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Tick-borne encephalitis virus (TBEV, Flaviviridae), a small enveloped flavivirus

with an unsegmented positive-stranded RNA genome, is the most prominent

member of the mammalian group of tick-borne flaviviruses. TBEV, originally

isolated in 1937, is identified asOrthoflavivirus encephalitidis now. TBEV causes

the most important arboviral disease of the human central nervous system

(CNS) in Europe andNortheast Asia. It is transmitted to hosts primarily by ticks of

the genus Ixodes and Dermacentor, but can also be acquired by ingestion of

infected unpasteurized dairy products. Approximately one-third of all human

TBEV infections are associated with severe clinical neurological disease. The

remaining two-thirds are asymptomatic or present withmild clinical symptoms.

In hosts, TBEV tend to induce different types of immune effector mechanisms.

Components of innate immunity - natural killer cells, complement proteins,

macrophages and dendritic cells usually provide rapid and intense protection in

the acute phase of infectious diseases. In turn, cell-mediated immunity

provided by T and B lymphocytes plays an important role in virus clearance

and protective immunity, and thus influences the outcome of disease. The

virus-host relationship is not passive. Therefore, viruses themselves respond

actively to host immune defence activities. This is made possible by a number of

mechanisms that ensure their escape from the host’s immune surveillance. The

aim of this review is to summarize the history of the last 50 years as well as

advances in research on the immunology of TBEV, specifically in the Central

European area.
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Introduction

The family Flaviviridae represents a diverse group of small enveloped viruses

classified into four genera: Orthoflavivirus, Pestivirus, Hepacivirus and Pegivirus. Only

genus Orthoflavivirus comprises arboviruses, of which about 28% are tick-borne

(Simmonds et al., 2017). By a phylogenetic analysis, tick-borne flaviviruses (TBFVs)

are divided into three distinct groups, i.e., a group associated with mammals and sea-

birds, respectively, and the Kadam virus that forms a third evolutionary lineage (Table 1)

(Gaunt et al., 2001; Grard et al., 2007). TBFVs persist in nature through circulation
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between vector ticks and vertebrate hosts. To survive, TBFVs

have adapted to two entirely dissimilar inner environments,

invertebrate vector and vertebrate hosts, and are capable to

infect and multiply in both of them (Nuttall, 2009). Of the

viruses transmitted by ticks, the mammalian TBFVs, involving

serologically and genetically related viruses, are considered the

most important affecting human health globally. These viruses

cause serious neurological illnesses and hemorrhagic fevers and

pose a significant public health problem due to re-emergence and

spread to new geographic areas, the growing number of human

outbreaks and high rates of morbidity andmortality. The number

of identified members of mammalian TBFVs has increased in

recent years (Carpio et al., 2023).

Of the mammalian TBFVs, of particular concern in the

Central Europe is tick-borne encephalitis virus (TBEV),

causing tick-borne encephalitis (TBE), the disease affecting the

central nervous system (CNS).

Since this review is dedicated to a special issue “Virology in

Central Europe: Past, Present, and Future”we performed a search

of different database MEDLINE/PubMed, CDC, ECDC,

eLibrary, institutional library and archives using key

words – “TBEV AND innate immunity;” “TBEV AND

adaptive immunity;” “TBEV AND cell immunity;” “TBEV

AND dendritic cells;” TBEV AND NK cells;” TBEV AND

T-cells;” TBEV AND antibodies.” We provide an inclusive

compilation of studies focused on the European subtype of

this virus (TBEV-Eu) and conducted mainly in laboratories of

Central European countries involving Austria, Czech Republic,

Germany, Hungary, Poland, Slovenia, Slovakia and Switzerland

or with collaborations (European affiliation included). Moreover,

TABLE 1 Flaviviridae, Orthoflavivirus–tick-borne virus (TBV) group.

Virus species name vector geographic localization Host

mammalian TBV group

Orthoflavivirus
encephalitidis

Tick-borne encephalitis
virus

Ixodes spp., Dermacentor,
Haemaphysalis

Europe, Asia rodents

Orthoflavivirus loupingi Louping ill virus I. ricinus, I.gibbosus? Ireland, Spain, Scotland, Greece,
Turkey

sheep, goats, cattle

Orthoflavivirus
langatense

Langat virus I. granulatus Malaysia, Russia, Thailand rats

I.ricinus England, Scotland, Wales,
Norway

hare, sheep, red grouse

Ireland cattle, sheep

Orthoflavivirus
powassanense

Powassan virus I. cookei, I. marxi, I. scapularis Canada, Russia, USA white-footed mouse, squirrel,
groundhog, woodchuck

Orthoflavivirus
kyasanurense

Kyasanur Forest disease
virus

H. spinigera, many other ixodid
ticks

India monkeys, rodents, shrews, bats

Orthoflavivirus omskense Omsk hemorrhagic fever
virus

D. reticulatus Russia muskrat, narrow-headed vole

Orthoflavivirus
gadgetsense

Gadgets Gully virus I. uriae Australia penguins

Orthoflavivirus royalense Royal Farm virus Ar. hermanni Afghanistan pigeons

Related, Unclassified

Karshi virus O. tholozani (papillipes), Hy.
anatolicum

Uzbekistan, Kazakhstan gerbil

seabird tick-borne virus group

Tyuleniy virus I. uriae Russia, USA, Norway seabirds

Meaban virus C. maritimus France gulls

Saumarez Reef virus C. capensis, I. eudyptidis Australia seabirds

Kadam tick-borne flavivirus groups

Kadam virus Hy. dromedari, R. parvus Saudi Arabia, Uganda camel, cattle

Simmonds et al., in (King et al., 2011).

Ar, Argas; C, Carios; H, Haemaphysalis; Hy, Hyalomma; I, Ixodes; R, Rhipicephalus.
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despite a key role of ticks in life cycle of TBEV, mutual

interactions between vector and virus in context of tick

immunity are beyond the scope of this paper.

The study is devided on several chapters; the first is focused

on a brief characterization of TBEV and associated disease, on

virus circulation in nature through vectors and hosts. In the

following three chapters, which represents the essential part of

this study, the facts known so far about the antiviral mechanisms

of both innate and acquired immunity, including vaccination, are

processed and summarized. In the section on innate immune

reactions, we focus on both cellular (dendritic and NK cells,

macrophages, neutrophils, etc.) and soluble (interferons,

cytokines/chemokines) components and their role in defense

against TBEV.

Tick-borne encephalitis virus
(TBEV) – background, epidemiology,
vectors, hosts, pathogenesis

Tick-borne encephalitis virus (TBEV), is a small enveloped

flavivirus, approximately 50 nm in diameter. TBEV has ~11 kb

long unsegmented single-stranded positive RNA genome,

encoding a single polyprotein that is processed co- and post-

translational into three structural (C, prM, E) and seven non-

structural (NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5)

proteins. Based on phylogenetic analysis, the TBEV has been

divided into three main subtypes, European (Eu), Siberian (Sib)

and Far Eastern (FE) that are transmitted mainly by Ixodes

ricinus (TBEV-Eu) or I. persulcatus ticks (TBEV-Sib, -FE),

respectively (Labuda and Randolph, 1999; Kovalev and

Mukhacheva, 2017). In addition to the three main TBEV

subtypes, other subtypes, i.e., the Baikalian (TBEV-Bkl) (Dai

et al., 2018), the Himalayan (TBEV-Him) (Tkachev et al., 2017),

the TBEV2871 (Obskaja), have been described recently

(Deviatkin et al., 2020). TBEV-Eu is prevalent across Europe,

from Ural to France (east-west) from Scandinavia to Adriatic see

(north-south), while TBEV-Sib and TBEV-FE extend from

Finland and the Baltic countries through Central and Eastern

Asia to Japan (Im et al., 2020; Shah et al., 2023). However, the

geographical distribution of TBEV has been constantly

expanding due to lack of efficient control measures and

changes in global socio-economic and climatic conditions

leading to a wide spread of tick vectors. TBEV, the most

prominent member of the mammalian group of TBFVs, is the

most prevalent arbovirus in Europe and Asia causing tick-borne

encephalitis (TBE), the disease affecting CNS and diagnosed in

~12,000 people per year. The fatality rate of TBEV-Eu is

approxim. 1%–3% with neuroinvasive case (>40%) resulting in

long-term neurological sequelae.

Generally, infections with the TBEV-Eu subtype range from

asymptomatic course through influenza-like uncomplicated

meningitis to life-threatening meningoencephalitis and

myelitis (Pikelj et al., 1995; Bogovič et al., 2018). In 72%–87%

of patients infected with TBEV-Eu, the infection usually has a two-

phase course. A short incubation period (7–14 days, in extreme cases

4–28 days) is followed by a first (viremic) phase with an atypical flu-

like illness lasting 2–4 days (range: 1–8 days) with fever. Common

symptoms are malaise, headache, myalgia, gastrointestinal

symptoms, leukocytopenia, thrombocytopenia and elevated liver

enzymes. Often, before the second stage, there is an asymptomatic

period (about 1-week, general range: 1–33 days). Seroconversion

without significant morbidity is also common. In 20%–30% of

infected patients, the disease can go into the second stage of

TBE, which is characterized by four clinical features of varying

severity – meningitis (≈50% of adult patients), meningoencephalitis

(≈40%), meningoencephalomyelitis (≈10%) or

meningoencephaloradiculitis (rev. in Kaiser, 2008; Kaiser, 2012;

Ruzek et al., 2010). The appearance of specific antibodies in

serum and cerebrospinal fluid (CSF) is typical. The mortality rate

of adult patients is less than 2%. Factors determining clinical

variability of TBEV infection remain controversial and outcome

unpredictable, but animal model data suggest that CNS pathology is

largely driven by live host immune response. These assumptions are

supported by studies of Saksida et al. (2005), Saksida et al. (2018) on

human patients who lacked detectable TBEV in CSF, showing only a

weak correlation in the local incidence of TBEV antigen and

inflammation of the cerebral parenchyma (Gelpi et al., 2005).

The inflammatory response in the CNS has pathological effects

(Ruzek et al., 2009a). However, in some cases, Slovenian researchers

have found that the severity of TBE was independent of the initial

viremia (Saksida et al., 2018).

Over the past decades, tick-borne encephalitis (TBE) has

become a growing public health concern and is the most

important viral tick-borne disease in Europe (Beauté et al.,

2018), since 1931, when an outbreak of an “acute epidemic

serious meningitis” was reported in south-eastern Austria

(Amicizia et al., 2013). The first European TBEV (TBEV-Eu)

was isolated in Czechoslovakia after the Second World War in

1948 (Feal, 1949; Krejcí, 1949). Since then, the scientific

community in Central European countries has been

intensively engaged in several areas related to TBEV research.

The research objectives (ecology, epidemiology, prevention,

diagnosis, management of TBEV, immunology and others)

and scientific approaches were mainly determined by the

available methodologies (Pospíšil et al., 1954; Nosek et al.,

1970; Radda, 1973; Minár, 1995; Gresíková and Sekeyová,

1978; Kunz, 1992; Palanova et al., 1992; Gresikova and

Kaluzova, 1997; Grešíková, 1999; Pazdiora et al., 2000; Daniel

et al., 2006; 2011; Svobodova et al., 2010; Kříž et al., 2009; Kříž

et al., 2013; rev. in Ruzek et al., 2019; Hubálek, 2021).

