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Respiratory infections remain a significant cause of morbidity and mortality,

becoming a serious public health issue worldwide. The human respiratory

syncytial virus (hRSV) is still one of the most relevant pathogenic agents

involved in respiratory infections in children, the leading cause of

bronchiolitis worldwide. In most cases, hRSV infection is not complicated;

however, limited treatment and vaccine options increase the morbidity rates

associated with bronchiolitis. The innate immune response governs the severity

of the disease and controls the viral infection outcome. Current knowledge

about themechanisms involved in viral PAMPs (pathogen-associatedmolecular

pattern molecules) recognition, genetic characteristics of the inflammatory

response, and understanding of antiviral response is crucial for vaccine

development and biomarker tools to predict complications and guide

therapeutic management. Here, we review key concepts related to

pathogenesis and immune response against hRSV, highlighting aspects that

could be considered in vaccine development.
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Introduction

Human respiratory syncytial virus (hRSV) is the primary cause of severe lower

respiratory tract infection among newborns and young children worldwide (Shi et al.,

2017). hRSV infection also includes upper respiratory tract infections, aggravation of

asthma, and wheeze induced by the hRSV (Barr et al., 2019). The hRSV risk of infection is

over 60%–70% in the first year of life and nearly 100% by 2 or 3 years of age (Meng et al.,

2014).

In 2015, there have been an estimated 33.1 million hRSV-related lower respiratory

tract infections, 3.2 million hRSV-related hospitalizations, and 59,600 deaths in children

under 5 years of age, with an overall mortality of 118,200 (Shi et al., 2017). This virus is

ubiquitously transmitted, being a risk factor for people with immunodeficiencies and

elderly individuals. Further, hRSV is an essential nosocomial infection agent (Falsey et al.,

2005; Gelfand, 2012; Checchia et al., 2017).
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hRSV is an enveloped, single-stranded, and negative-sense

RNA virus classified into the family Pneumoviridae, genus

Orthopneumovirus, species human orthopneumovirus (Hall,

2001; Afonso et al., 2016). The viral genome contains ten

genes encoding for 11 proteins: fusion protein (F); the

glycoprotein (G); the small hydrophobic protein (SH);

nucleoprotein (N); phosphoprotein (P); large protein (L);

matrix (M), M2-1 and M2-2 regulatory proteins; non-

structural (NS) proteins (NS1 and NS2). All these proteins are

critical for viral replication and are involved in the innate

immunity response (Cao et al., 2021).

Two hRSV subtypes (A and B) have been identified, which

are phylogenetically and antigenically different. Most of the

variability has been detected in the gene encoding the G

protein, which is the most variable protein of the virus (Peret

et al., 1998; Griffiths et al., 2017; Hu et al., 2017). Variations in

hRSV-A and hRSV-B are associated with evolutionary

mechanisms characterized by the induction of anti-G

antibodies against primary epitopes (Botosso et al., 2009).

hRSV-A and hRSV-B groups have cocirculated during specific

seasonal epidemics but can circulate independently in human

populations (Pangesti et al., 2018). Some studies report a higher

prevalence and severe clinical course in hRSV-A (Jafri et al., 2013;

Tabarani et al., 2013; Shen et al., 2022), but the evidence is

contradictory (McIntosh et al., 1993; Devincenzo, 2004; Laham

et al., 2017).

Pathogenesis

Inoculation of aerosol particles or direct contact facilitates

virus entry via the nasopharynx, spreading to the lower

respiratory tract toward the bronchioles (Piedimonte and

Perez, 2014; Battles and McLellan, 2019). During the viral

replication, the G-protein is responsible for the attachment to

ciliated epithelial cells through the CX3CR1 receptor (Levine

et al., 1987; Johnson et al., 2015; Zhivaki et al., 2017); the pre-F-

protein allows the fusion of the viral envelope with the host cell

membrane and hRSV enters by endocytosis (Tayyari et al., 2011).

