al., 2023).

Another challenge arises from the methods used to isolate

and capture individual cells. Techniques such as micro-

manipulation and laser dissection can be labor-intensive and

require specialized equipment. More commonly, cells are

separated from tissue samples to create a suspension for

sequencing, but this process can impact cell viability and

transcriptional status due to enzymatic treatments (Machado

et al., 2021). To mitigate these issues, some studies have

developed methods for performing RNA sequencing directly

on individual nuclei, avoiding harsh enzymatic treatments

(Grindberg et al., 2013). Despite significant advancements in

scRNA-seq technology, limited capture efficiency and high

technical noise continue to hinder accuracy and precision. As

a result, ongoing efforts focus on improving experimental

configurations and enhancing the reliability of single-cell RNA

sequencing datasets (Ding et al., 2015).

Emerging in situ sequencing techniques provide an

alternative approach to traditional RNA sequencing by

enabling the capture and amplification of RNA within the

intact tissue environment. These methods allow for RNA

sequencing directly within cells, facilitating the generation of

cDNA amplicons for rolling circle amplification and sequencing.

While they offer the advantage of preserving the spatial context of

the tissue, these techniques are currently limited in their ability to

quantify only a few hundred genes per cell (Lee et al., 2015; Wang

X. et al., 2018).

Furthermore, most scRNA-seq studies have primarily

focused on polyadenylated mRNA, using poly-T priming

techniques that capture only poly (A)+ transcripts. This

approach limits the ability to explore non-polyadenylated

RNA categories, such as regulatory non-coding RNAs or

bacterial RNAs (Haile et al., 2021). To address this limitation,

random hexamer priming has been proposed to capture both

polyadenylated and non-polyadenylated transcripts.

Additionally, computationally designed “not-so-random”

primers may improve the capture of both poly(A)+ and

poly(A)– species while minimizing ribosomal RNA

contamination (Fitzpatrick et al., 2021).

Discussion

Single-cell RNA sequencing (scRNA-seq) and spatial

transcriptomics methods have revolutionized biomedical

research by offering novel perspectives into cellular

heterogeneity and structural organization of tissues. These

technologies have significantly advanced our elucidation of

complex biological systems, from developmental processes to

disease pathogenesis. However, while these innovations hold

great promise, numerous challenges and gaps remain, which

need to be addressed to unlock their full capabilities (Longo et al.,

2021; Ahmed et al., 2022).

Over the past few years, scRNA-seq has empowered

scientists to discover the complex cellular diversity in

tissues formerly regarded as uniform. This is particularly

apparent in cancer studies, where scRNA-seq has

uncovered rare tumor subpopulations responsible for drug

resistance and metastasis. By mapping gene expression to

tissue architecture, spatial transcriptomics provides an
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additional layer of resolution. Collectively, these

advancements have laid the foundation for more precise

disease models and personalized medicine. For instance,

spatial transcriptomics has offered novel insights into the

tumor microenvironment, allowing a better understanding

of how cells communicate and influence tumor progression

(Wang Q. et al., 2023; Du et al., 2023).

Despite these breakthroughs, challenges persist, with data

interpretation and integration being a key hurdle. The

complexity and volume of data generated by these

technologies require sophisticated computational tools for

analysis, but current methods are not always sufficient to

capture the full scope of biological variability. Additionally,

while scRNA-seq provides valuable insights into gene

expression at the single-cell level, it lacks spatial context,

which is critical for understanding cellular interactions within

tissues. While spatial transcriptomics helps bridge this gap, the

resolution and scalability of existing techniques remain

constrained. Continued technological advancements are

essential to enhance precision and throughput (Yan et al.,

2024; Stuart et al., 2019).