In 2001, TBE became a notifiable disease in Germany (Süss

et al., 2004; Hellenbrand et al., 2019) and at the EU level in 2012

(European Centre for Disease Prevention and Control, 2022).

Updated standardized TBE incidence maps are provided

regularly by the European Center for Disease Prevention and
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Control (ECDC). Since 1998, the International Scientific

Working Group for Tick-borne Encephalitis (ISW-TBE, 2016)

officially began to operate. Scientists from several fields -

virology, epidemiology, medicine from more than 30 different

European countries cooperate in the basic and applied research

of TBE. Amongst others things, the main goals are a raising

awareness of TBE in endemic and non-endemic countries,

increasing vaccination coverage in different countries,

recognizing TBE as a travel risk, and building contacts

with the ECDC.

Currently, there has been an alarming increase in TBE cases

in countries such as Sweden, France, the Czech Republic,

Denmark and Slovakia. In 2022, 3,650 cases of tick-borne

encephalitis (TBE) were reported, 96.3% of which were

confirmed; and more frequently among men and in the age

group 45–64 years. In 2023, from the countries of Central

Europe, the most cases were reported in the Czech Republic,

closely followed by Germany and Poland. Most cases of TBE are

reported during the period of peak tick activity, which in Central

Europe lasts from April to November (Satapathy et al., 2023).

The circulation and persistence of TBEV in nature is

provided by biological transmission through a competent tick

vector and by broad range of hosts from terrestrial vertebrates -

amphibians, reptiles, birds and mammals (Figure 1) (Süss, 2003)

while some group of mammals (rodents, insectivores, carnivores,

etc.) comprise natural reservoirs of the virus (Michelitsch et al.,

2019; Kwasnik et al., 2023). Humans are an accidental and a

dead-end host. The relationships between ticks and the

transmitted viruses are highly specific, only approximately

10% of the 900 known tick species have been proved to be

vectors (Labuda and Nuttall, 2008). Due to its long lifespan, the

tick is the main reservoir of the virus (Řeháček, 1965; Řeháček,

1960; Slovák et al., 2014). The principal vectors of TBEV-Eu are

the castor bean tick, I. ricinus (Süss et al., 1996; Süss et al., 2006)

and ornate dog tick D. reticulatus (Nosek et al., 1984; Nosek and

Kozuch, 1985; Karbowiak and Kiewra, 2010; Karbowiak et al.,

2015; Wójcik-Fatla et al., 2011; Biernat et al., 2014; Karbowiak,

2014; Földvári et al., 2016; Chitimia-Dobler et al., 2019; Ličková

et al., 2020). TBEV was also isolated from the I. ricinus tick at the

same time as its first recorded appearance in Europe, suggesting

its role as a vector of the disease (Rampas and Gallia, 1949). The

medical importance of D. reticulatus in Central Europe is lower,

because it may transmit TBEV in endemic areas (Chitimia-

Dobler et al., 2019). Unlike a single occasional occurrence in

humans, the number of D. reticulatus tick bites exceed ixodid

ticks on large domestic and game animals, leading to a potential

further circulatory cycle of TBEV (Földvári et al., 2016; Biernat

et al., 2014). Another tick species of hard tick, Rhipicephalus

appendiculatus, Haemaphysalis spp., are also involved in

transmission of TBEV. Due their local distribution and low

FIGURE 1
In nature, TBEV circulates and persists by biological transmission through a competent tick vector and by broad range of hosts. Ticks themselves
as well as some group of mammals (rodents, insectivores, carnivores, etc.) comprise natural reservoirs of the virus. Humans are an accidental and a
dead-end host. Tick-borne encephalitis (TBE), TBEV associated disease of central nervous system, has become a growing public health concern. TBE
incidence maps are provided regularly by the European Center for Disease Prevention and Control (ECDC). The map showed TBE confirmed
cases per 100 000 population by country of EU/EEA in 2022.

Acta Virologica

Published by Frontiers
Institute of Virology

Biomedical Research Center, Slovak Academy of Sciences04

Stibraniova et al. 10.3389/av.2024.12936

https://doi.org/10.3389/av.2024.12936


abundance (Kazimírová, 2022; rev. in Stanko et al., 2022), their

medical and veterinary impact is lower too.

Generally, the hosts are divided into three groups: reservoir,

indicator and accidental hosts. Terrestrial mammals participate in

ecological cycle of TBEV. They have been used to monitor TBEV

and define risk areas, as almost all of them had a confirmed virus or

virus-specific antibodies (Klaus et al., 2010). In Europe, the main

vertebrate reservoir hosts, especially for larvae and nymphs, are

rodents of the genera Mus, Microtus, Micromys, Pitymys, Arvicola,

Glis, Sciurus, Citellus, Apodemus, Myodes glareolus, insectivores

(Sorex, Talpa and Erinaceus) and carnivores (Vulpes and

Mustela) (Ernek et al., 1963; Kožuch et al., 1963; Kožuch et al.,

1976; Kožuch et al., 1981; Kožuch et al., 1990; Heigl and Zeipel, 1966;

Blaškovič, Nosek, 1972; Černý, 1975; Smetana and Malkova, 1976;

Labuda et al., 1993a; Labuda et al., 1993b; Suss, 2003; Weidmann

et al., 2006; Achazi et al., 2011; Knap et al., 2012; Pintér et al., 2014;

Zöldi et al., 2015; Tonteri et al., 2013; Egyed et al., 2015; rev. in

Michelitsch et al., 2019; Kwasnik et al., 2023). Humans, as well as

large animals such as goats, cows, muflons, horses, sheep, roe deer,

dogs, foxes and pigs, and bison are accidental hosts of TBEV

(Rosický, 1953; Radda et al., 1968a; Radda et al., 1968b;

Gresiková and Rehacek, 1959; Nosek, 1971; Černý, 1972; Nosek,

1972; Nosek et al., 1972; Gresiková et al., 1975; Hubálek et al., 1986;

Gresiková and Calisher, 1988; Rieger et al., 1999; Wurm et al., 2000;

Klimes et al., 2001; Bagó et al., 2002; Sikutova et al., 2009; Pfeffer,

Dobler, 2011; Süss, 2011; Klaus, et al., 2012; Klaus et al., 2013; Kříž

et al., 2014; Böhm et al., 2017; Rieille et al., 2017; de Heus et al., 2021;

de Heus et al., 2023; Krzysiak et al., 2021; Gothe et al., 2023).

Many wild and domestic animals are tick hosts and can

develop measurable anti-TBEV antibody titers upon natural

infection and have been investigated in the past as potential

new indicators of risk of TBE infection (Kožuch et al., 1963;

Kožuch et al., 1981; Süss et al., 2008; Pfeffer and Dobler, 2011;

Klaus et al., 2011; Klaus et al., 2013; Burri et al., 2012; Balling

et al., 2014; Balling et al., 2015; Csank et al., 2018; Grzybek et al.,

2018; Rockstroh et al., 2019; Haut et al., 2020; Krzysiak et al.,

2021; Kvapil et al., 2021; Salat et al., 2022; Brandenburg et al.,

2023; Bauer et al., 2023; Gothe et al., 2023; Topp et al., 2023).

They may develop disease with viremia, but in nature they do not

participate in viral circulation and are therefore the dead end of

the natural TBEV cycle. Seroprevalence in human and large

vertebrates can be an indirect means of measuring the intensity of

TBEV transmission within a geographical region and make them

valuable indicators for assessing epidemiological risk.

The examination of goat and sheep sera could be a helpful

additional tool for analyzing the risk of getting infected with TBEV

by tick bite (Klaus et al., 2011; Klaus et al., 2012; Klaus et al., 2013;

Klaus et al., 2014). Moreover, the investigation of animals used for

milk production has been of special interest. Theymay be the source

of alimentary TBEV infections. Probably about 1% of all TBE cases

are caused by foodborne TBEV, the number of cases can vary widely

in different regions. The infection is caused by the consumption of

unpasteurized milk (goat, sheep and cow) and dairy products

containing TBEV (Kríž et al., 2009). Transmission of TBEV by

milk of goats, sheep and cows is known and was observed in recent

decades mainly in Central and Eastern European countries

(Gresikova, 1958a; Gresikova, 1958b, Grešíková, 1972; Grešíková,

1999; Gresikova and Rehacek, 1959; Gresikova, 1960; Gresikova,

1975; Jezyna, 1976; Kohl et al., 1996; Matuszczyk et al., 1997; Rieger

et al., 1998; Labuda et al., 2002; Daniel et al., 2011; Holzmann et al.,

2009; Balogh et al., 2010; Cisak et al., 2010; Caini et al., 2012;

Hudopisk et al., 2013; Zöldi et al., 2013; Markovinović et al., 2016;

Rieille et al., 2017; Brockmann et al., 2018; Dorko et al., 2018; Kerlik

et al., 2018; Król et al., 2019; Rónai and Egyed, 2020; Ličková et al.,

2022; rev. in Elbaz et al., 2022; Paraličova et al., 2022). Among

European countries, Slovakia has the highest rate of food-borne

infections due to the presence of the virus in the milk of infected

goats, sheep or cows, with an upward trend since 2007 (Kerlik

et al., 2018).

Although lizards and birds are the natural hosts of I. ricinus, but

do not probably participate in the natural circulation of TBEV.

However, it should be mentioned that Grešíková-Kohútová and

Albrecht (1959) as well as Sekeyová et al. (1970) detected clinical

signs of infection and production of antibody against the virus in the

laboratory. Already about 60 years ago, several scientific teams in

Central European countries focused on importance determination

of birds and small mammals different species in the spread of

different strains of TBEV and on their immune responses to

different methods of infection or vaccination. The then

diagnostic technologies very rarely, if ever, detected viremia and

clinical signs in the great tit, red squirrel, sparrow, pheasant and

peregrine falcon, coot and chicken, as well as the production of

neutralizing antibodies (Blaškovič, 1961; Ernek, 1962; Ernek et al.,

1967; Ernek et al., 1968; Ernek et al., 1975; Grešíková et al., 1962;

Nosek, et al., 1962; Řeháček et al., 1963; Ernek and Lichard, 1964;

Grešíková and Ernek, 1965; Ernek et al., 1968; Ernek et al., 1969a;

Ernek et al., 1969b; Grešíková, 1972). Later, in wild and domestic

ducks infected with different strains of TBEV, not only several days

of viremia but also seroconversion was found (Ernek, 1962; Ernek

et al., 1969a; Ernek et al., 1969b). As serological studies, viral

isolations as well as sequential similarities suggest, migratory

birds migrating north from Central Europe are also likely to play

a role in the transmission of TBEV to new Europe areas (Süss et al.,

2008; Lommano et al., 2014;Michel et al., 2021). In 2022, Penazziová

with team performed a serosurvey for several tick-borne virus

infections, including TBEV-Eu in tick-infested or uninfested

birds. By screening microtiter, TBEV neutralizing antibodies

(NAb) were also detected (Peňazziová et al., 2022).