As soon as the virus is in the cytoplasmic inclusion bodies, it

replicates its genome using the viral RNA-dependent RNA

polymerase (RdRp) complex (large protein-L and the

phosphoprotein-P) (Sourimant et al., 2015). The viral protein

M2-1 is added to the complex to act as a cofactor of the

transcriptional process (Sourimant et al., 2015; Braun et al.,

2021).

Different receptors have been involved in the early immune

response via NF-κB and IFN response factors (Liu et al., 2007;

Okabayashi et al., 2011; Zeng et al., 2012), including epidermal

growth factor (EGF) receptor (Weigl et al., 2001), intercellular

adhesion molecule 1 (ICAM-1) (Law et al., 2004), annexin II

(Fjaerli et al., 2004), calcium-dependent lectins (Fjaerli et al.,

2004), and heparan sulfate proteoglycans (HSPGs) (Bradley et al.,

2005). The Toll-like receptor 4 (TLR4) binds the F protein

expressed on the ciliated bronchial (Marzec et al., 2019) and

epithelial cells (Park et al., 2012), triggering innate immune

signaling during the hRSV entry (Funchal et al., 2015).

However, TLR4 activates kinases to potentiate viral entry

through endocytosis (Walsh et al., 1997; Piedra et al., 2003).

Another potential receptor is the CX3 chemokine receptor 1

(CX3CR1) (Anderson et al., 2020), which binds the G protein on

the apical side of ciliated bronchial epithelial cells (Anderson

et al., 2021). Mice deficient in CX3CR1 are less susceptible to

hRSV infection, as RSV-G and CX3CR1 interaction could alter

chemotaxis signaling (Anderson et al., 2020; Anderson et al.,

2021). Other reports have described nucleolin binding to the F

protein (Hall et al., 1986; Nielsen et al., 2003). As nucleolin is

highly expressed on the surface of dividing cells, it could be

pivotal in children’s lower respiratory tract infections (Parrott

et al., 1973; Imaz et al., 2000; Roca et al., 2002; Ochola et al.,

2009).

Innate immune response to hRSV
infection

Several factors are involved in the innate immune response

against hRSV infection; airway epithelial cells, dendritic cells,

macrophages, monocytes, granulocytes, as well as pattern

recognition receptors (PRRs), such as Toll-like receptors

(TLRs), RIG-I-like receptors (RLRs), and NOD-like receptors

(NLRs) (Yamaguchi et al., 2011; Zeng et al., 2012) (Figure 1).

Airway epithelial cells recognize viral PAMPs through

different PRRs, initiating early immune response (Lay et al.,

2013). This activation occurred via MyD88 and TRIF (Kumar

et al., 2011), and then, different transcription factors such as

interferon-regulatory factor 3 (IRF-3), nuclear factor κB (NF-κB)
and ATF-2/cJun are activated. These factors mainly promote the

transcription of antiviral genes, dendritic cells activation, and the

production of soluble molecules such as pro-inflammatory

cytokines and chemokines by dendritic cells and alveolar

macrophages (Goritzka et al., 2015; Lay et al., 2016; Feng

et al., 2018).

Different TLRs have been associated with hRSV infection:

TLR4 interacts with hRSV F protein using CD14 as a co-receptor

leading to NF-kB activation and mediated innate immune

responses and inflammation (Kurt-Jones et al., 2000).

Recently, it was demonstrated that RSV-induced oxidative

stress promotes enhanced activation and release of

Transglutaminase 2 from human lung epithelial cells, which is

mediated by Toll-like receptor (TLR)-4 and NF-κB pathways.

Transglutaminase 2 is an enzyme implicated in various

pathological conditions, but its role in hRSV remains unclear

(Rayavara et al., 2022). TLR-2 regulates pro-IL-1β and

NLRP3 gene expression during RSV infection. The

TLR2 activation is the first signal necessary for the posterior
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formation of the NLRP3 inflammasome, leading to caspase-1

activation and subsequent IL-1β release during RSV infection

(Segovia et al., 2012).

