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The global pandemic of COVID-19 caused by SARS-CoV-2 has had a

devastating impact. Although many survived the acute effects of the

pandemic, a significant number of survivors, including those with only mild

symptoms, are now experiencing a prolonged and debilitating post-viral

syndrome known as LC/PASC (long COVID/post-acute sequelae of SARS-

CoV-2). Typical symptoms of LC/PASC include fatigue, breathlessness, chest

pain, impaired cognition, difficulty sleeping, fever and gastrointestinal

symptoms. Anxiety and depression can also last for weeks to months and

range from mild to disabling. The association between neuropsychiatric

symptoms and SARS-CoV-2 infection raises questions about the possible

routes of SARS-CoV-2 entry to the central nervous system (CNS) and long-

term effects of the virus on the CNS, their molecular basis, and the potential risk

of neuronal damage associated with the subsequent development of

neurodegenerative diseases.

KEYWORDS

SARS-CoV-2, long COVID symptoms, neurotropism, neurodegeneration, CNS

Introduction

As of 31 December 2023, there are more than 773 million reported cases and 7 million

deaths worldwide caused by severe acute respiratory syndrome coronavirus 2 (SARS-

CoV-2) and coronavirus disease 2019 (COVID-19) (World Health Organization, 2024).

While the symptoms of infection are mainly respiratory complications, the neurological

manifestations of COVID-19 have been increasingly recognized. Many patients present

with mild neurological symptoms such as dizziness, headache, and smell or taste

impairment, however a small percentage of patients may develop severe neurological

disease, including myopathy, cerebrovascular disease, seizures, movement disorders,

encephalitis, Guillain-Barré syndrome, optic neuritis, meningitis, acute transverse

myelitis and coma, as well as altered mental status (Mao et al., 2020; Ray et al., 2021;

Varatharaj et al., 2020;Whittaker et al., 2020). Moreover, imaging data shows reduction in

grey matter thickness and global brain size after SARS-CoV-2 infection (Douaud et al.,

2022). In this mini review article, we discussed the possible routes of SARS-CoV-2 entry to

OPEN ACCESS

EDITED BY

Katarina Polcicova,
Slovak Academy of Sciences, Slovakia

REVIEWED BY

Peter Sabaka,
Comenius University, Slovakia
Zinaida Klestova,
University of Tübingen, Germany

*CORRESPONDENCE

Weronika Daria Krahel,
weronika_krahel@sggw.edu.pl

Joanna Cymerys,
joanna_cymerys@sggw.edu.pl

RECEIVED 29 January 2024
ACCEPTED 04 October 2024
PUBLISHED 15 October 2024

CITATION

Krahel WD, Bartak M and Cymerys J
(2024) Acute and long-term SARS-CoV-
2 infection and neurodegeneration
processes—circulus vitiosus.
Acta Virol. 68:12765.
doi: 10.3389/av.2024.12765

COPYRIGHT

© 2024 Krahel, Bartak and Cymerys.
This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

Acta Virologica

Published by Frontiers
Institute of Virology

Biomedical Research Center, Slovak Academy of Sciences01

TYPE Mini Review
PUBLISHED 15 October 2024
DOI 10.3389/av.2024.12765

https://crossmark.crossref.org/dialog/?doi=10.3389/av.2024.12765&domain=pdf&date_stamp=2024-10-15
mailto:weronika_krahel@sggw.edu.pl
mailto:weronika_krahel@sggw.edu.pl
mailto:joanna_cymerys@sggw.edu.pl
mailto:joanna_cymerys@sggw.edu.pl
https://doi.org/10.3389/av.2024.12765
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/av.2024.12765


the central nervous system (CNS) and the consequences of

neuroinvasion based on the emerging evidence.

Neurotropism and neuropathologies
caused by SARS-CoV-2

SARS-CoV-2’s neurotropism is a controversial topic. In

vitro study using cells and organoids derived from human

pluripotent stem cells (hPSC) showed SARS-CoV-2’s tropism

for choroid plexus epithelial cells, limited neuronal infection

and the inability of axonal trafficking of the virus (Jacob et al.,

2020; Luczo et al., 2024). However, hPSC-derived dopaminergic

neurons, but not cortical neurons, were shown to be susceptible

and permissive to the virus (Yang et al., 2020; 2024). In contrast,

in a study done by Kettunen et al. (2023), hPSC-derived cortical

neurons were infected by SARS-CoV-2. Moreover, hPSC-

derived astrocytes were not infected or rarely showed signs

of infection (Jacob et al., 2020; Kettunen et al., 2023).