Antiviral immune response
against TBEV

All nuclear cells respond to virus infection by innate immune

responses. Both innate responses intracellular mediated by type I

interferon (IFN I) and extracellular mediated by specialized
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immune cells (natural killer, antigen presenting cells) are

activated. This rapid, nonspecific innate immune response is

necessary for subsequent activation of specific adaptive immune

responses, represented by both antibody-associated humoral and

T-cell-mediated immune responses. By combining of these two

reactions, long-term immune memory is provided. Together,

they can lead to clearance of TBEV infection. The immune

response of a mammal hosts to TBEV infection depends on

the route of infection: tick bites, alimentary way or inhalation of

infected aerosols. Recently, several cases of TBEV infection

associated with solid organ transplantation have been reported

in Poland (Lipowski et al., 2017).

The transmission pathway of TBEV to the host affect

different tissues and organs - skin, olfactory or gastrointestinal

tract - involvement in the immune response as well the crossing

of the blood-brain barrier (BBB), and thus the success rate of

infecting the brain as a target organ (Dörrbecker et al., 2010).

The most widespread mode of TBEV transmission is via

saliva of infected ticks within minutes of the tick-bite (Figure 2A)

(Lindquist and Vapalahti, 2008). After transmission of TBEV by

a tick, virus replicates locally in the subcutaneous tissue, namely

in Langerhans cells (LC), subset of myeloid dendritic cells in skin,

and neutrophils. In a mouse model, Labuda and team (1996)

found TBEV replication at the tick bite site even in keratinocytes

and dermal macrophages (Figure 2B). Although macrophages

together with DCs are critical early reactors in host defense

against tick-borne viral infections, they do not always function as

a protective barrier. DCs, the most potent antigen-presenting

cells, were identified by Labuda’s team (1996) as TBEV vectors

during local intrastadially transmission of the virus in the skin

during tick co-feeding. Migrated monocytes and macrophages

were found to be vectors for the transmission of viral particles to

draining lymph nodes (Figure 2C). Subsequent virus replication

in the nodes results in virus spread into the bloodstream and

induction of viremia resulting in infection of various peripheral

organs and tissues Figure 2D). At this stage, the infection can be

successfully cured and seroconversion occurs without obvious

clinical symptoms (Prokopowicz et al., 1995). The immune

response induced by a viral infection is the second major

barrier that a virus encounters, and if overcome, it can spread

FIGURE 2
Of the ways to be TBEV infected, the most common mode is via saliva of infected ticks (A). After a tick bite, TBEV is transmitted into the skin
where it infects local (keratinocytes, fibroblasts, dendritic cells) as well as infiltrating immune cells. Inmammalian host cells, many pattern recognition
receptors (PRRs), including Toll-like receptors (TLRs), RIG-I and MDA5, directly recognize viral genome (vRNA) and their activation leads to the
expression of either interferons (IFNs) or inflammatory cytokines (B). Antigen presenting cells (dendritic cells, monocytes/macrophages)
transport virus particles to the draining lymph nodes and contribute to virus dissemination, yet they can initiate T cell responses (C). Viral replication in
the nodes leads to spread into the bloodstream and to primary viremia. During primary viremia, the virus infects various peripheral organs and tissues
(D); infection of these cells results in secondary viremia (E). At this time, the virus crosses the blood-brain barrier (by several mechanisms) and initiates
infection in the brain (F). Second neuropathological phase is characteristic by pleocytosis (infiltration of immune cells into the cerebrospinal fluid); by
presence of activated T and NK cells in peripheral blood and anti-TBEV IgM and IgG antibodies (F). E, endosome; vRNA, viral RNA.

Acta Virologica

Published by Frontiers
Institute of Virology

Biomedical Research Center, Slovak Academy of Sciences06

Stibraniova et al. 10.3389/av.2024.12936

https://doi.org/10.3389/av.2024.12936


and cause viremia. In some cases, viral penetration into the CNS

(secondary viremia) is followed by the development of a second

neurological phase of the disease (Figures 2E, F). Exactly how

TBEV crosses the BBB is not entirely clear. It is most likely a

combination of mechanisms of enter the CNS without its

disrupting (Ruzek et al., 2011), or by direct infection of the

microvascular endothelial cells (Palus et al., 2017). The olfactory

route of infection was confirmed using Langat virus (LGTV),

naturaly atenuated strain TBEV serocomplex (Kurhade

et al., 2016).

Innate immunity vs. TBEV

In mammalian host cells, many pattern recognition receptors

(PRRs) directly recognize viral nucleic acids as a type of

pathogen-associated molecular pattern (PAMP). In the case of

RNA viruses, the most important PRRs that recognize viral

RNAs are Toll-like receptors (TLRs) located in endosomes

and the plasma membrane (Figure 2B), or cytoplasmic

receptors similar to retinoic acid-induced gene I (RIG-I)

(RLR); involving RIG-I and melanoma differentiation-

associated gene 5 (MDA5) (Kawai and Akira, 2006).

Depending on their subcellular localization, PRR/TLR

activation leads to the expression of either interferons (IFNs)

or inflammatory cytokines (Figure 2B) (rev. in Lester and Li,

2014). Through IFN secretion, these antiviral responses can be

amplified and spread to surrounding uninfected skin cells and

through activated Janus kinases (Jak1 and Tyk2) and signal

transducers of transcription (STAT1 and STAT2), leading to

the activation and translocation of interferon-stimulated gene

factor 3 (ISGF3) into the nucleus and subsequently to the

activation of hundreds of IFN-stimulated genes (ISGs).

Proteins encoded by activated ISGs can either enhance the

IFN response (e.g., PRR and IRF), modulate it (e.g.,

suppressor of cytokine signaling [SOCS]), or directly target

the invading pathogen (e.g., antiviral effector proteins)

(MacMicking, 2012; Schneider et al., 2014). However, the

detection of TBEV after entering the cell is particular difficult

due to TBEV-induced host membrane rearrangements in such a

way to create compartmentalized viral factories that probably

protect the viral RNA from the host’s defenses. The unavailability

of dsRNA to cytoplasmic PRRs delays the activation of interferon

regulatory factor 3 (IRF-3), a key transcriptional regulator of the

type I IFN response, and subsequently IFN production, allowing

TBEV to replicate unimpeded (Overby et al., 2010; Overby and

Weber, 2011; Bílý et al., 2015).

For TBEV, it is not clear which PRRs are dominant. The

importance of TLRs in TBEV infection is very little known. For

example, upregulation of TLR3 during inflammation in different

types of glial cells in the CNS was confirmed. According to

several Swedish or Russian studies of TLR3 polymorphisms,

functional TLR3 is a risk factor for severe TBE (Kindberg

et al., 2011; Barkhash et al., 2013; Mickiene et al., 2014).

TLR7, investigated by Americans in the context of LGTV

infection in a mouse model, might be important for regulating

neuroinflammation (Baker et al., 2013). German researchers also

contributed to identifying the importance of TLR7/8 in relation

to TBEV infection. They co-discovered the role of a

subpopulation of plasmacytoid dendritic cells (pDC)

specialized to produce type I IFN in the immune response to

TBEV. They detected TBEV sensing via the TLR7/8 pathway,

leading to robust IFN-α production. They identified the critical

influence of interleukin 6 (IL6) and the BAFF molecule on the

differentiation of B lymphocytes into plasmablasts by dendritic

cells (Etna et al., 2021). During the validation of TLR2 as a

biomarker for the differentiation of neuroborreliosis (NB) from

TBE in serum or CSF, the Polish team of Moniusko-Malinowska

(2019) confirmed the involvement of TLR 2 in the development

of the inflammatory process in the CNS. Regarding the role of

RLR (MDA5/RIG-I), German researchers in collaboration with

Sweden pointed to the role of IFN-β promoter stimulator 1 (IPS1,

also known as MAVS), which is crucial for the upregulation of

IFN-β in vivo and in vitro. After binding of the RNA ligand to

MDA5/RIG-I, its conformational change leads to the activation

of transcription factors–IFN regulatory factor 3 (IRF3), IRF7 and

nuclear factor kappa B (NF-κB). Phosphorylated homo- and

heterodimers of IRF3 and IRF7 translocate to the nucleus to

activate IFN-β transcription (Kurhade et al., 2016; Overby et al.,

2010). The importance of IPS expression in the CNS for virus

spread and replication control was indicated by Kurhade and his

team (2016). Deficiency of IPS1 leading to inability to induce

IFN-β transcription in response to TBEV, rendering cells more

susceptible to infection (Overby et al., 2010), IPS1-deficient mice

reported lower systemic levels of IFN-α and higher viral loads,

and consequently succumbed earlier to LGTV and TBEV

infection (Kurhade et al., 2016). Selinger et al. (2017) also

demonstrated that TBEV infection in the CNS triggers innate

immune signaling by interacting with RIG-I/MDA5, which

promotes IRF-3 translocation to the nucleus. In human

medulloblastoma cells derived from cerebellar neurons

(DAOY), they revealed a broad panel of ISGs, including

interferon-induced protein with tetratricopeptide repeats

(IFIT) 1, IFIT2, IFIT3, radical S-adenosylmethionine domain

(RSAD) 2 containing 2′-5′-Oligoadenylate Synthetase Like

(OASL), 2′,5′-oligoadenylate synthetase 2 (OAS2), ISG15 and

ISG20 and pro-inflammatory cytokines (see section

Inflammation vs. TBEV) however without an inhibitory effect

on TBEV titers. Results indicated IFN- or IRF3-independent

transcriptional induction of IRF1 and IFN-independent ISG

induction pathways. Upregulated expression of type III, but

not type I or II IFNs activated after TBEV infection has also

been demonstrated and probably reflected a defect in recognition

of viral RNA by RIG-I/MDA-5.

Polish researchers found the highest levels of IFN-γ in the

CSF of patients with severe TBE with impaired consciousness. In
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patients with milder clinical manifestations, they found higher

expression of IL10, IFN-β and IFN-λ3, associated with genentic

polymorphisms (Kondrusik et al., 2005; Grygorczuk et al., 2015).

Several European researchers have demonstrated the induction

of type I IFN expression in host cells after TBEV infection and the

very sensitive response of the virus to pre-treatment of the host

cell with IFN (Stancek and Vilcek, 1965; Vilcek, 1960; Hofmann

et al., 1971; Kopecký et al., 1991a; Overby et al., 2010; Weber

et al., 2014; Kurhade et al., 2016; Lindquist et al., 2016).

The innate immune system includes natural killer (NK) cells.

Activated NK cells, like T cells, are involved in

immunopathological responses. They kill infected cells either

directly or indirectly via cytokines or chemokines. They can also

recruit inflammatory cells into tissues. Not much is known about

NK cells in the context of TBEV. NK cells appear to be activated

at the beginning of the second phase of TBE. Their involvement

in TBEV infection was noted by Tomazic, who detected NK cells

in peripheral blood of TBEV patients (Tomazic and Ihan, 1997).

Toczylowski et al. (2020) found their relative depletion in the

lymphoid population in the CSF of TBE patients compared to

blood. TBE infection differs from other human viral infections in

the characteristics of the NK cell response. Cytotoxic granule

release early in NK cell activation may contribute to TBEV

pathogenesis.

