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Some plant RNA viruses in the family Betaflexiviridae encode a nucleic acid-

binding protein (NABP) that facilitates infection by suppressing the host RNA

silencing response. Previously, no members of the genus Tepovirus within this

family were known to possess a NABP homolog. In this study, we identified the

genome sequences of 21 novel Betaflexiviridae viruses: 17 represent new

members of Tepovirus, and four may be founding members of a new genus

closely related to the genus Vitivirus. Notably, five of these newly identified

tepoviruses contain a NABP-like open reading frame (ORF). Sequence

comparison and phylogenetic analysis of NABP homologs suggest these

tepoviruses independently acquired a NABP-like ORF from diverse sources.

The identification of 17 novel viruses substantially enhances our understanding

of the genetic diversity within the genus Tepovirus. This study further highlights

the role of recombination in the genome evolution and diversity of

Betaflexiviridae.
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Introduction

The Betaflexiviridae family, belonging to the order Tymovirales, comprises plant-

infecting RNA viruses with monopartite positive-sense single-stranded RNA genomes,

classified into two subfamilies: Trivirinae and Quinvirinae, based on their genome

structures (Yoshikawa and Yaegashi, 2021). The Trivirinae subfamily comprises ten

genera: Capillovirus, Chordovirus, Citrivirus, Divavirus, Prunevirus, Ravavirus, Tepovirus,

Trichovirus, Vitivirus, and Wamavirus. Members of these genera typically possess three

common open reading frames (ORFs): replicase (Rep), movement protein (MP), and coat

protein (CP) (Vives et al., 2001; Goh et al., 2018; Goh et al., 2019). The Rep protein
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contains an RNA-dependent RNA polymerase (RdRp) domain

responsible for viral genomic RNA replication and subgenomic

RNA transcription, while MP and CP are involved in cell-to-cell

movement and the encapsidation of viral genomic RNAs,

respectively (Yoshikawa and Yaegashi, 2021).

The Quinvirinae subfamily contains five genera:

Banmivirus, Carlavirus, Foveavirus, Robigovirus, and

Sustrivirus. Members of these genera have five common

ORFs: Rep, triple gene block 1 (TGB1), triple gene block 2

(TGB2), triple gene block 3 (TGB3), and CP (Park et al., 2019;

Yoshikawa and Yaegashi, 2021). The three TGB proteins are

required for cell-to-cell movement of the virus (Carvalho

et al., 2022; Jiang et al., 2022).

Interestingly, members of the genera Carlavirus

(subfamily Quinvirinae), Prunevirus, and Vitivirus

(subfamily Trivirinae) often possess an additional ORF

near the 3′-proximal region of their genomes (Minafra

et al., 1994; Elbeaino et al., 2014; Jordan et al., 2021;

Yoshikawa and Yaegashi, 2021). This terminal ORF

encodes a nucleic acid-binding protein (NABP), also

referred to as a cysteine-rich protein (CRP) or RNA-

binding protein (RBP). These proteins have been shown to

suppress the host RNA silencing response and promote viral

infection (Lukhovitskaya et al., 2005; Lukhovitskaya et al.,

2009; Senshu et al., 2011). NABP proteins in different genera

do not exhibit significant sequence similarities, suggesting

independent acquisition across lineages from unrelated

sources (Goh and Hahn, 2019; Bejerman and Debat, 2022).

Recent studies have shown that some genera beyond

Carlavirus, Prunevirus, and Vitivirus also harbor NABP-like

ORFs. For instance, cherry mottle leaf virus (CMLV) and

peach virus M (PeVM) from the genus Trichovirus, Salvia

divinorum RNA virus 1 (SdRV1) from the genus Citrivirus,

and Gymnadenia rhellicani virus 1 (GymRhV1) and

Melampyrum roseum virus 2 (MelRoV2) from the genus

Divavirus contain NABP ORFs (James et al., 2000; De La

Torre-Almaraz et al., 2019; Goh and Hahn, 2019; Bejerman

and Debat, 2022). These findings suggest that the acquisition

of NABP—and potentially its loss—occurs relatively frequently

within Betaflexiviridae (Liu et al., 2019).