On endosomal compartments, the recognition of the genome

(ssRNA) and replication intermediaries (dsRNA) occurs through

TLR7 and TLR3, respectively (Aeffner et al., 2011). hRSV

infection triggers the activation of the TLR3 signaling

pathways that regulate the expression of MyD88-independent

chemokines, such as IP-10/CXCL10 and CCL5, and further

upregulate TLR3 expression in RSV-infected cells (Rudd et al.,

2005). Also, it has been demonstrated that activation of

TLR3 during hRSV infection promotes a predominantly Th1-

type response, contributing to the establishment of the adaptive

immune response (Rudd et al., 2006). TLR7 plays a crucial role in

RSV detection and subsequent response immune initiation. RSV

is recognized by classical and plasmacytoid DCs through TLR7,

inducing the anti-RSV response and immunomodulatory effects

(Smit et al., 2006; Lukacs et al., 2010). A study revealed that TLR-

7 regulates IL-12/IL-23 responsiveness to RSV in dendritic cells

and demonstrated that TLR7 −/− bonemarrow-derived dendritic

cells were significantly impaired in the induction of IL-12 in

response to RSV but exhibited significantly higher production of

IL-23 (Lindell et al., 2009). In addition, dendritic cells are sources

of interferon-β in RSV, amplifying early antiviral responses (Kim

et al., 2019).

In response to hRSV infection, the airway epithelial cells

produce pro-inflammatory cytokines such as type-I and type-III

interferons (IFN) that bind to its receptors (IFNRs) and activate

signaling pathways through the Signal Transducer and Activator

of Transcription 1 and 2 (STAT-1 and STAT-2). STAT binds to

FIGURE 1
Summary of the local human innate immune response to RSV. The main cell types involved in hRSV infection are shown (neutrophils, dendritic
cells, macrophages, and eosinophils, among others). In addition, cytokine, chemokine, and other immune molecule responses involved in the local
immune response and its production source are located according to their modulation in the infection. At the level of innate immunity, the different
PRRs (TLR2, 3, 4, 7, and 9) that participate and are activated during the infection are also highlighted.
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IFN-regulatory factors in the interferon-stimulated genes (ISGs).

Finally, several pro-inflammatory cytokines such as IL-6, tumor

necrosis factor-alpha (TNF-α) and chemokines (CXCL8, CCL3,

CCL2, and CCL5) are induced and secreted. Some chemokines,

such as CCL2 and CCL5, could promote the recruitment of

monocytes, neutrophils, dendritic cells, macrophages, natural

killer cells, and CD4+ T cells to the site of infection (Lay

et al., 2016; Aronen et al., 2019) (Table 1).

In vitro, airway epithelial cells produce IL-1β, IL-6, and TNFα,
macrophage inflammatory protein-1a (MIP-1a/CCL3), monocyte

chemotactic protein-1 (MCP-1/CCL2), RANTES (regulated on

activation, normally T cell-expressed and secreted/CCL5), eotaxin

(CCL11), IL-8 (CXCL8), monokine induced by IFNγ (MIG/

CXCL9), IP-10 (CXCL10), and fractalkine (CX3CL1) (Bonville

et al., 1999; Miller et al., 2004; Mochizuki et al., 2009; Villenave

et al., 2011). The effect of this cytokine production during hRSV

infection is still controversial (Tayyari et al., 2011; Villenave et al.,

2012). It has been proposed that cell lines, compared with primary

cells, induced different cytokine profiles, even when exposed to the

same strain of the virus (Fonceca et al., 2012). In the same way,

cells from different donors significantly alter the profile. Besides,

the localization of the epithelial cells in the airways seems to affect

the constitutive production and cytokines upregulation

(Olszewska-Pazdrak et al., 1998).

During the inflammatory process caused by the hRSV

infection in the airways of infants with bronchiolitis,

prominent infiltration of neutrophils is observed (Habibi

et al., 2020). During severe infection, the virus interacts

directly with neutrophils; these cells in BAL and the blood of

infants with severe RSV infection expressed RSV N genomic

RNA, indicating uptake of the whole virus (Halfhide et al., 2011).