Monocytes/macrophages play an important role in CNS

inflammation, but their pathogenetic role and migratory

mechanisms in human flavivirus encephalitis are not well

understood. Because TBEV targets macrophages (Figure 2), in

laboratory conditions, the role of macrophages in experimental

TBEV infection was described by Khozinsky et al. (1985). They

demonstrated that reversible massive blockade of macrophage

phagocytic activity (PAM) in vivo during acute TBEV infection

significantly increased acute TBEV lethality. PAM suppression

did not affect macrofages interactions with B- and

T-lymphocytes during the first 48 hpi. In the presence of anti-

TBEV antibodies, peritoneal macrophages (PM) from both

infected and uninfected donors acquired the ability to kill

TBEV-infected target cells. Antibody-dependent macrophage

cytotoxicity (ADC) was associated with a phagocytic cell

population. Kreil’s team showed that TBEV infection of

macrophages profoundly alters the requirements for inducing

nitric oxide (NO) synthesis. They demonstrated that IFN-γ, plus
TNF-α-stimulated production of NO was down-modulated in

macrophages infected with TBEV. They hypothesized that NO

production is probably antagonized by TBEV-induced IFN α/β
(Kreil and Eibl, 1995). Later, they demonstrated spontaneous NO

production in macrophages isolated from TBEV-infected mice.

High levels of NO production did not inhibit TBEV replication

in vitro, but suppression of macrophage NO production in

infected mice resulted in increased survival, suggesting that

NO production may even contribute to viral pathogenesis in

vivo (Kreil and Eibl, 1996). Another study contributed to

clarifying the role of macrophages in the pathogenesis of

TBEV. A retrospective analysis of blood monocyte counts in

the CSF of TBE patients withmeningitis, meningoencephalitis, or

meningoencephalomyelitis revealed a correlation of CSF

monocyte counts with other CSF inflammatory parameters,

but not with peripheral monocytosis, which was related to

their active recruitment to the CNS. Counts did not correlate

with clinical image (Grygorczuk et al., 2021). Using

macrophages, Beránková et al. (2022) investigated the subtle

and complex involvement of autophagy at the level of virus entry

and IFN-β production in the control of TBEV infection. They

found that autophagy is the limiting factor for IFN-β production
by TBEV-infected macrophages. Recently, they investigated the

interplay between TBEV infection and stress pathways in the

mouse macrophage cell line PMJ2-R. They found changes in

redox balance and defenses against cellular stress triggered by

TBEV infection, including antioxidant responses and the

IRE1 UPR pathway. Their experimements showed negative

effect of stress-induced events on TBEV replication and only

a marginal effect of tick saliva on stress cellular pathways

(Beránková et al., 2024).

Dendritic cells (DCs) are one of the first cells that TBEV

contacts when it invades the host (Figure 2). They are permissive

to TBEV. This may contribute to the subsequent spread of the

virus and the initiation of adaptive immune responses (Labuda

et al., 1996). They express many types of PRRs on their surface or

in their cytoplasm, allowing them to recognise different

pathogens. In the early stages of viral infection, these cells act

as antigen presenters, costimulators and cytokine producers

(including type I IFNs). They bridge the innate and adaptive

immune systems (Labuda et al., 1996). Dörrbecker with

colleagues (2010) proposed that LC/DCs are first subset of

antigen presenting cells that present TBEV to T-lymphocytes,

activate their differenciation to CD4+ type 1, 2 and CD8+

T-lymphocytes (CTL). Despite their role or importance in the

innate antiviral immune response, their performance during

TBEV infection has long been poorly understood. Information

originating from European research about the role of DCs in

TBEV infection comes from the studies of tick saliva effects on

the transmission of different pathogens, including TBEV, the

production of antiviral or pro-inflammatory cytokines after

infection, or on apoptosis or migration (Skallova et al., 2008;

Fialova et al., 2010; Lieskovská and Kopecký, 2012; Kotál et al.,

2015). Skallova and her team showed that tick saliva inhibits DCs

maturation after ligation of TLR3, TLR7, TLR9, or CD40, which

may maintain a less mature DCs phenotype. These could then

remain permissive for the virus. Fialova et al. (2010) detected

significant amounts of TNF-α and IFN-β and high amounts of

IL-6, minimal IL-12p70 and IL-10 in TBEV- infected DCs.

Effects were virus strain dependent. Because the random cells

retained an immature phenotype (low expression of B7-2 and

MHC class II molecules), they hypothesized that cytokines were

likely produced by infected rather than random DCs. They also

identified increased apopoptotic effect of TBEV infection on
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DCs. In Lieskovská et al. (2018) did find activation of the PI3K/

Akt antiapoptotic pathway in TBEV-infected DCs. However,

they did not confirm activation of STAT1 signaling or

phosphorylation of NF-κB, nor detectable levels of IFN-β in

TBEV-infected DCs. Marušic et al. (2023) investigated DCs

activation and maturation and cytokine production after

in vitro TBEV stimulation of peripheral blood mononuclear

cells (PBMCs) obtained from vaccine breakthrough (VBT)

and unvaccinated TBE patients. Their results showed

upregulation of HLA-DR and CD86 expression on DCs to a

similar extent in both group of TBE patients, but differed in

cytokine production after TBEV challenge. PBMCs from VBT

TBE patients responded to TBEV challenge by lower levels of

IFN-α and pro-inflammatory cytokinesin vitro, which likely

facilitated viral replication and affected the development of

cell-mediated immunity 48 h.p.i. Significantly higher levels of

IL-6 and TNF-α measured after 6 days of in vitro stimulation of

PBMCs could promote disruption of the blood-brain barrier and

influx of viral and immune cells into the CNS, leading to more

severe disease in VBT TBE patients.

The main target organ for TBEV is the host brain, where the

virus primarily infects neurons (Bílý et al., 2015). However,

Slovenian and Czech scientists have shown that other nerve

cells, such as astrocytes, are also likely targets for TBEV

infection (Palus et al., 2014a; Potokar et al., 2014). Because of

the neurotropism of TBEV and also the fact that TBEV replicates

10,000-fold more frequently in human neuronal cells compared

to epithelial cells (Ruzek et al., 2009b), most of the information

on the immune response of cells to TBEV infection comes from

experiments following infection of neuronal cells or the brain.

Within the CNS, TBEV productively infects neurons and

astrocytes, which leads to the development of neuropathology

(Bílý et al., 2015; Palus et al., 2014b; Ruzek et al., 2009a). In 2014,

Weber and colleagues showed that type I IFNs protect and

control TBEV- and Langat virus (LGTV, a naturally

attenuated member of the TBEV serogroup)-induced

inflammation and encephalitis by limiting systemic LGTV

replication, CNS dissemination, and associated

immunopathology. They also demonstrated the importance of

IFNAR, a key receptor molecule in the type I IFN response

(Weber et al., 2014). Deficiency of IFNAR led to uncontrollable

multiplication of LGTV and TBEV, with mice dying very quickly.

Its controlling role in LGTV replication has been demonstrated

in all cell types including hematopoietic, stromal and

neuroectodermal cells plus cells in the periphery.

The very early type I IFN antiviral response in TBEVinfected

astrocytes in vitro was also proven by experiments by Swedish,

American and German scientists, pointing out that these cells

thus limit the replication and spread of the virus (Lindquist et al.,

2016). Just recently, Ghita et al. (2021) identified astrocytes as

major IFN-β producers upon in vitro TBEV infection. Astrocytes

and microglia were less permissive to TBEV and produced

significantly higher levels of IFN-β than neurons. In TBEV-

infected astrocytes, MAVS signaling drove early innate

responses, and restriction of TBEV replication and induction

of early IFN and ISG responses depended on it. They

demonstrated that IFN-β induction in infected astrocytes

depends on MAVS and MyD88/TRIF sequential signaling.

Important host effector molecules in the type I IFN response

to viruses are the interferon-induced transmembrane (IFITM)

protein families. Polish researchers investigated the role of

IFITM1, IFITM2 and IFITM3 in the inhibition of TBEV

infection and virus-induced cell death. Their results showed

that IFN- and IFITM-mediated immunity did not significantly

affect intercellular spread of TBEV (Chmielewska et al., 2022).

There are evidence growing that susceptibility to TBEV

disease and severity of the disease course are related not only

to viral factors, but also to host factors - age, neurological

symptoms at baseline, and low early IgM response in CSF. A

detailed study of the potential role of the genetic background of

TBE conducted in detail, especially in the Russian population,

was followed by Czech scientists. In TBE animal models, they

have identified several candidate genes that influence survival

after TBEV infection, including Oas1b, Cd33, Klk1b22, Siglece,

Klk1b16, Fut2, Grwd1, Abcc6, Otog, and Mkrn3 (Palus et al.,

2013; Palus et al., 2018). Recently, Fortova et al. (2023a), Fortova

et al. (2023b) investigated the contribution of selected single

nucleotide polymorphisms (SNPs) in innate immunity genes to

the predisposition to TBE in humans. Impact of selected single

nucleotide polymorphisms (SNPs) in the genes IFIT1, IFIT2,

RIG-I and DDX58 on the outcome of TBEV infection was

investigated. Their analysis showed an association of

IFIT1 rs304478 SNP and DDX58 rs3739674 and

rs17217280 SNPs with predisposition to TBE in the Czech

population. They also identified correlation of serum MMP-9

levels with clinical course, especially in patients heterozygous for

the single-nucleotide polymorphism rs17576 (A/G; Gln279Arg)

in the MMP-9 gene. Probably, these SNPs present novel risk

factors for clinical TBE but not for disease severity.

Inflammation during TBE

Inflammation upon acute infections is an important part of

the immune response essential for the elimination of pathogens.

On the other hand, excessive inflammation may be harmful to

the host. Recruitment and activation of immune cells in inflamed

tissues is mediated by chemokines. Data on soluble factor/

cytokine/chemokines response in TBEV infection are limited.

Determination of cytokine composition in different clinical

samples of patients with TBE (CSF, urine, serum) may reveal

a complex and distinct network of cytokines of early innate

immune response, CD4+ Th1, Th2, Th9, Th22, and

Th17 subpupulations and anti-inflammatory cytokines.

Beside DCs and macrophages, neutrophils are recruited to

the site of TBEV infection (Labuda et al., 1996). Neutrophils are
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highly phagocytic cells, after activation they are also able to

produce inflammatory cytokines. Like other immune competent

cells, they likely play a role in complementing the cytokine and

chemokine response during the first period after TBEV infection.

They are attracted to the bite site during tick feeding by high

levels of CXCL8 and can also be infected by TBEV (Labuda

et al., 1996).