Until now, no members of the genus Tepovirus were

known to possess a NABP. Here, we report the first

identification of novel members of the genus Tepovirus that

contain a NABP homolog. These viruses were identified by

systematically analyzing transcriptome data from various

plants, which may have been latently infected by viruses

without displaying visible symptoms. Numerous previously

unknown viruses have been discovered through the analysis of

assembled transcriptome contigs (Bejerman and Debat, 2022;

Choi et al., 2022; Rosario et al., 2022; Shin et al., 2022a; Shin

et al., 2022b; Choi and Hahn, 2023; Choi et al., 2023a; Choi

et al., 2023b; Bejerman and Debat, 2024; Reddy and

Sidharthan, 2024).

Materials and methods

Plant transcriptome data

To identify a virus latently infecting a hemp (Cannabis

sativa) plant, we analyzed transcriptome data originally

collected to study the major molecular processes underlying

secondary growth and bast fiber (Behr et al., 2016; Guerriero

et al., 2017; Behr et al., 2019). The plants were grown in

laboratory-controlled conditions and showed no visible viral

disease symptoms. The transcriptome data are available in the

Sequence Read Archive (SRA) of the National Center for

Biotechnology Information (NCBI) under BioProject accession

number PRJNA435671.

To construct the extended genome sequence of Melampyrum

roseum virus 2 (MelRoV2), we analyzed transcriptome data from

Melampyrum roseum (SRA accession numbers DRR082664 and

DRR082665) (Kado and Innan, 2018; Bejerman and

Debat, 2022).

To collect plant transcriptome data potentially harboring

novel tepovirus-like virus genome sequences, we utilized the

Serratus Explorer1 (Edgar et al., 2022). We selected five known

tepoviruses, including potato virus T (PVT), prunus virus T

(PrVT), Zostera virus T (ZoVT), Trichosanthes virus A (TrVA),

and Ficus tepovirus A (FiVT), as target GenBank records. We

chose matches with alignment identities ranging from 60% to

90% and scores between 50 and 100. The resulting plant

transcriptome datasets were further filtered to include data

with an average sequence length of 100 nt or longer, paired-

end layout, and Illumina platform. This process resulted in

192 plant transcriptome datasets being selected.

Viral genome identification and annotation

Raw plant transcriptome sequences were subjected to quality

trimming using Sickle (version 1.33)2 with parameters “-q 30 -l

55.” The high-quality reads were then assembled into contigs

using SPAdes (version 3.15.5)3 with the “rnaviral” mode

(Prjibelski et al., 2020). BLASTX was used to compare contigs

with known viral proteins.

Open reading frames (ORFs) in a putative virus genome

contig were predicted using ORFfinder.4 Genome contigs

containing complete or nearly complete Rep, MP, and CP

ORFs, and showing a minimum amino acid identity of 40%

with a known tepovirus Rep protein, were retained. When two or

1 https://serratus.io

2 https://github.com/najoshi/sickle

3 https://github.com/ablab/spades

4 https://www.ncbi.nlm.nih.gov/orffinder
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more contigs shared 90% or greater amino acid identity in the

Rep proteins, only one contig was retained, and the others

were discarded.

Phylogenetic analysis

Homologous viral proteins were retrieved from the NCBI

protein database via the BLAST web server. We used the MAFFT

online service5 to generate multiple sequence alignments under

default conditions (Katoh et al., 2019). Neighbor-joining

phylogenetic tree construction and bootstrap value calculation

were also performed using the MAFFT online server. The

resulting phylogenetic tree was visualized using MEGA

(version 11.0.13)6 (Kumar et al., 2018). Visualization of

multiple sequence alignments was prepared using ESPript

(version 3.0)7 (Robert and Gouet, 2014).

Results

Identification of hemp virus T (HemVT) genome

Transcriptome data generated from hypocotyl tissues of

young hemp plants and bast fibers isolated from adult plants

were assembled into contigs (Behr et al., 2016; Guerriero et al.,

2017; Behr et al., 2019). Sequence comparisons of the transcript

contigs with RdRp sequences from known RNA viruses revealed

contigs potentially originating from viral genomes (see

Supplementary Data S1 for more detailed information). We

identified a contig containing ORFs that showed significant

sequence similarity to those of known members of the genus

Tepovirus (subfamily Trivirinae, family Betaflexiviridae). We

tentatively named this virus hemp virus T (HemVT). Its

genome sequence has been deposited in the NCBI GenBank

under accession number OR346818.