In the future, several areas offer significant potential for

research and technological progress. The creation of more

robust and scalable platforms for single-cell and spatial

transcriptomics will be key to broadening their application

to larger cohorts and diverse disease models. Enhanced

computational approaches that integrate single-cell data

with spatial information will be crucial for unraveling

complex biological systems in vivo. Furthermore,

integrating scRNA-seq and spatial transcriptomics with

other approaches, such as proteomics and imaging, could

offer a more comprehensive view of cellular behavior in

context. Standardized protocols and stringent quality

control measures will also be crucial to ensure

reproducibility and consistency across studies (Shen et al.,

2022; Sang-Aram et al., 2024).

Future perspectives and
concluding remarks

Single-cell RNA sequencing (scRNA-seq) has emerged as a

groundbreaking tool in the life sciences, offering valuable insights

into biological processes and human diseases. Over the past

decade, advancements in scRNA-seq technologies have made

them more accessible and applicable across a wide range of life

science fields. These innovations have paved the way for the

creation of detailed single-cell atlases across different biological

layers, enhancing our insight into gene and cell functions in both

health and disease (Li et al., 2021). In the future, high-resolution

maps from scRNA-seq will allow researchers to examine datasets

more thoroughly, reducing the need for costly and labor-

intensive specimen reprocessing. Innovations in microfluidics

and combinatorial barcoding are expected to further enhance the

scalability and cost-effectiveness of single-cell analyses (Chen T.

N. et al., 2020).

The combination of scRNA-seq with other large-scale

genetic technologies is poised to expand its capabilities. For

example, integrating scRNA-seq with CRISPR-based genome-

wide testing (such as Perturb-seq) enables the exploration of

transcriptional factors through gene deletion. Tools like

LinTIMaT, which merge single-cell transcript datasets with

mutation information, also facilitate ancestry tracing (Zafar

et al., 2020). As prime editing technologies advance, they will

likely enhance our understanding of gene and cell functions,

enabling extensive multi-omics analyses that assess gene

regulatory mechanisms in both normal and pathological

states (Choi et al., 2022).

Numerous successful and promising applications of

integrating scRNA-seq with other techniques have emerged.

For instance, combining scRNA-seq with spatial

transcriptomics and multi-omics profiling has unveiled

cancer cell heterogeneity, identified rare cell populations, and

provided valuable insights into tumor progression and

resistance. Combining scRNA-seq with spatial RNA mapping

and single-cell imaging allows for the exploration of the spatial

organization of brain cell types, aiding in the identification of

novel disease-related subpopulations that could serve as new

therapeutic targets. Furthermore, scRNA-seq combined with

single-cell proteomics and spatial imaging provides a deeper

understanding of immune cell interactions and dysregulation,

which is crucial for the development of immunotherapies and

vaccines. Lastly, integrating scRNA-seq with spatial

transcriptomics in infection studies helps clarify tissue-

specific responses to pathogens, enabling the identification of

key factors that influence disease severity and host

susceptibility, ultimately guiding antiviral drug and vaccine

development (Zhang et al., 2021b; Bridges and Miller-

Jensen, 2022).

Despite these advances, scRNA-seq still faces challenges in

clinical applications. The high cost of sample preparation and

sequencing remains a barrier to routine use. Additionally, the

complexity of scRNA-seq data analysis, including data operation,

visualization, and interpretation, highlights the need for the

development of user-friendly, automated pipelines accessible

to those without bioinformatics expertise. Addressing these

challenges is crucial for expanding the clinical utility of single-

cell transcriptomic sequencing (Brendel et al., 2022).

To conclude, single-cell RNA sequencing and spatial

transcriptomics are reshaping biomedical research by

enhancing our understanding of cellular function and tissue

structure. Despite ongoing challenges related to data analysis,

resolution, and scalability, continued advancements in these

technologies hold the potential to open new paths for disease

diagnosis, drug development, and personalized medicine. By

overcoming these limitations and advancing these
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technologies, researchers can continue to make groundbreaking

discoveries, paving the way for more effective and targeted

therapies (Huang et al., 2024).
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