Numerous studies investigated the levels of cytokines and

chemokines in serum and CSF of TBE patients (Kondrusik et al.,

1998; Kondrusik et al., 2001; Grygorczuk et al., 2006a;

Grygorczuk et al., 2015; Grygorczuk et al., 2017; Grygorczuk

et al., 2018a; Grygorczuk et al., 2018b; Lepej et al., 2007;

Zajkowska et al., 2011; Bogovič et al., 2019; Bogovič et al.,

2022; Zidovec-Lepej et al., 2022), yet there are limited data on

the role of inflammation in the pathogenesis of TBE. Zajkowska

et al. (2006) investigated the role of sCD40 and sCD40L in

TBEV-induced intrathecal inflammation. The CD40-CD40L

costimulatory pathway plays a key role in the production of

cytokines, including interleukin (IL)-10 and IL-12, by monocytes

and macrophages. In addition to various functions, these

cytokines also modulate the activity of T-lymhocytes. The

interaction between CD40 and CD40L is essential in

generating an immunological response even intrathecally. The

detected increased concentration of sCD40L in the inflammatory

CSF indicated the persistence of peripheral activation of the

immune system after the end of treatment and after clinical

recovery. Kondrusik et al. (1998) found significantly higher levels

of TNF-α and IL-1β in patients with tick-borne encephalitis

before and after treatment and normalization of CSF parameters.

In order to evaluate the efficacy of treatment and resolution of

infection, the authors proposed and used measurement of these

cytokines in patients with tick-borne encephalitis. Although they

did not confirm the significance of serum IL-1β determination,

due to the decrease in TNF-α concentration after treatment, they

assume that measuring its concentration may be useful in

evaluating the effectiveness of asseptic CNS treatment

(Kondrusik et al., 2001). In 2005, Zajkowska with team

evaluated the concentrations of the soluble forms of

intercellular adhesion molecule (ICAM) - ICAM-1, ICAM-2,

ICAM-3 in the serum and CSF of TBE patients. By detection of

sICAM-2 increased concentration in CSF, they confirmed its

important role in inflammatory process of viral origin

(Zajkowska et al., 2005). A year later, the participation of

intercellular ICAM-1, ICAM-2, ICAM-3 in the TBEV

pathogenesis was confirmed by Pietruzuk et al. (2006).

Polish researchers found increased levels of CXCL9 (Koper

et al., 2018) and CXCL10 and CXCL11 (Lepej et al., 2007) in the

CSF of patients with TBEV. Zajkowská and colleagues (2011)

investigated differences in the concentration levels of several

CXCL chemokines (CXCL10, 11, 12, and 13) in the serum and

CSF of TBE patients before and after infection. They proposed

their possible use as biomarkers of CNS inflammation caused by

TBEV, mainly the detection of CXCL10 in CSF and CXCL13 in

serum as indicators of patient recovery. They detected the

involvement of CXCL13 in the recruitment of CXCR3-

expressing T-lymphocytes to the CNS. Grygorczuk et al.

(2006a), Grygorczuk et al. (2006b), Grygorczuk et al. (2015),

Grygorczuk et al. (2016) also confirmed increased levels of CCL3,

CCL5, CXCL11, CXCL12, CXCL13 and IFN-λ3, IFN-β, IL-10 in
the CSF of TBE patients. The increased level of CCL5 in the CSF

correlated with the activation of CD4+ T cells in the CSF, which

expressed a high level of CCR5, CXCL1 and CXCL2 attracted

neutrophil here. In Moniuszko-Malinowska et al. (2018)

confirmed high mobility group protein box 1 (HMGB-1) in

the serum and CSF of TBE patients. HMGB1, a

multifunctional cytokine (depending on its subcellular

localization), serves as a biomarker of inflammation. The

pathological mechanisms of which it is a component underlie

the complications associated with CNS diseases (Moniuszko-

Malinowska et al., 2018). Bogovič et al. (2019), who analyzed the

expression profiles of cytokines/chemokines associated with

innate and adaptive immune responses of serum T and B

lymphocytes and CSF, showed similar levels in the acute

phase, but with the onset of postencephalitic syndrome (PES),

they noted increased expression of Th1 (IFN-γ, IL-12P40, IL-
12P70, CXCL10, CXCL9, and CCL19), B (CXCL12, CXCL13)

mediators, but decreased expression of Th17 (IL-17F, IL-17A, IL-

22, IL-21, IL-23, IL-25, and IL-27). Comparing laboratory and

immunological findings in the early and second

(meningoencephalitic) stages of TBE, Bogovič et al. (2022)

found the same low number of leukocytes and platelets in

both stages of TBE, but very different patterns of clustering of

immune mediators. They found the involvement of different

immune processes depending on the stage of TBE and the

compartment studied. In the serum, the expression of CXCL1,

CXCL13, BAFF, IL-4, and IL-27, associated with innate

immunity, but also the activity of B lymphocytes and growth

factors associated with angiogenesis (Growth regulated peptide

(GRO)-α and Vascular Endothelial Growth Factor (VEGF)-A)

dominated. In the second phase, the typical immune response

was represented by innate and Th1 mediators in serum and CSF.

The target organ of TBEV is the CNS and a critical

component of the CNS is the BBB. The effect of the virus on

the CNS as well as the tissue-specific response associated with

infection depends on the types of inflammatory cells, the

humoral response, as well as the cellular components and

chemokines/cytokines involved by the host (Dörrbecker et al.,

2010). Entry of TBEV into the CNS is probably facilitated by a

peripheral inflammatory response to the virus. The main features

of TBEV pathogenesis are neuroinflammations. Dominant

histological inflammatory reactions are lymphocytic meningeal

and perivascular infiltrates, microglial nodules and

neuronophagy (Tomazic and Ihan, 1997). Ruzek et al. (2011)

demonstrated in a mouse model the disruption of BBB integrity

in TBEV-infected mice. Since BBB permeability was increased in

the later stages of TBE infection when a high viral load is present
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in the brain, its disruption was likely a consequence of TBEV

infection in the brain. CD8+ T cells were not involved in BBB

breakdown; its disruption was probably caused by pro-

inflammatory mediators such as cytokines, chemokines and

matrix metallopeptidase (MMP), especially MMP-9, expressed

in infected brain tissue. Palus and his team confirmed the

research of Russian and Swedish scientists (Atrasheuskaya

et al., 2003; Blom et al., 2016), who revealed significantly

increased levels of pro-inflammatory and inflammatory

cytokines at the beginning of the second phase of TBE in

patient serum samples. Palus’ team revealed that TBEV

infection of mouse brain and human astrocytes resulted in

inflammatory responses that included increased production of

cytokines (IL-1α, IL-1β, IL-6, IL-8, IFN-α, and IFN-γ) and

chemokines (CCL2, CCL3, CCL4, CCL5, and CXCL10) and

later supplemented the spectrum with new potential

inflammatory markers, MMP-9, monoamine

neurotransmitters serotonin, dopamine and noradrenaline, as

well as hepatocyte growth factor (HGF) and VEGF (Palus et al.,

2013; Palus et al., 2014a; Palus et al., 2015). Grykorczuk and

colleagues (2017) confirmed, as a hallmark of inflammation

facilitating viral passage across the BBB, the activation of a

signaling pathway involving TLR3 and the inflammatory

cytokines, macrophage migration inhibitory factor (MIF),

TNF-α and IL-1β. In vitro experiments of Selinger et al.

(2017) with TBEV-infected human medulloblastoma cells

derived from DAOY cerebellar neurons revealed activation of

a panel of genes encoding similar cytokines after TBEV infection

as detected by Palus et al. (2013)–Palus et al. (2015),

supplemented by five additional genes encoding cytokines (IL-

6 and TNF-α, CXCL2, CXCL11, IL-12α, IL-15, and IL-23α) and
the IL-18 receptor protein (IL18RAP). Although on the one hand

it contributes to the risk of overt neuroinvasive disease, it also

plays a protective role intrathecally, thereby facilitating the

course of neuroinfection. Individual variability in the risk of

clinical manifestation of TBE may be due to genetically

determined variability in the peripheral and intrathecal

expression of mediators of the inflammatory response. They

revealed the intrathecal expression of cytokines IL-5,

Th17 and CXCR2-binding chemokines and contributed to the

elucidation of their pathogenetic role in TBE (Grygorczuk et al.,

2018a; Grygorczuk et al., 2018b). They identified elevated serum

levels of the pro-inflammatory cytokines IL-6, IL-8, IL-12, IL-

17A, and IL-17F and the chemokines CCL3, CXCL2, CXCL10,

and CXCL13 as possible biomarkers indicating severe

progression. Later, intrathecal and CSF findings revealed an

increase in the mean concentration of CCL7 and

CXCL12 with no apparent concentration gradients towards

the CSF (Grygorczuk et al., 2021). Investigating differences in

cytokine/chemokine communication during TBEV infection in

naive and TBEV-infected mice and human neuronal cells and

astrocytes within the innate immune response, Pokorna

Formanova et al. (2019) found time-dependent concentrations

of CXCL10 as well as CXCL1, granulocyte colony stimulating

factor G-CSF, IL-6 in mouse serum or brain. In human

neuroblastoma cells they found increased production of

CXCL8 and IL-27, IL-4, BAFF and downregulation of

CCL2 and HGF, in human astrocytes mainly IL-6, CXCL8,

CXCL10, CCL5 and G-CSF) and decreased expression of

VEGF. They identified both neurons and astrocytes as

potential sources of pro-inflammatory cytokines in TBEV-

infected brain tissue. Induced cytokines and chemokines

stimulated the innate immune response of neurons, which

reduced viral replication and increased the survival of infected

neurons. Several of these papers offer many of the cytokines,

chemokines or growth factors identified by them as potential

biomarkers of the immune response to TBEV, but given the non-

specificity of TBEV, as complementary (see Table 2). Recent

studies have identified several promising biomarkers for tick-

borne encephalitis virus (TBEV) that could be useful in clinical

trials. These biomarkers include metabolites and lipids (Du et al.,

2021), immunoglobulins and free light chains, and cytokines and

chemokines (see above). Considering the limitation of the

reviewed scientific articles to Central Europe, based on the

findings of Palus and Fortova, we prefer MMP-9 as a

potential marker of the immune response to TBE.

Adaptive immunity against TBEV

Adaptive immune responses are provided by antibodies

(humoral responses) in collaboration with cell-mediated

responses involving T cells. This provides long-term immune

memory. All these reactions together can eliminate virus

infection. Infection with TBEV triggers a humoral as well as a

cell-mediated immune response (Figure 2). In contrast to the

well-characterized humoral antibody-mediated response, the

cell-mediated immune responses elicited to natural TBEV-

infection have been poorly characterized until recently.

Humoral immunity against TBEV

Many viral infections as well as vaccines against them induce

long-lasting protective immunity consisting of pathogen-specific

antibodies and memory B cells. TBEV infection also elicits an

effective B cell response. The detection of TBEV in both natural

and accidental hosts of ticks went hand in hand with the

detection of the immune response, including antibodies

against TBEV. It mainly served to identify and monitor not

only the virus, but also the prevalence of infection in ticks and

hosts, as well as the seroprevalence in natural deposits. The virus

was isolated from ticks (Grešíková, 1972; Labuda et al., 2002),

and in the case of different types of hosts from the brain and

other organs caught during the monitoring of TBE foci. The sera

of these animals contained antibodies against TBEV (Ernek et al.,
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TABLE 2 Biomarkers of immune response to TBEV infection.