The HemVT genome contains four ORFs, three of which

encode Rep, MP, and CP, as is typical of members of the genus

Tepovirus. Notably, the fourth ORF did not exhibit amino acid

sequence similarity to any known tepovirus ORFs. Instead, it

showed approximately 48% sequence identity to NABP-like

proteins of GymRhV1 and MelRoV2, which are members of

the genus Divavirus (family Betaflexiviridae). The HemVT

NABP also displayed marginal sequence identities (15%–20%)

to NABP proteins of other Betaflexiviridae viruses, including

those from the genera Capillovirus, Carlavirus, Citrivirus,

Prunevirus, Trichovirus, and Vitivirus. Therefore, we

concluded that the fourth ORF encodes a NABP-like protein,

making HemVT the first member of the genus Tepovirus with a

NABP homolog.

Discovery of additional tepovirus-like genomes
from plant transcriptome data

Following the discovery of the HemVT genome sequence,

we hypothesized that additional tepovirus genome sequences

with a NABP homolog might exist in plant transcriptome data

available in the NCBI SRA. To identify potential tepovirus-

like genome sequences, we filtered the SRA datasets using the

Serratus Explorer (Edgar et al., 2022). A total of 192 SRA

datasets containing reads matching known tepovirus RdRp

sequences were downloaded and assembled into contigs. We

then selected contigs that contained complete or nearly

complete ORFs with significant sequence identities to

previously known tepovirus proteins. As a result, we

identified 20 additional distinct tepovirus-like genome

sequences (see Supplementary Data S2 for more detailed

information). These were named according to their host

plants: Acanthus hungaricus virus 1 (AcaHuV1), Allium

listera virus 1 (AllLiV1), Balanophora indica virus 1

(BalInV1), Capparis spinosa virus 1 (CapSpV1), Cistanche

deserticola virus 1 (CisDeV1), Crocus sativus virus 1

(CroSaV1), Davidia involucrata virus 3 (DavInV3), Ferula

gummosa virus 1 (FerGuV1), Hylocereus undatus virus 1

(HylUnV1), Lilium lancifolium virus 1 (LilLaV1), Lilium

pumilum virus 1 (LilPuV1), Maihueniopsis conoidea virus

1 (MaiCoV1), Panicum virgatum virus 1 (PanViV1),

Pogostemon cablin virus 1 (PogCaV1), Pogostemon cablin

virus 2 (PogCaV2), Solanum melongena virus 1 (SolMeV1),

Vallisneria spiralis virus 1 (ValSpV1), Vallisneria spiralis

virus 2 (ValSpV2), Vallisneria spiralis virus 3 (ValSpV3),

and Vanilla shenzhenica virus 1 (VanShV1). The genome

sequences have been deposited in the NCBI GenBank

under accession numbers BK068543–BK068562 (see

Supplementary Data S3, S4 for genome and protein

sequences, respectively). A summary of all viruses newly

identified in this study is presented in Table 1, and their

genomic structures are depicted in Figure 1.

Upon examining the genome organization of the newly

identified viruses, we found that, in addition to HemVT, four

more viruses—CisDeV1, FerGuV1, MaiCoV1, and

SolMeV1—contained a NABP-like ORF in their genomes. The

other 16 viruses (AcaHuV1, AllLiV1, BalInV1, CapSpV1,

CroSaV1, DavInV3, HylUnV1, LilLaV1, LilPuV1, PogCaV1,

PogCaV2, VanShV1, PanViV1, ValSpV1, ValSpV2, and

ValSpV3) did not contain a NABP ORF. In the case of

AcaHuV1, the presence of the fourth ORF could not be

determined because its genome sequence was truncated in the

middle of the CP ORF.

5 https://mafft.cbrc.jp

6 https://www.megasoftware.net

7 https://espript.ibcp.fr
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Phylogenetic analysis of newly identified
tepovirus-like genomes

To establish the phylogenetic relationships of the newly

identified viruses and known Tepovirus species, a phylogenetic

tree was constructed (Figure 2). We collected the Rep protein

sequences of all nine known tepoviruses and representative

viruses from other genera in the family Betaflexiviridae. A

multiple sequence alignment was generated and a

phylogenetic tree was inferred using the MAFFT online

service (Katoh et al., 2019). Among the 21 newly identified

viruses, 17 (AcaHuV1, AllLiV1, BalInV1, CapSpV1, CisDeV1,

TABLE 1 Summary of novel viruses identified in this study.