Contradicting results were published by Crunfli et al. (2022),

where both hPSC-derived astrocytes and astrocytes in brain

samples of COVID-19 patients were infected by the virus. Post

mortem studies showed the presence of SARS-CoV-2, i.e., in the

dorsal medulla, substantia nigra, frontal lobe, cortical neurons,

cranial nerves (Emmi et al., 2023; Matschke et al., 2020; Song

et al., 2021).

Possible ways of SARS-CoV-2 entry to the CNS are

intensively researched. One of the suspected routes is the

olfactory system. As the virus can infect sustentacular cells,

there is a question of whether it can gain access to olfactory

neurons, i.e., through exosomes, to stem cells that generate

olfactory neurons, or to cerebrospinal fluid (Butowt and

Bilinska, 2020; Butowt and von Bartheld, 2021). SARS-CoV-

2 WA1 and Delta infected hamster model showed the transport

of the virus to the brain through olfactory neuron axons,

especially in younger animals (Chen et al., 2024). In a study

on non-human primates, viral RNA was detected both in the

olfactory bulb and brain, with SARS-CoV-2 N protein detected in

the axons of olfactory neurons (Shimizu et al., 2024). However,

SARS-CoV-2 infection in human olfactory neurons is rare (de

Melo et al., 2021; Meinhardt et al., 2021), or not detected (Khan

et al., 2021).

Blood-brain barrier disruption is one of the possible ways of

viral entry to the CNS. In vitro and in vivo research on brain

vascular endothelial cells (BCECs) suggests viral replication and

transcellular transport resulting in neuronal damage

(Krasemann et al., 2022; Zhang et al., 2021). Although

SARS-CoV-2 did replicate in the human in vitro blood-brain

barrier (BBB) model, it was limited and did not induce strong

inflammatory response or BBB disruption. Moreover, although

peripheral inflammation may cause BBB disruption (Huang

et al., 2021; Yang et al., 2022), COVID-19 patients’ serum with

high concentrations of proinflammatory cytokines also did not

disrupt the integrity of BBB in vitro (Constant et al., 2021).

However, a study using a 3D microfluidic model of the human

BBB showed that SARS-CoV-2 S protein promotes loss of

barrier integrity and proinflammatory response (Buzhdygan

et al., 2020). Infection of human brain microvascular

endothelial cells (HBMEC) also showed proinflammatory

activation, possibly by NF-κB non-canonical pathway, and

remodelling of mitochondrial network and tight junctions,

even without active replication (Motta et al., 2023). Post

mortem studies do not give a definitive answer to whether

BBB epithelium can or cannot be infected. ACE2, the entry

receptor of SARS-CoV-2, is expressed in brain epithelium

(Hamming et al., 2004; Zhou et al., 2020). Viral particles

were detected in the frontal lobe in neural and capillary

endothelial cells (Paniz-Mondolfi et al., 2020), however,

RNA sequencing did not detect SARS-CoV-2 presence in

brain tissues, including choroid plexus epithelium (Fullard

et al., 2021; Yang et al., 2021). However, multifocal

microvascular injury was observed in brain tissue and

olfactory bulbs of patients who died of COVID-19 (Lee

et al., 2021).