In response, neutrophils secrete cytokines, toxic proteins, and

granular enzymes, including myeloperoxidase (MPO), elastase

and defensins. Furthermore, ROS are released to the extracellular

environment in response to viral infections. Neutrophil

extracellular trap (NET) formation is active during infection,

and NETs are present in BAL fluid from ventilated children.

Furthermore, NETs captured RSV, precluding viral particles’

binding to target cells and preventing infection. However,

excessive NETs formation contributes to the

immunopathology developed by patients infected with hRSV

(Cortjens et al., 2016).

In addition, superoxide production has also been observed in

eosinophils after hRSV exposure. Additionally, it was observed

that eosinophil cationic protein (ECP) and eosinophil-derived

neurotoxin (EDN) reduced the infectivity of hRSV after

exposure, suggesting their antiviral activity. On the other

hand, it has been demonstrated that myelin basic protein

(MBP) promotes the cell death of hRSV-infected epithelial

cells (Glaser et al., 2019).

Viral evasion mechanisms

Different mechanisms have been associated with poor

immune control. An optimal clearance of the hRSV requires a

Th1 and Th2 balance, which promotes IFNγ production by

cytotoxic CD8+ T cells (Schmidt et al., 2018). Besides, hRSV

infection does not seem to engage an effective memory response

that protects from future viral exposures. During convalescence,

circulating RSV IgG- but not IgA-producing memory B cells are

present; this deficit IgA memory may contribute to recurrent

infections, especially in childhood (Russell et al., 2017).

hRSV impairs the assembly of a proper immunological

synapse between the antigen-presenting cells (APC), such as the

dendritic cells and T cells. The virus renders T cells unable to

respond correctly, affecting the adaptive immune response and

increasing the risk of reinfections (Gonzalez et al., 2008). The

hRSV has been observed to infect dendritic cells and impair their

maturation without affecting their ability to present antigens and

prime T cells. However, the infection alters the cytokine milieu by

inhibiting the formation of the immune synapse, producing

inhibitory factors and affecting the viral clearance through the

NS1 and NS2 proteins that hamper IFNs production (Collins and

Graham, 2008; van Drunen Littel-van den Hurk and Watkiss,

2012). It is well known that an immature or hypofunctional

immune system facilitates infection with RSV in neonates and

young infants. In this sense, macrophages from neonatal

individuals exhibit a diminished expression of PRRs or a

TABLE 1 Function of immune molecules during hRSV infection.

Molecules Response

CX3CR1 Interacts with viral G-protein to allow viral entry

MyD88 and TRIF Early immune response and activation of transcription
factors

IRF-3, NF-κB and ATF-
2/cJun

Promote transcription of antiviral genes, DCs activation
and pro-inflammatory cytokines production

TLR2 Regulates pro-IL-1b and NLRP3 gene expression

TLR3 Intermediates viral replication in endosomes, regulates
the expression of MyD88 and lead a Th1-response
profile

TLR4 and CD14 Bind to viral F-protein

TLR7 Recognition of viral genome in endosomes and regulates
IL-12/IL-23 responsiveness

NLRP3 Lead to caspase-1 activation and subsequent IL-1b
release

IFN-II and IFN-III activate signaling pathways through STAT-1 and
STAT-2

STAT Binds to IFN-regulatory factors in the ISGs

CCL2 and CCL5 Promote the recruitment of monocytes, neutrophils,
dendritic cells, macrophages, natural killer cells, and
CD4+ T cells to the site of infection

CX3CR1, C-X3-C motif chemokine receptor 1; IRF-3, interferon-regulatory factor 3;

IFN-II and -III, type-II and type-III interferons; NF-κB, nuclear factor κB; TLR, Toll-like
receptors; STAT, Signal Transducer and Activator of Transcription; ISGs, Interferon-

stimulated genes.
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reduced upregulation upon activation with a belittled cytokine

production (Basha et al., 2014).