Marker of immune response Level identification/production
compartment

Role in the immune response and
potential application

TLR2 ↑ CSF, serum Development of inflammation in CNS

TLR3 ↑ Glial cells in CNS Risk factor of inflammation

TLR7/8 ↑ Mouse pDC Robust production of IFNα

MDA5/RIG I CNS
Meduloblastoma cells

Activation of IRF3/IRF7 and NF-κB pathways
Activation of broad ISGs (IFIT1, IFIT2, RSAD2,
OASL, OAS2, ISG15, ISG20 without effect on
TBEV replication

IPS ↓ Mouse model CNS Inhibition of induction of IFN-type I
transcription in response to TBEV

IFN α
IFN β
IFN β

↑
↓
↑

Mouse pDC
CSF

PBMC
CNS

Astrocytes, neurons

Control of TBEV infection
Breakthrough vaccination
Inhibition of TBEV replication, protection of
TBEV dissemination

IFN λ1 ↑ CSF Probably marker of defect in recognition of viral
RNA by RIG-I/MDA-5

IFN λ3 ↑ CSF Association with milder clinical manifestations

IFNγ ↑ CSF Association with impaired consciousness

TNF-α ↑
↓- after treatment

DC, PBMC
CSF

Effective for evaluating the effectiveness of
aseptic CNS treatment

autophagy ↑ DC Limiting factor for IFN-β production by TBEV-
infected macrophages

ICAMs Serum, CSF Important in inflammatory processes

BAFF ↑ mice Differentiation of B lymphocytes into
plasmablasts by dendritic cells

CD40 and CD40L
TIMP

↑ Essential in generating an immunological
response even intrathecally
Modulation of the activity of T-lymphocytes

HMGB-1 ↑ serum, CSF Biomarker of inflammation
Potential biomarker for diagnosis of TBE

TBEV-specific
IgM and IgG

↑ serum, CSF Potential biomarker for diagnosis of TBE and for
evaluation the effectiveness of TBE vaccination

λ free light chains ↑
↓

CSF serum Detection of potential dysfunction and increased
permeability of BBB
Correlation with intrathecal synthesis of TBEV-
specific antibodies

MMP9 ↑ serum, CSF Detection probable BBB dysfunction, increased
permeability of BBB
Correlation with inflammatory in brain, and with
specific antibodies expression

CXCL1 ↑
↓ -After
treatment

CSF Associated with neutrophils infiltration into CNS
Correlation with lymphocytes count and
increased permeability of BBB
Potential and additional biomarker for TBE
diagnosis

CXCL2 ↑ CSF, and after treatment Increasing of TBEV invasion into CNS
Association with neutrophils infiltration into
CNS
Potential and additional biomarker for TBE
diagnosis

(Continued on following page)
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1963; Bárdoš, 1965; Kožuch et al., 1967; Kožuch et al., 1990;

Kožuch et al., 1995; Nosek et al., 1970; Nosek et al., 1982;

Trávniček et al., 1999; Labuda et al., 2002; Sláviková et al.,

2019). A number of studies have focused on the correlation of

the humoral response to TBE infection with clinical outcome as

well as with TBE vaccine development. The antibody response to

TBEV is targeted primarily against the E and NS1 proteins and is

critically important in controlling and clearing the infection.

Nonstructural protein 1 (NS1) is secreted into circulation by

infected cells and serum levels correlate with disease severity.

Both TBEV neutralizing (mainly against E) and partially non-

neutralizing antibodies (against NS1 or prM) can prevent disease

development.

In laboratory experimental condition, production of

neutralizing antibodies was identified by Rada et al. (1968a),

Hofmann´s team Hofmann et al. (1978); Hofmann and Popow-

Kraupp (1982), Labuda ‘s team (1997). In the natural host,

Kožuch et al. (1981) and Kopecký et al. (1991a) have been

monitoring the development of viremia and the production of

specific antibodies during the observation period. By comparing

TABLE 2 (Continued) Biomarkers of immune response to TBEV infection.

Marker of immune response Level identification/production
compartment

Role in the immune response and
potential application

CXCL9 ↑
↓ - after recovery

Serum, CSF Involved in TBE immunopathology
Potential and additional biomarker for TBE
diagnosis

CXCL10 ↑ Serum, CSF, brain
Human neuroblastoma

Diagnosis of TBE
Reflection of viral infection of peripheral tissues
and CNS

CXCL13 ↑
↓ - after recovery

CNS
CSF

Distinguish meningoencephalitis from
meningitis
Involved in lymphocytes movement
Associated with disease complications

CCL2, CCL7, CXCL12 ↑ CSF Detection of dysfunction and increased
permeability of BBB
Distinguishing of TBE meningitis from non-TBE
meningitis (CCL7)

CCL2, CCL3, CCL4, CCL5 ↑ Mouse brain
Human neuroblastoma (CCL5)

Markers of inflammation
Potential biomarker for TBE diagnosis

HGF, VEGF, GRO-α ↑ Serum New potential inflammatory biomarkers

G-CSF ↓ Astrocytes, mouse brain New potential inflammatory biomarkers

serotonin, dopamine and noradrenaline ↑ Mouse brain, human astrocytes Probably involved in BBB breakdown caused by
pro-inflammatory mediators

IL-1α, IL-1β ↑ Mouse brain, human astrocytes Probably involved in BBB breakdown caused by
pro-inflammatory mediators

IL5 ↑ CSF Correlation with intrathecal synthesis and
increased permeability of BBB

IL6 ↑
↓

Mouse brain and serum, DC, PBMC
Astrocytes, neuroblastoma cells

Effect on differentiation of B lymphocytes into
plasmablasts by DC
Associated with acute phase of disease and with
sequalae

IL8 ↑ neuroblastoma cells, serum biomarkers indicating severe progression

IL10 ↓ almost none CSF
DC

Association with milder clinical manifestations
Effect on TBEV replication, strain dependent

IL12α, IL15, IL23α, IL18RAP ↑ Cereberal neuron cell line, (At gene level) Probable contribution to the risk of overt
neuroinvasive disease
Protective role intrathecally, thereby facilitating
the course of neuroinfection

IL-17F, IL-17A, IL-22, IL-21, IL-23, IL-25,
IL-27

↓
↑

Serum/CSF
Neuroblastoma cells (IL27)

Decreased expression of Th17 response

TBE-tick-borne encephalitis, IFN, interferon; MMP-9, matrix metalloproteinase; CXCL, C-x-C motif ligand; CCL, C-C motif ligand; IL, interleukin; HMGB-1, high electrophoretic

mobility group B1 protein; HGF, hepatocyte growth factor; VEGF, vascular endothelial growth factor; GRO-α, Growth regulated peptide TLR-Toll-like receptor; RIG, retinoic acid-

induced gene I; MDA, melanoma differentiation-associated gene, CSF, cerebrospinal fluid; BBB, blood–brain barrier.
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the immune response in TBEV-infected Apodemus sylvaticus

natural hosts and TBEV-infected laboratory ICR mice, Kopecký

et al. (1991b) identified an earlier and more intense infection-

induced antibody response in the natural host compared to

laboratory mice. Klaus et al. (2019) tried to fullfil gaps in the

knowledge about immunity in animals, for example with regard

to the longevity of TBEV immunity. They investigated the

potential risk of TBEV infection through serological studies in

dairy goat and sheep herds fromGermany using TBEV-VNT and

found long-lasting antibody titres in goats and sheep after

exposure to TBEV, albeit at low levels.

The protective effect of passive immunization with human or

mouse monoclonal or polyclonal antibodies specific for TBEV

(against protein E) in mice against an otherwise highly lethal

TBEV attack was proven by Austrian and Czech scientists (Kreil

and Eibl, 1997; Kreil et al., 1998a; Elsterova et al., 2017). Kreil et al.

(1997) showed that passive immunisation by transferring anti-

TBEV glycoprotein E antibodies into mice could provide

immune protection against the spread of TBEV from skin

monocytes/macrophages, prior to subsequent vaccination with

free TBEV particles. However, despite passive protection by

applied antibodies they found short-term replication of the virus

at a low level, (Kreil et al., 1998a). Recently, Kubinsky with team

(Kubinski et al., 2023) investigated the impact of adoption strategies

for transferring serum or T cells from LGTV-infected mice to

previously untreated recipient mice on the development of severe

disease induced by lethal dose of TBEV. They confirmed effective

protection of this strategy against the development of severe disease.

Kreil et al. (1998b) identified a predominantly NS1-specific antibody

response generated by mice vaccinated with a fully killed TBEV

vaccine and challenged with a lethal dose of TBEV. They also

showed that TBEV-neutralizing antibodies protected against disease

but did not prevent localized infections in the host. Austrian

researchers Kreil and Eibl (1997) while investigating potential

antibody-dependent enhancement (ADE) of TBEV infection

during pre- or post-exposure to passive immunoglobulin found

that antibodies that enhance TBEV replication in mouse peritoneal

macrophages in vitro protect against lethality of TBEV infection in

mice. Haslwanter et al. (2017) found that non-neutralizing but

protective antibodies targeting the NS1 protein bound to TBEV

particles can mediate attachment and endocytosis of these

complexes by Fcγ receptor-bearing cells such as macrophages.

They hypothesized that this could lead to a subsequent increase

in ADE antibody levels.

Dogs are frequently infected with TBEV. But diagnosis is

complicated by the cross-reactivity of antibodies between

different flavivirus species. Using a self-developed multispecies

luciferase immunoprecipitation system to detection of antibodies

against several different antigens from TBEV andWest Nile virus

(WNV), Könenkamp and his team (2022) identified the

NS1 protein as a suitable antigen to differentiate specific

TBEV and WNV antibodies in dogs. Clinical manifestation, as

well as immune response of dogs to subcutaneous injection of

TBEV was assessed by Czech scientists. They detected almost no

changes for haematology and blood biochemistry parameters.

Hovewer, a robust immune response was developed in all cases,

in terms of neutralizing antibodies (Salat et al., 2021). Due to the

absence of a TBEV vaccine for dogs, Salat and his team tested

experimental candidates for a veterinary vaccine, not only in

dogs, but also in the mouse system. By detection of specific anti-

TBEV antibodies in sera of mice and dog, they confirmed

developed vaccine candidate as a promising to protect dogs

from severe TBEV infections (Salat et al., 2023).