Enhanced expression of proinflammatory cytokines and

chemokines is associated with ageing and age-related

diseases, i.e., Parkinson’s Disease (PD) and Alzheimer’s

Disease (AD) (Rea et al., 2018). SARS-CoV-2 and its

proteins activate toll-like receptors (TLRs) – TLR2 and

TLR4, leading to proinflammatory cytokine expression

(Asaba et al., 2024; Fontes-Dantas et al., 2023; Sariol and

Perlman, 2021; Szabo et al., 2022). Infected HBMEC showed

upregulation of genes encoding factors related to endothelial

activation pathways – CXCL1, -2, -8, CCL20, TNF, IL-6, IL-8,

and that can lead to a BBB disruption and contribute to

neuroinflammation (Motta et al., 2023). Infection of a non-

human primate model resulted in neuroinflammation and

neuronal damage, with pathology being more pronounced in

aged and diabetic macaques (Beckman et al., 2022). Viral

infection of microglia and astrocytes is suspected to be an

important factor in neurological disorders development. The

infection of microglia leads to M1-like proinflammatory

response, production of cytokines and chemokines, i.e., IL-

1β, IL-6, TNF-α, IFN-γ, CCL11, and NLRP3 inflammasome

activation (Albornoz et al., 2023; Fernández-Castañeda et al.,

2022; Jeong et al., 2022; Krasemann et al., 2022). SARS-CoV-

2 has been found to infect astrocytes, leading to cell

activation, elevated expression of inflammatory genes,

cytokine and growth factor signalling in both infected and

bystander astrocytes (Andrews et al., 2022). Infected

astrocytes had changes in energy metabolism, and that

could indirectly result in the reduction of neuronal

viability (Crunfli et al., 2022). Brains of patients who died

of COVID-19 studied post mortem showed neuropathological

changes with astrogliosis, microgliosis and cytotoxic T

lymphocytes infiltration, hallmarks of neuroinflammation
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(Matschke et al., 2020). What is more, SARS-CoV-2 infection

outside of CNS can lead to cytokine storm (Hu et al., 2021),

and as a result, cytokines and chemokines in the blood may

cause BBB disruption and consequently lead to microglia and

astrocyte activation (Meinhardt et al., 2023) (Figure 1).

Moreover, ORF6 and ORF10 fragments and S protein

fragments form amyloid assemblies causing neuronal death

(Charnley et al., 2022; Nyström and Hammarström, 2022).

PD’s onset and progression are tightly connected to α-
synuclein (α-syn) aggregation, which was observed to be

promoted by both S and N proteins of SARS-CoV-2

(Semerdzhiev et al., 2023; Wang et al., 2023; Zilio et al.,

2023). SARS-CoV-2 infection can also lead to tau

phosphorylation, a key factor in tauopathies such as AD (Di

Primio et al., 2023; Eberle et al., 2023). Moreover, AD patients

seem to be more prone to severe course of infection, which could

possibly exacerbate already existing neuropathology (Ciaccio

et al., 2021; Meinhardt et al., 2023).

Discussion

Several mechanisms have been suggested to cause neurological

symptoms and exacerbation of pre-existing neurological

conditions during SARS-CoV-2 infection. These include direct

effects of the virus on the CNS, e.g., by nasal entry into the brain

and infection of neuronal populations (Meinhardt et al., 2021), and

para- or post-infectious effects such as induction of inflammation

and autoimmune responses (Kumar et al., 2020; Zubair et al.,

2020). These effects of SARS-CoV-2 on the CNS have potential

implications for the development of long-term neurological

disease, including neurodegeneration.

FIGURE 1
Possible mechanism of SARS-CoV-2 neuroinvasion by BBB disruption. Infection begins with proteolytic activation of the S protein by furin
protease-TMPRSS-2 and binding to the ACE2 receptor in epithelial cells. Viral replication promotes the activation of inflammatory mechanisms. The
release of primary proinflammatory cytokines, such as IFN-γ and TNF-α, leads to the activation of immune cells, astrocytes, and microglia. Activated
microglial cells induce the release of cytokines such as IL-1, IL-6, and TNF-α, which further activate astrocytes. Activated astrocytes release
mediators, which lead to neuroinflammation. These events and viral particles evade the host immune system, resulting in chronic infection and the
subsequent deposition of Aβ (amyloid-beta) and phosphorylated tau in the brain. Created in BioRender. Bartak, M. (2023) BioRender.com/q85y420.
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SARS-CoV-2 neurotropism and entry to the CNS are debated

topics. Given that SARS-CoV-2 is a possible cause of

synucleinopathies (Albornoz et al., 2023; Iravanpour et al.,

2024; Wang et al., 2023) and taupathies (Di Primio et al.,

2023; Eberle et al., 2023; Käufer et al., 2022) and has the

potential to worsen existing neuropathologies, potential ways

of viral entry to the brain tissue should be thoroughly examined.

Current research does not give an indisputable answer to why

some COVID-19 patients have neurological symptoms, often

lasting longer than coronaviral infection. Microglia and astrocyte

activation could explain the long COVID syndrome and

progression of neurodegenerative diseases (Stein et al., 2023),

however, whether the activation occurs as a direct or indirect

response to SARS-CoV-2 infection is still a puzzle to solve. Given

that human brain tissue is not widely available, more in vitro and

in vivo research is needed to better understand these highly

significant issues.

In conclusion, it is worth adding that COVID-19 is the first

pandemic to occur in the context of an aging population (Adesse

et al., 2022; Mitra et al., 2022; Strong, 2023). Its survivors are at a

greater risk of developing neurodegenerative diseases as they age.

The potential long-term effects on the nervous system could be a

lasting legacy of an even greater global health challenge than

acute infection.
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