A limited antigenic diversity is observed in hRSV strains

compared to other respiratory viruses. However, reinfections

with hRSV occur throughout life, and this can result from an

incomplete and short-lived protective immunity. Nonetheless,

hRSV has developed several mechanisms of evasion which could

explain the impairing of the immune response (van Drunen Littel-

van den Hurk andWatkiss, 2012). The G and F proteins are heavily

glycosylated antigens that produce neutralizing antibodies, which

could interfere with antibody recognition (García-Beato andMelero,

2000; Palomo et al., 2000). In the central conserved domain of the G

protein, a CX3C motif resembles the one in the chemokine

fractalkine; this motif shows in vitro a similar leukocyte

chemotactic activity (Jartti et al., 2009). It impairs the activation

of the NF-κB and the production of inflammatory cytokines in

human monocytes, suggesting an immune inhibitory role (Levine

et al., 2004). It has been described that the secreted form ofG protein

inhibits TLR3/4 mediated IFN-beta in vitro (Shingai et al., 2008),

probably suppressing the innate immune response.

The F protein responsible for the fusion and subsequent

syncytia formation (Sun et al., 2013)is critical in the viral

attachment, interacting with the hRSV receptor: nucleolin

(Resch et al., 2007). This protein induces the innate immune

response through TLR4 on leukocytes (Freymuth et al., 1997)

and epithelial cells, facilitating p53-dependent apoptosis

(Freymuth et al., 2006). The SH protein has been implicated

in inhibiting apoptosis by the TNF-α pathway (Stockman et al.,

2012; Zhou et al., 2012).

On the other hand, the production of G protein occurred in a

full-length membrane-bound form and truncated secreted form.

The secreted protein seems to decoy the neutralizing antibodies

(van Drunen Littel-van den Hurk andWatkiss, 2012). Besides, its

CX3C motif allows the signaling through the CX3CR1 receptor

and confers a chemotactic activity similar to fractalkine

(CX3CL1). It is unclear if this capacity affects the leukocyte

recruitment to the infected lungs in vivo (Collins and Graham,

2008). Some studies have reported how the G protein can induce

specific T cell clones to produce IL-4 and IL-10, while the T cells

specific to the F protein induce a Th1 immune response that

mimics the answer raised by whole hRSV (Jackson and Scott,

1996). These data suggest that the G protein could downregulate

cellular immunity and induce a negative immune regulation,

antagonizing TLRs signaling (Collins and Graham, 2008; van

Drunen Littel-van den Hurk and Watkiss, 2012).

TH1-TH2 immune response in hRSV
infection

Variable results have been obtained when children’s cytokine

profiles are analyzed in primary hRSV infection. Some studies

found no change or decreased IFNγ levels in mitogen-stimulated

peripheral blood mononuclear cells (PBMC) (Bendelja et al.,

2000; Pinto et al., 2006). This cytokine’s production was also low

compared with other respiratory infection agents (Aberle et al.,

2004).

Some conflicting results around the concurrent upregulation

of Th2 cytokines suggest a Th2 dominance (Bendelja et al., 2000;

Gut et al., 2013), while other researchers could not find an IL-4 or

IL-5 production (Pinto et al., 2006). Besides, the specific role of

IFNγ production by PBMC and the positive correlation with

disease severity appears to be difficult to establish even when

other data propose a protective effect for this cytokine (Bendelja

et al., 2000). A study suggests a combined Th1 and Th2 immune

response, RSV stimulation of PBMC from RSV-hospitalized

patients results in Th1 and Th2 cytokine expression,

accompanied by enhanced production of IL-2, IL-4, and IL-13

(Tripp et al., 2002). Another study reported a predominant

production of IFN-gamma and low levels of IL-4 and IL-10,

but any association of clinical severity with T cell profile was not

observed (Brandenburg et al., 2000).