The detection of TBEV-specific IgM and IgG antibodies in

the patient’s serum and CSFseveral days after the onset of TBEV

infection and the appearance of symptoms helps to establish a

specific diagnosis. In Frańková et al., 1978 with team developed

an indirect IF technique using suspensions of PS cells uninfected

and infected with the TBE virus as an antigen-containing

substrate, as a rapid and practical test allowing the detection

of specific serum antibodies of the IgM class at the early stage of

clinically manifest TBE. Later, Grubhoffer et al. (1988) presented

the IgM-capture EIA system assembled from Czechoslovak

immunopreparations (SEVAC) for rapid serological diagnosis

of tick-borne encephalitis (TBE), which they tested on clinical

material. The detection of IgM antibodies using pig antiserum

and the selection of specific IgM antibodies performed with the

TBE antigen followed by an indirect method of detection with

this system proved to be sensitive and fully correspond to the

clinical picture of the disease. In 1995, Slovenian scientists

pointed out that the diagnosis of TBEV is made difficult by

non-specific test results in the first phase of the disease, e.g.,

leukopenia, thrombocytopenia or liver tests (Lotrič-Furlan and

Strle, 1995). Because the diagnosis of TBEV exposure relies on

serologic testing, but there is also cross-reactivity between

different flavivirus genera (Orlinger et al., 2011) and the

detection of TBEV-specific antibodies may be biased, several

investigators have attempted to validate various ELISA, EIA test

systems for the detection of TBEV IgG antibodies (Niedrig et al.,

2001; Niedrig et al., 2007; Weissbach and Hirsch, 2015;

Ackermann-Gäumann et al., 2018; Ackermann-Gäumann

et al., 2019). In 2014, an Austrian team of scientists studied

the specifics of antibodies in peripheral blood induced by natural

TBE infection, as well as vaccination with an inactivated TBE

vaccine. To study the individual-specific variation of human

antibody responses, they developed immunoassays with

recombinant antigens representing viral surface protein

domains and domain combinations. They found that

individual and specific factors strongly influence the

immunodominance of domains on the E-protein (Jarmer

et al., 2014). For differentiating infection versus vaccination

antibody responses, Girl et al. (2020) developed a novel

immunosorbent assay, based on detection specific IgG

antibodies against NS1 as an exclusively diagnostic marker of

viral replication in natural infection, based on enzyme-linked

immunosorbent assay (ELISA). Their assay has demonstrated a
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sensitivity of >94% and specificity of >93% in widely cross-

reactive sera from patients with flavivirus vaccination or single or

multiple flavivirus infections. For the study of TBEV, Czech

scientists in cooperation with Japanese scientists have developed

a powerful quantitative tool to facilitate the identification of

potential antiviral agents and to measure the levels of

neutralizing antibodies in human and animal serum. They

created the mCherry-TBEV recombinant reporter virus as a

powerful tool to facilitate the identification of potential

antiviral agents and to measure neutralizing antibody levels in

human and animal sera (Haviernik et al., 2021).

In humans, TBEV-specific IgM and IgG are found in serum and

CSF. Günther et al. (1997) found that the intensity and duration of

antibody production in serum and CSF did not correlate with

disease severity. They observed wide variations in the kinetics of

the antibody response. Kaiser andHolzmann (2000) andHolzmann

(2003) verified Günther’s findings but did not confirm the

correlation between persistence of antibodies in serum and CSF

and disease severity. Later, Holzmann (2003) pointed out that

TBEV-specific IgM and often IgG are present in the serum at

the time of the first CNS symptoms, and IgG levels, slightly elevated

during CNS infection, persisted after the onset of neurological

symptoms. Bogovič et al. (2021) analyzed the severity of TBEV

disease in relation to the level of serum IgG antibodies against the

TBEV. By comparing IgG levels to TBEV of patients during the

meningoencephalitic phase of TBE and with the laboratory

parameters of patients during the acute illness and with the

presence of postencephalitic syndrome (PES), they identified

antibody levels, not cut-off values, correlated with clinical

parameters, including the likelihood of PES. Low serum IgG

antibody responses to TBEV at the onset of neurological

involvement are associated with a more severe clinical course

and adverse long-term outcomes, posing diagnostic and clinical

challenges. Because CNS inflammation caused by a viral infection

can be associated with increased immunoglobulin synthesis,

Gudowska-Sawczuk et al. (2021) evaluated free light chain (FLC)

kappa (κ) and lambda (λ) concentrations in the CSF) and serum of

TBE patients. They were the first to demonstrate statistically

significant differences in λFLC concentrations in serum and CSF,

as well as in λIgG-index, κFLC-index and λIgG-index values before
and after TBE treatment. The observed differences probably

reflected intrathecal synthesis of immunoglobulins and increased

BBB permeability in TBE patients. The obtained data could provide

a basis for the development of new therapeutic strategies.

Together with drugs that interfere with TBEV replication, mAbs

represent a promising approach against TBE. The effect of

commercially available neutralizing IgG antibodies on the

treatment of lethal TBEV infection in mouse model was

investigated by Elsterova et al. (2017). They demonstrated more

than 100-fold differences in virus-neutralizing capacity between

batches of antibodies and no antibody-dependent increase in

TBEV infectivity in vitro or in vivo. The main target of

flavivirus-neutralizing antibodies is the envelope (E) protein,

which mediates virus entry into host cells, particularly its

receptor-binding domain EDIII, which is the main target of the

most potent neutralizing antibodies. Czech scientists recently

investigated the molecular mechanisms of TBEV neutralization

using the mouse monoclonal IgG antibody, which, due to the

absence of cross-reactivity with other flaviviruses, but at the same

time the ability to neutralize several strains of TBEV, has significant

therapeutic potential. This antibody blocked low pH-induced

structural changes in the E-protein, its reorganization into a

trimer, required for fusion between the viral and endosomal

membranes during virus entry. As a result, the penetration of

viral nucleocapsids into the cytoplasm of target cells was delayed

or even prevented (Füzik et al., 2018). German and Czech scientists

succeeded in isolating expanding clones of memory B cells from

donors naturally infected with TBEV or vaccinated against TBEV,

which produced monoclonal antibodies against TBE virus envelope

domain III (EDIII). At the same time, the production of the

strongest and broadly neutralizing antibodies was found in

donors who overcame the natural infection. Both groups of

volunteers also syntetized antibodies that neutralized other tick-

borne flaviviruses, including Langat, louping ill, Omsk hemorrhagic

fever, Kyasanur forest disease and Powassan viruses.They also

confirmed the effectiveness of prophylactic or early therapeutic

administration of antibodies even at low doses in mice that were

lethally infectedwith TBEV (Agudelo et al., 2021). The Svoboda et al.

(2023), in collaboration with colleagues from the USA and

Switzerland, investigated TBEV escape from two potent human

mAbs that target EDIII: T025 and T028. The result was the

emergence of virus variants with reduced pathogenicity. The

resistance of the resulting virus variants was made possible by

characteristically different sets of amino acid changes in EDII

and EDIII, necessary for conferring resistance. They found that

the combination of mAbs prevented virus escape and improved

neutralization of TBEV.

The investigation of immune responses to TBEV is also

closely related to the development of vaccines against TBEV.

Vaccination against TBE is generally safe with rare serious

adverse events. TBE vaccines are immunogenic in terms of

antibody response (Klimes et al., 2001). Several studies have

been conducted by German and Austrian scientists to test the

efficacy of the vaccines, because are based on closely genetically

related Austrian and German TBEV strains. They revealed good

tolerability and high immunogenicity, mild and transient side

effects, as well as a strong relationship between the amount of

antigen administered and the antibody response (Bock et al.,

1990; Klockmann et al., 1991; Harabacz et al., 1992; Kunz, 2003;

Kunz et al., 1980). However, age affects effectiveness, especially in

priming; age is a key factor in the duration of protection (rev. in

Rampa et al., 2020). Antibody responses to vaccination with a

vaccine based on the European subtype of TBEV have been

extensively studied and a degree of cross-neutralization between

individual TBEV subtypes has been demonstrated by German

scientists (Klockmann et al., 1991). Field studies to demonstrate
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the protective efficacy of TBEV vaccines were conducted in

Austria in 2007 and 2013, in which approximately 85% of the

population received at least 1 dose of TBE vaccine demonstrated

95%–99% efficacy (Heinz et al., 2007; Heinz et al., 2013). Orlinger

et al. (2011) developed an assay platform that allows analysis of

viral neutralization in an environment that balances viral

replication and infectivity, while preserving individual viral

strain surface characteristics that determine neutralization.

Although effective TBEV vaccination has been developed, VBT

rarely occurs (Stiasny et al., 2009; Lotrič-Furlan et al., 2017; Dobler

et al., 2020; Stiasny et al., 2021). Already in 2009, Stiasny and his

team investigated the characteristics of antibody reactions in such

VBT compared to reactions in unvaccinated patients with TBE.

They found that the majority of VBT showed a delayed IgM

antibody response, high avidity and strong neutralizing

antibodies in contrast to unvaccinated controls. Janik et al.

(2020) assessed the prevalence of seronegative rate for anti-TBEV

antibodies and risk factors and showed that both a longer time since

vaccination and a lower number of booster doses consistently

increased the risk of lost anti-TBEV antibodies. They identified

the extension of the interval of booster immunization is risky and

suggested a more frequent monitoring of serum antibodies by

personalized schedule to adjust the frequency of subsequent

doses of booster vaccination.

Due to NS1 targeting of the anti-TBEV antibody response,

TBEV vaccines also contain traces of NS1. However, there have

been some inconsistencies regarding the production of NS1-

specific antibodies after vaccination. While Salat and colleagues

(2016) found NS1-specific antibodies (albeit mostly at low levels)

in post-vaccination sera, the Girl et al. (2020) did not find a single

sample positive for NS1 antibodies in post-vaccination sera,

which was also confirmed by Stiasny with colleagues (2021).

Whether vaccination induces TBEV NS1-specific antibodies in

humans was also investigated by the Ackermann-Gäumann team

(2023). Beicht et al. (2023) supported the inclusion of NS1 as a

vaccine component in next-generation TBEV vaccines. Using

recombinant TBEV viral vectors, they induced NS1-specific

antibodies and T cell responses. Heterologous prime/boost

regimens conferred partial protection against lethal TBEV

infection in mice. Kubinski et al. (2024) evaluated TBEV’s

NS3 as a potential vaccine target to induce protective

immunity. Although immunization of mice with recombinant

MVA-NS3 induced NS3-specific immune responses, particularly

T cell responses, mice were not protected against subsequent

challenge with a lethal dose of TBEV strain Neudoerfl.

The contribution of B-lymphocytes, responsible for the

production of specific antibodies against TBEV, was proven

by Czech scientists in a mouse model. They noted an increase

in CD19 mRNA levels in the brain tissue of TBEV-infected mice,

which correlated with high levels of TBEV-neutralizing

antibodies and thus less susceptibility to TBEV. By

demonstrating the strong production of cytokine/chemokine

mRNA in the brain, they indicated that other

immunopathological mechanisms are also involved in the

outcome of the disease (Palus et al., 2013).

Cellular immunity against TBEV

Generally, T-lymphocytes are characterized by the expression of

the cell surface marker CD3, which forms a complex with receptors

specific for T-lymphocytes. The expression of other surface CD

markers divides them into two groups with different immune

functions: helper (CD4+) and cytotoxic (CD8+). Activated CD4+

T-lymphocytes by expressing various cytokines activate B

lymphocytes, CD8+ T-lymphocytes, macrophages and other cells

of the immune system. CD4+ T-lymphocytes have a central “helper”

role. CD8+ T-lymphocytes kill infected host cells by releasing

cytolytic proteins such as perforin and granzyme, most also act

as cytokine producers. Effector CD8+ T cells contribute to clearance

of infection and provide long-lasting immunity. In TBE, CSF cytosis

is dominated by CD3+CD4+ and CD3+CD8+ T-lymphocyte, but

their pathogenetic roles and mechanisms of migration into the CNS

are unclear. The activation of immune responses in parallel with

virus-induced damage was partially known between 1970 and 1980

(reviewed by Ruzek et al., 2010).