Virus Acronym Genus Size
(nt)

Accession Rep
(aa)

MP
(aa)

CP
(aa)

NABP
(aa)

SRA Host

Hemp virus T HemVT Tepovirus 7,255 OR346818 1,776 328 221 125 SRR5209961 Cannabis sativa

Cistanche deserticola
virus 1

CisDeV1 Tepovirus 7,573 BK068547 1,835 389 223 137 SRR10829335 Cistanche
deserticola

Ferula gummosa
virus 1

FerGuV1 Tepovirus 7,251 BK068550 1,745 376 219 132 SRR4428733 Ferula gummosa

Maihueniopsis
conoidea virus 1

MaiCoV1 Tepovirus 7,295 BK068554 1,739 356 204 139 SRR7905848 Maihueniopsis
conoidea

Solanum melongena
virus 1

SolMeV1 Tepovirus 6,790 BK068558 1,623 332 225 132 SRR8736631 Solanum
melongena

Acanthus hungaricus
virus 1

AcaHuV1 Tepovirus 6,730 BK068543 1,796 382 >196 SRR12034766 Acanthus
hungaricus

Allium listera virus 1 AllLiV1 Tepovirus 7,052 BK068544 1,841 393 223 SRR11818591 Allium listera

Balanophora indica
virus 1

BalInV1 Tepovirus 6,950 BK068545 1,797 388 218 SRR12009646 Balanophora
indica

Capparis spinosa
virus 1

CapSpV1 Tepovirus 6,123 BK068546 1,531 333 223 SRR16883143 Capparis spinosa

Crocus sativus virus 1 CroSaV1 Tepovirus 6,826 BK068548 1,778 383 221 SRR1140761 Crocus sativus

Davidia involucrata
virus 3

DavInV3 Tepovirus 6,937 BK068549 1,824 382 221 SRR2048533 Davidia
involucrata

Hylocereus undatus
virus 1

HylUnV1 Tepovirus 6,831 BK068551 1,790 382 220 SRR7997107 Hylocereus
undatus

Lilium lancifolium
virus 1

LilLaV1 Tepovirus 6,662 BK068552 1,723 339 214 SRR11397710 Lilium
lancifolium

Lilium pumilum
virus 1

LilPuV1 Tepovirus 6,649 BK068553 1,719 339 214 SRR11397712 Lilium pumilum

Pogostemon cablin
virus 1

PogCaV1 Tepovirus 6,854 BK068556 1,764 371 228 SRR7268116 Pogostemon
cablin

Pogostemon cablin
virus 2

PogCaV2 Tepovirus 6,803 BK068557 1,792 382 221 SRR7268115 Pogostemon
cablin

Vanilla shenzhenica
virus 1

VanShV1 Tepovirus 6,915 BK068562 1,787 402 221 SRR5722164 Vanilla
shenzhenica

Panicum virgatum
virus 1

PanViV1 novel? 6,623 BK068555 1,705 336 202 SRR16093774 Panicum
virgatum

Vallisneria spiralis
virus 1

ValSpV1 novel? 6,943 BK068559 1,827 342 209 SRR16293894 Vallisneria
spiralis

Vallisneria spiralis
virus 2

ValSpV2 novel? 6,640 BK068560 >1,727 342 209 SRR16293893 Vallisneria
spiralis

Vallisneria spiralis
virus 3

ValSpV3 novel? 7,090 BK068561 1,825 342 209 SRR16293894 Vallisneria
spiralis
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CroSaV1, DavInV3, FerGuV1, HemVT, HylUnV1, LilLaV1,

LilPuV1, MaiCoV1, PogCaV1, PogCaV2, SolMeV1, and

VanShV1) formed a clade with the known tepoviruses,

suggesting that they belong to the genus Tepovirus. However,

this clade was weakly supported, with a bootstrap value of 36,

consistent with previous findings (Goh et al., 2021).