Although hRSV RNA has been detected in blood monocytes

and neutrophils, it is well known that the hRSV infection is

restricted to the respiratory tract (O’Donnell et al., 1998; Halfhide

et al., 2011). Consequently, the analysis of PBMC could not

reflect the local immune responses occurring in the respiratory

tract; besides, hRSV-specific CD8+ T cells are identified and show

quantitative differences between blood and the respiratory

location, indicating active recruitment into the tissue

(Heidema et al., 2008). Compared with the lower respiratory

tract, cytokine levels in the upper respiratory tract have a strong

or moderate correlation in children with ventilation (van Schaik

et al., 1999; Semple et al., 2007). However, these data are

controversial; increased IFNγ production is observed during

the acute hRSV infection compared to healthy controls

(Garofalo et al., 2001; Kim et al., 2012) or bronchiolitis

patients unrelated to hRSV (Bennett et al., 2007). In contrast,

in other studies, a low or undetectable IFNγ production has been

reported (Kristjansson et al., 2005).

In the same way, although increased levels of Th2 cytokines

have been described (Legg et al., 2003), other data report low or

undetectable levels, similar to controls (Bont et al., 2001; Pinto

et al., 2006; Kim et al., 2012). The Th2-skewing has been found in

patients with ambulatory lower respiratory tract infection

compared to those with upper respiratory tract infection (Legg

et al., 2003). However, other studies propose a Th2-skewing in

upper respiratory tract infection and hypoxic bronchiolitis

(Garofalo et al., 2001). Virus-induced wheezing is

characterized by an immunologic imbalance, resulting in

excessive release of IFN-γ in the airway of patients with

bronchiolitis (van Schaik et al., 1999). A significant inter-

individual disparity in the expression of Th1 and

Th2 cytokines and the dominant cytokine profile has been

found in cytokine mRNA response analysis (Mobbs et al.,

2002). Another study evaluated nasopharyngeal secretions in
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infected infants, reporting that hRSV infection promotes Th2-

like response in the nose with local production of IL-4, IL-5,

macrophage inflammatory protein 1b, and infiltration and

activation of eosinophils (Kristjansson et al., 2005).

A noticeable age-dependence has been observed in IFNγ and

IL-12 production with the responsiveness to IL-12 (type 1 immune

responses inductor) (Krampera et al., 1999; Buck et al., 2002;

Motegi et al., 2006; Yerkovich et al., 2007). IL-12 and IL-18 have

independent effects on their role in the induction of IFNγ
production, and it seems to protect from bronchiolitis (van

Benten et al., 2003). It is unclear if the higher IL-4 production

and lower IFNγ production are relevant in the hRSV infections,

which seem to be related to the age in mice models (Culley et al.,

2002; Dakhama et al., 2005). In the same way, the disease severity

impacts on the lower respiratory tract after the first infection and

the immune response in secondary infections remains unclear. The

IL-10 levels in different specimens are higher in some cohorts

(Sheeran et al., 1999; Chung et al., 2005) and similar in others (van

Schaik et al., 1999; Joshi et al., 2003; Pinto et al., 2006). During

acute infection, some studies suggest a link between marked IL-10

production and atopy (Chung et al., 2005). However, other reports

deny this association (Joshi et al., 2003).

Moreover, the nasopharyngeal or tracheal IL-10 levels

strongly correlate with severity (Sheeran et al., 1999; Bennett

et al., 2007; Vieira et al., 2010). The pro-inflammatory and

regulatory profile of IL-10 could be partially responsible for

the discrepancies that the researchers report. Besides, the

timing and intensity of production may influence its role as a

protective or detrimental factor. On the other hand,

methodological issues and the differential capacity to induce

IL-10 that the specific strains of hRSV exhibit could influence the

results (Lukacs et al., 2006).

Independently of Th1/Th2 response, robust production of

IL-13 has been observed during the early phase of RSV infection

in a murine model. This production of IL-13 in several other

pulmonary diseases is mediated for Group 2 innate lymphoid

cells and can contribute to immunopathology during RSV

infection (Stier et al., 2016).

Immunity in animal models

In the search for treatments and vaccines, animal models

have been necessary to understand the immune response against

hRSV. Still, no animal can widely represent the immune response

in humans, so it has been necessary to use different animal

models (Taylor, 2017). Several animals have been used as models,

including cotton rats, mice, ferrets, guinea pigs, hamsters,

chinchillas, neonatal lambs, bovines, and non-human primates

like chimpanzees, African green monkeys, and macaques

(Taylor, 2017).