In the 1980s, in the context of the T-lymphocytes response to

TBEV infection, the “transfer factor” was the subject of intensive

research. The mechanism of cytotoxic T-lymphocyte-mediated

specific immunity was studied by Gajdošová and her team. At

that time, the results suggested that these should be

immunologically specific mediator molecule-peptides that

require interaction with the naïve cell to subsequently enable

the naïve recipient to mount a secondary rather than a primary

immunological response upon first encountering the antigen. It

was a delayed-type hypersensitivity from sensitized donors to

non-sensitized recipients using leukocyte blood lysates. Transfer

factors “primed” recipients to express cell-mediated immunity.

This effect is specific for the antigen to which they have bound in

an immunologically specific way. Gaidosova, Oravec, Mayer and

coworkers found that antigen-specific transfer factor (STF) from

LGTV-immunized mice enhanced the induction activity in semi-

purified splenocyte dialysates by inducing specific T-lymhocyte

cytotoxic activity. This effect was group-reactive. Transfer factor

molecules induced during attenuated TBEV infection in “donor”

mice induced a state of high resistance to challenge with virulent

tick-borne encephalitis virus in recipient mice. STF-induced

T-lymphocytes killing activity showed cross-reactivity within the

flavivirus genus. STF administered before live virus increased

specific cytolytic T-lymphocytes response (Gajdošová et al., 1980;

Gajdošová et al., 1981; Mayer et al., 1980; Mayer et al., 1982; Mayer

et al., 1983; Mayer et al., 1985). The characterization of the spectrum

of lymphocyte subpopulations in TBE patients has been addressed

by Czech, Polish, Slovenian or German researchers. In 2002, Holub

and his team analysed the numbers of lymphocyte subsets in the

CSF of patients with tick-borne encephalitis (TBE) and acute
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neuroborreliosis; a lower accumulation of lymphocyte subsets in the

CSF was identified in the case of TBE (Holub et al., 2002).

Examination of postmortem human brains revealed only a weak

topographical correlation between inflammatory changes

(consisting primarily of T-lymphocytes and macrophages/

microglia) and viral antigen distribution (Gelpi et al., 2005; Gelpi

et al., 2006). Clinical studies by Gelpi’s team suggest an

immunopathological rather than protective role for CD8+

T-lymphocytes during TBEV infection of the brain, as brain

tissue biopsies from fatal TBE cases showed CD8+ T-lymphocyte

infiltration in close proximity to TBEV-infected neurons (Gelpi

et al., 2006). By analyzing the role of CD4+ and CD8+ T-lymhocytes

in immunocompromised and immunocompetent mouse models,

Ruzek et al. (2009a), Ruzek et al. (2009b) demonstrated that while

CD4+ T-lymhocytes are more effective in limiting the virus, CD8+

T-lymhocytes contribute to immunopathological responses in the

infected brain. However, their results also suggest that CD8+

T-lymhocytes may contribute to increased survival in the setting

of infection with a low pathogenic strain of TBEV. By studying

changes in blood-brain barrier (BBB) permeability in two susceptible

animal models (BALB/c and C57Bl/6 mice) infected with TBE virus

at different days after infection, Ruzek´team observed BBB

breakdown in mice deficient in CD8+ T-lymphocytes. Their

results suggest that CD8+ T-lymhocytes are not involved in the

increase in BBB permeability that occurs during TBE (Ruzek

et al., 2011).

The importance of CD4+ T-lymhocytes in the immune

response to TBEV has been investigated by several European

teams. Lepej et al. (2007) as well as Grygorczuk et al. (2016)

showed that the CSF leukocyte population is dominated by

lymphocytes, mainly CD4+ subsets, accompanied by CD8+

T cells. Gelpi et al. (2006) also found the same populations

in inflammatory lesions of the brain parenchyma, where their

proportions may differ, with CD8+ cells tending to equal or

exceed CD4+ T-lymhocytes. Lepej et al. (2007), Palus et al.

(2014a), Palus et al. (2014b), Bogovič et al. (2019) showed that

the Th1 type dominates in the intrathecal response to TBEV as

well as in the CSF. Bogovic’s team found that cytokines

associated with innate and Th1 responses are expressed

intrathecally in TBE patients and their high concentrations

in CSF are associated with clinical severity and encephalitic

picture. Detection lower Th17 mediators’ levels in the serum

of patients with PES compared to patients with cured

symptoms suggest a protective role of intense

Th17 responses in TBE.

CD4+ T-lymphocytes role has been studied in particular in the

context of vaccine development and monitoring of immune

responses triggered by these vaccines. CD4+ T-lymphocytes

responses are essential for neutralizing antibody production. In

2004, Gomez et al. (2004) analyzed the ability of CD4+

T-lymhocytes from young and older subjects to produce IL-2

and IFN-γ after in vitro stimulation with recombinant TBEV E

protein using ELISPOT technology. In unfractionated blood

mononuclear cells or purified CD4 (+) T-lymhocytes, they

found no or minimal differences in response to neoantigen

stimulation with autologous DCs. They demonstrated an intact

ability of elderly CD4+ T-lymhocytes to respond to neoantigen

stimulation, and even an increased ability of CD4+ T-lymhocytes

to differentiate into effector cells. Schwaiger et al. (2014) compared

the specificity and immunodominance of CD4+ T-lymphocyte

responses induced by the viral structural proteins (C, prM/M and

E) contained in the whole-virus TBE vaccine with those induced by

the same proteins after natural infection. They revealed

immunodominant regions in both proteins C and E that

correlated with specific protein elements and domains in

computer-predicted epitopes on CD4+ T-lymhocytes, providing

evidence for a strong influence of structural properties on antigen

processing and the MHC-II loading pathway. By comprehensive

analysis of the cytokine patterns of CD4+ T-lymphocyte responses

of TBE vaccinated human in comparison to patients with TBEV

infection Aberle et al. (2015) showed the polyfunctional nature of

TBEV-specific CD4+ T cell responses. Cytokine patterns after

vaccination differed from those after infection. Stimulation with

peptides covering TBEV structural proteins contained in the

vaccine (C, prM/M and E) led to expresion ofTh1 specific

cytokines (IFN-γ, IL-2, TNF-α), CD40 Tbet (ligand and

Th1 lineage specifying transcription factor). CSF CD4+

T-lymphocyte enrichment likely due to elevated CXCL13 levels

in TBE was recently confirmed by Toczylowski et al. (2020). The

spectrum of CD3+CD4+ and CD3+CD8+ T-lymphocytes,

B-lymphocytes (CD19+), as well as the NK (CD16+/56+)

fraction, but also chemotactic axes in patients in correlation

with various neurological manifestations of the disease such as

meningitis, meningoencephalitis and meningoencephalomyelitis

were monitored by Gygorczuk´s teams (Grygorczuk et al., 2020;

Grygorczuk et al., 2023). TBEV infection caused an increase in the

number of lymphocytes in the CSF, but did not affect the

proportions of lymphocytes compared to uninfected patients.

More severe forms of the disease and neurological disability

were correlated with higher pleocytosis and expansion of CD4+

CD8+ and B-lymphocytes. Th lymphocytes were associated with

encephalopathy, myelitis and mild cerebellar syndrome, B

lymphocytes with myelitis and at least moderate

encephalopathy, double positive T-lymhocytes with myelitis and

reduced encephalopathy. In the CSF, the CD4+ Th1- and Th2-

lymphocyte population was enriched in CCR5-positive cells, and

the concentration of CCL5 was increased and associated with a

milder presentation. NK cells were decreased in patients with

neurological deficit. In children with TBE, the number of CD8+

T-lymphocytes and B cells increased at the expense of CD4+

lymphocytes compared to adults. It appears that specific

populations including B, Th and Tc cells are likely to be

specifically associated with TBE presenting as myelitis,

encephalopathy and cerebellitis. No correlation of double-

positive T and NK cells with severity suggested a likely

protective function against TBEV. Upregulated
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CXCL10 mediated the intrathecal immune response but is

probably not directly responsible for T cell migration.

Due to the low frequency of reported cases of gastrointestinal

autonomic dysfunction in TBEV infection, which has been

studied e.g., in German patients (Kaiser, 1999; Kleiter et al.,

2006; Dobler et al., 2016), Boelke in their mouse model study

investigated the presence of enteric intramural ganglion

inflammation as a common feature in TBEV-infected mice. In

animals with ganglioneuritis and macroscopic changes in the GI

tract, they observed significantly high levels of infiltrating CD3+

T-lymphocytes and, to a lesser extent, macrophages (Boelke

et al., 2021).

Conclusion

Tick-borne encephalitis (TBE) is the most important tick-

borne disease in Europe. More than 90 years after the discovery

of TBEV, there is still much to learn concerning the host and

viral factors that govern the outcome of infection. In addition to

studying its causative agent TBEV, its distribution in nature,

reservoirs and pathogenesis, there is still an urgent need to

develop safe and effective vaccines. This process requires a better

understanding of the immunological mechanisms involved

during infection. As showed within this review, decades of

research indicate a paradoxical role of the immune response

against TBEV: although the immune response is critical for

controlling, clearing and preventing infection, poor clinical

outcomes are often associated with virus-specific immunity

and immunopathogenesis. Our work offers a comprehensive

overview of the data obtained by scientists in Central Europe or

in the framework of their collaboration with colleagues outside

the monitored region in the field of host defense against TBEV.

The obtained information showed a significant contribution of

Central Europe in the research of the immune response of

mammal host and humans against TBEV and the disease it

causes. While at the beginning the studies were focused on the

virus isolation and monitoring the basic parameters of the

immune response such as the production of antibodies, later

gradually more detailed information appeared on the synthesis

of specific soluble factors of innate and acquired immunity,

including immunity associated with IFNs, on cytokines/

chemokines/growth factors as mediators of inflammation, T-

or B-cell immune response. The information obtained was

closely related to the development of diagnostic and research

methods (some of them designed by researchers themselves),

but also to the development of international cooperation. Some

works confirmed theories, others represented the first step

towards the creation of new ones. Clinical studies have

verified in vitro research on cell lines or in vivo experiments

on laboratory animals and vice versa. Although an effective

vaccine is currently available, vaccination is not mandatory and

may not be available everywhere. In addition, no specific

chemotherapeutic agents have been developed against TBEV.

Given the annual increase in incidence as well as the extreme

severity of TBE, the identification of immune response

biomarkers as candidates for rapid diagnosis, prognosis,

monitoring or treatment of TBE is of paramount importance,

to which the research conducted in this thesis has contributed.

The most promising candidate seems to be MMP-9 in

combination with monitoring the ratio of MMP-9 to tissue

inhibitors of metalloproteinase – 1 (TIMP-1) (Barkhash et al.,

2018). At the same time, specific antibodies against TBEV

should be detected, in particular against the NS1 protein

(Salat and Ruzek, 2020), or against domains I (DI) and II

(DII) of the TBEV E protein or possibly against the

C-terminal region of the RNA-dependent RNA polymerase

NS5, respectively. We believe that the evaluation of the

biomarkers described above may be useful in the diagnosis of

TBE in clinical practice. However, further studies are needed to

confirm this.
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