FIGURE 1
Genomic organization of viruses identified in this study. Open reading frames (ORFs) encoding replicase (Rep), movement protein (MP), coat
protein (CP), and nucleic acid-binding protein (NABP) in the newly discovered viral genomes are depicted to scale. Asterisks indicate that theORFs for
the AcaHuV1 CP and ValSpV1 Rep are incomplete. ORFs of tepoviruses (top 17 viruses) and viruses that may belong to a novel genus (bottom four
viruses) are shaded in different colors.
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FIGURE 2
Phylogenetic relationships of viruses identified in this study. A phylogenetic tree was constructed based on a multiple alignment of replicase
(Rep) protein sequences from the newly discovered viruses (marked with a black circle), nine known members of the genus Tepovirus, and
representative members of other genera within the family Betaflexiviridae. Among the newly identified viruses, 17 are grouped within the genus
Tepovirus, while four form a separate subclade, potentially representing a novel genus closely related to the genus Vitivirus. Bootstrap support
values of 50 or greater are shown. Viruses possessing a nucleic acid-binding protein (NABP) are indicated by a red diamond.
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All five viruses containing a NABP homolog (CisDeV1,

FerGuV1, HemVT, MaiCoV1, and SolMeV1) were positioned

within the Tepovirus clade, confirming the discovery of

tepoviruses with NABP-like ORFs. However, the other 12 newly

identified tepoviruses lacked the fourth ORF, indicating that most

tepoviruses do not possess a NABP-like ORF.

The remaining four newly identified viruses (PanViV1,

ValSpV1, ValSpV2, and ValSpV3) formed a distinct subclade

FIGURE 3
Sequence comparison and phylogenetic analysis of nucleic acid-binding proteins (NABPs). (A) An excerpt from the multiple sequence
alignment of NABP homologs from five newly identified tepoviruses (highlighted in cyan) and related viruses is displayed. Identical residues across all
sequences and those conserved in half or more of the sequences are highlighted with red and yellow backgrounds, respectively. Amino acid
coordinates are provided in parentheses. See Supplementary Figure S1 for the full sequence alignment. (B) A phylogenetic tree constructed
from amultiple alignment of NABP protein sequences from novel tepoviruses (marked with a black circle) and related viruses is presented. Bootstrap
support values of 50 or greater are shown. Virus genome acronyms and NCBI accession numbers are included in parentheses.
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with strong bootstrap support (99). This clade is closely related to

the genus Vitivirus but does not contain a NABP-like ORF,

whereas members of Vitivirus are known to possess NABPs. The

absence of a NABP-like ORF and the formation of a distinct clade

suggest that these four viruses may represent the founding

members of a novel genus closely related to Vitivirus.

Phylogenetic analysis of nucleic acid-binding
proteins in newly identified tepoviruses

Next, we performed sequence comparison and phylogenetic

analysis of the five newly discovered tepovirus NABP homologs

(Figure 3). First, we searched the NCBI protein database using

the five tepovirus NABP homologs as queries. The BLASTP

search used an E-value threshold of 1e−5, and 28 known

NABP proteins showing sequence similarities to the tepovirus

NABP-like proteins were retrieved.

A multiple sequence alignment of the five tepovirus NABP-like

proteins and the 28 known NABPs revealed two distinct groups

(Figure 3A). The first group included HemVT, GymRhV1, and

MelRoV2. The HemVT NABP-like protein shared approximately

48% identity with the NABPs of GymRhV1 and MelRoV2, both

members of the genusDivavirus. The second group consisted of the

remaining viruses, including four tepoviruses (CisDeV1, FerGuV1,

MaiCoV1, and SolMeV1), and 26 known viruses. The four tepovirus

NABP-like proteins exhibited 12%–36% identity with previously

known NABP proteins. Among the 26 known viruses, 18 belonged

to six genera (Capillovirus, Carlavirus, Citrivirus, Prunevirus,

Trichovirus, and Vitivirus) within Betaflexiviridae. Notably, eight

of the 26 viruses were from two genera (Allexivirus and Potexvirus)

in the family Alphaflexiviridae.