Replicating the hRSV infection in animals is difficult because

these are not entirely permissive to the virus, and clinical signs

are not present in some cases; chimpanzees are the only non-

human primate permissive to the virus with symptom

development on the respiratory tract (Teng et al., 2000).

Green monkeys are less permissive to the virus than

chimpanzees, but the viral load is a reliable parameter to

determine in this model (Ispas et al., 2015).

Despite differences between humans and animals, the mice

model is one of the most used for testing vaccine development

and elucidation of immunopathogenic mechanisms in the hRSV

infection context (Mazur et al., 2018; Andersen and Winter,

2019). For example, the Th2 immune response polarization has

been observed in this model, where Th2 cytokines (IL-4, IL-10,

IL-13, and CCL5) were upregulated (Sawada and Nakayama,

2016).

The use of animal models exhibits great benefits in

understanding the pathology of the infection and is also

essential for preclinical studies to achieve vaccine

development. In the same way, different studies emphasize

that there is no reliable animal model to approximate the

morbidity and mortality of hRSV infection in humans. For

this reason, the study of infected humans is very important

(Altamirano-Lagos et al., 2019).

Current information on vaccines
against hRSV

Target populations for hRSV vaccination include infants,

pregnant women, and older adults. Despite there being no

approved vaccines against hRSV for all target populations

available, there are several candidates in different clinical trial

phases. Currently, scientists have dedicated their efforts to

33 vaccine candidates using 6 hRSV vaccine platforms,

9 candidates are in pivotal phase III clinical trials, and 2 are

approved by US Food and Drug Administration (FDA). These

platforms are particle-based vaccines, vector-based vaccines, live-

attenuated viral particles or chimeric vaccines, subunit vaccines,

mRNA vaccines, and monoclonal antibodies (Qiu et al., 2022;

Mazur et al., 2023).

There are three target populations: pediatric, maternal and

older adults. For pediatrics, strategies include passive

immunoprophylaxis with monoclonal antibodies, live-

attenuated vaccines and passive immunization with maternal

antibodies; for maternal subunit vaccines are in late-stage studies

to protect infants and; for older adults, strategies include vector,

subunit, and nucleic acid approaches (Mazur et al., 2023).

GSK’s landmark positive pivotal AReSVi-006 (Adult

Respiratory Syncytial Virus) phase III trial data showed that

adults aged 60 years or older receiving a single dose of an AS01E-

adjuvanted RSV prefusion F protein-based vaccine

(RSVPreF3 OA) exhibited an efficacy against hRSV of 82.6%

(96.95% confidence interval [CI], 57.9–94.1) (Papi et al., 2023),

making this, in May 2023, the first hRSV vaccine approved by
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FDA to be used in adults aged 60 years or older (U.S. Food and

Drug Administration, 2023). Recently, the FDA has approved the

Pfizer vaccine ABRISVOTM for older adults, a RSV A and RSV B

prefusion F protein, employed in the RENOIR phase 3 clinical

trial (NCT05035212) which enrolled 35.971 participants and

exhibited a vaccine efficacy of 85.7% (96.66% confidence

interval [CI], 32.0–98.7) (Walsh et al., 2023). These current

vaccines are the result of years of research, and have the

potential to reduce the incidence, morbidity, mortality, and

economic burden of hRSV infections worldwide.

Conclusion

The innate immune response has a crucial role during hRSV

infection. Its modulation has been widely demonstrated by hRSV

in which activation of PRRs, induction of pro-inflammatory

cytokines, induction of antiviral response, and shape of

adaptive immune response have been described. Local and

systemic immune responses induced during viral infection

have been associated with pathogenesis, and the contribution

of Th1 and Th2 immune responses is variable. Understanding

the immune response generated during hRSV infection is

necessary for developing new therapeutics that can modulate

the immunopathogenesis of hRSV infection. These advances

would also be valuable for developing an effective and safe

vaccine necessary for all target populations and ameliorate the

burden of RSV infection in public health.
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