The phylogenetic tree inferred from the multiple alignment

of NABP homolog sequences confirmed that the HemVT NABP

homolog shares ancestry with those of GymRhV1 and MelRoV2

(Figure 3B). The strong bootstrap support (100) for this clade,

along with their high sequence similarity, suggests that HemVT,

GymRhV1, and MelRoV2 recently obtained their NABP-like

ORFs from closely related sources. In the case of GymRhV1 and

MelRoV2, it is more plausible that the NABP-like ORF was

acquired in their common ancestor before their divergence, as

both their Rep and NABP-like proteins show high sequence

similarity.

The phylogenetic tree also showed that the NABP-like

proteins of CisDeV1, FerGuV1, MaiCoV1, and SolMeV1 share

ancestry with those from other genera in Betaflexiviridae and

Alphaflexiviridae. However, the exact phylogenetic relationships

remain unclear due to low bootstrap support values for the

subclades containing them. This ambiguous relationship

suggests that these viruses may have acquired their NABP-like

ORFs from unrelated sources. This explanation is further

supported by the discordance between the Rep and NABP

phylogenetic trees. For example, in the Rep tree, MaiCoV1,

SolMeV1, and HemVT form a strongly supported subclade

(bootstrap value of 100), with HemVT being the closest

relative to SolMeV1. However, in the NABP tree,

MaiCoV1 and SolMeV1 are distantly placed, and HemVT

possesses an NABP-like protein that is distinct from those

found in other related viruses. Therefore, it is highly likely

that these viruses independently obtained their NABP-like

ORFs from unrelated sources.

Discussion

RNA viruses must evade the host RNA silencing response,

which is triggered by viral double-stranded RNAs (Roth et al.,

2004). Core viral proteins involved in replication, movement, and

encapsulation of viral genomic RNAs are often recruited to

function as suppressors of RNA silencing (Park et al., 2013;

Bellott et al., 2019). In some cases, viruses encode a specific

protein, such as the NABP found in certain members of the

family Betaflexiviridae, which has been associated with the

suppression of RNA silencing (Lukhovitskaya et al., 2005;

Lukhovitskaya et al., 2009; Senshu et al., 2011).

Previously, NABP ORFs were identified in only three

Betaflexiviridae genera: Carlavirus, Prunevirus, and Vitivirus

(Minafra et al., 1994; Elbeaino et al., 2014; Jordan et al., 2021;

Yoshikawa and Yaegashi, 2021). However, as more genomes have

been identified, NABP-like ORFs have also been identified in other

genera. For instance, CMLV and PeVM (Trichovirus), SdRV1

(Citrivirus), and GymRhV1 and MelRoV2 (Divavirus) contain

NABP-like ORFs (James et al., 2000; De La Torre-Almaraz et al.,

2019; Goh and Hahn, 2019; Bejerman and Debat, 2022).

Interestingly, camellia ringspot associated virus 1 (CRSaV-1), a

Prunevirus member, lacks a NABP ORF, despite NABP being

considered characteristic of this genus (Liu et al., 2019). This

indicates that NABP genes may act as accessory elements that may

be gained or lost through recombination events.

The presence of two distinct types of NABP homologs among

the newly identified tepoviruses suggests independent acquisition

from unrelated sources. Prior research has demonstrated that

recombination events are common in Betaflexiviridae and play

a significant role in the evolution of viral genomes (Martelli et al.,

2007; Alabi et al., 2014; Marais et al., 2015; Yoshikawa and

Yaegashi, 2021; Silva et al., 2022). Our findings support the

idea that recombination events involving NABP-like ORFs

occur frequently within Betaflexiviridae. The acquisition of

NABP homologs may provide viruses with an advantage in

evading host defenses, particularly through the suppression of

RNA silencing. NABPs may also have additional functions, as

many viral proteins are known to perform multiple roles during

infection (Bellott et al., 2019). Although sequence similarity and

genomic organization suggest that the newly identified NABP

homologs in tepoviruses could act as suppressors of RNA

silencing, their precise functions require experimental validation.
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In this study, we identified 21 novel RNA viruses, 17 of

which are new members of the genus Tepovirus. To date, only

nine tepovirus genome sequences have been reported, and

five of these are officially recognized by the International

Committee on Taxonomy of Viruses (ICTV)8. This work

substantially increases the known diversity of the genus

Tepovirus. Additionally, we identified four viruses that

may represent a new genus closely related to Vitivirus.

The genome sequences identified here provide valuable

insights into the evolutionary processes influencing the

Betaflexiviridae family.
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