
Adolescent alcohol drinking
interaction with the gut
microbiome: implications for
adult alcohol use disorder

Bruk Getachew1, Sheketha R. Hauser2, Samia Bennani3,
Nacer El Kouhen3, Youssef Sari4 and Yousef Tizabi1*
1Department of Pharmacology, Howard University College of Medicine, Washington, DC,
United States, 2Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN,
United States, 3Faculty of Medicine and Pharmacy of Casablanca, Hassan II University, Casablanca,
Morocco, 4Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and
Pharmaceutical Sciences, University of Toledo, Toledo, OH, United States

Reciprocal communication between the gut microbiota and the brain,

commonly referred to as the “gut-brain-axis” is crucial in maintaining overall

physiological homeostasis. Gut microbiota development and brain maturation

(neuronal connectivity and plasticity) appear to be synchronized and to follow

the same timeline during childhood (immature), adolescence (expansion) and

adulthood (completion). It is important to note that the mesolimbic reward

circuitry develops early on, whereas the maturation of the inhibitory frontal

cortical neurons is delayed. This imbalance can lead to increased acquirement

of reward-seeking and risk-taking behaviors during adolescence, and

consequently eventuate in heightened risk for substance abuse. Thus, there

is high initiation of alcohol drinking in early adolescence that significantly

increases the risk of alcohol use disorder (AUD) in adulthood. The underlying

causes for heightened AUD risk are not well understood. It is suggested that

alcohol-associated gut microbiota impairment during adolescence plays a key

role in AUD neurodevelopment in adulthood. Furthermore, alcohol-induced

dysregulation of microglia, either directly or indirectly through interaction with

gut microbiota, may be a critical neuroinflammatory pathway leading to

neurodevelopmental impairments and AUD. In this review article, we

highlight the influence of adolescent alcohol drinking on gut microbiota,
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gut-brain axis and microglia, and eventual manifestation of AUD. Furthermore,

novel therapeutic interventions via gut microbiota manipulations are

discussed briefly.
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Introduction

Adolescence is a transformative period of human growth

bridging developmental chasm between childhood and

adulthood. Around the beginning of puberty, critical hormonal,

physical, behavioral, and neurodevelopmental changes occur,

which culminate through teenage years, and develop further

during the mid-20’s [1]. These transformations bring about

necessary cognitive and social skills to enable once dependent

teens to function as mature and near independent adults [1, 2].

However, some of the consequences of the adolescent

neurodevelopmental changes such as impulsivity, risk-taking,

sensation-seeking, and novelty-directed behaviors may continue

into adulthood. In addition, early maturation of the reward and

motivational circuits combined with the protraction of the

inhibitory control circuitries, lead to an imbalance between

motivational and cognitive-control systems during adolescence.

This imbalance can enhance risk-taking behaviors, including

substance abuse [2, 3]. Indeed, initiation of alcohol and drug

use, often in high doses, are common occurrence during

adolescence. Considering the profound neurodevelopmental

changes during this time and the ensuing behavioral

consequences, adolescence may be considered as a time of both

resiliency and vulnerability.

Adolescents often begin consuming alcohol despite their

greater susceptibility to its damaging effects [4, 5]. Initiation

of alcohol drinking in early adolescence enhances the risk of

alcohol use disorder (AUD) in adulthood [5–8]. AUD is a

complex brain disorder characterized by an impaired ability to

cease or moderate drinking behavior despite adverse effects.

Although the exact cause of AUD remains elusive,

neurodevelopmental changes, including microglia activity and

inflammatory consequences during adolescence, play a pivotal

role [9, 10]. As neuronal maturation and refinement peak during

adolescence, the process of pruning, entailing removal of weak

synaptic connectivity and enhancement of myelination continue

into adulthood [11]. Thus, there is a reduction of gray matter and

an increase in the white matter volume [12–14]. This is

accompanied by enhanced connectivity, which allows faster

speed and efficiency of information flow across relatively

distant regions [15–17]. Two distinct and notable circuits in

this regard, are the mesolimbic reward pathway and the

prefrontal cortex inhibitory circuit (PFCX), both of which are

critically involved in the complex social and cognitive processes

[18, 19]. The mesolimbic dopamine (DA) circuit, however, as

mentioned earlier, matures early in adolescence, whereas there is

a delay in PFCX development, resulting in a vulnerable window.

In this review, we focus on the neurodevelopmental stages of

adolescence, including role of key players such as gut microbiota

and microglia and the influence of alcohol use on these

parameters. Moreover, potential exploitation of such

components for therapeutic purposes are elaborated on.

Adolescent neurodevelopment

The term “adolescent” describes a young person in the process

of developing from a child into an adult [20]. Adolescent

neurodevelopment is conserved throughout evolution and

across species, signifying its crucial importance in acquiring

necessary behavioral skills for transitioning into adulthood [1,

3]. These skills include attaining heightened reward sensitivity,

acquiring peer-directed social interaction, and cognitive

enhancement, all of which are essential in achieving maturity

[2, 3, 21, 22]. Heightened reward sensitivity is considered a

milestone necessary to facilitate approach toward novel stimuli

and learning from new surroundings and social interactions [23].

However, risk-taking, novelty-seeking, and sensation-seeking

behaviors, may predispose adolescents to alcohol and drug use

[24, 25]. Curiously, these behaviors may also be manifested in

animals [26, 27], suggesting that certain neurobehavioral

characteristics of adolescence may have biological causes.

Neuronal refinement during development

Neuronal refinement and maturation continue throughout

adolescence, as at birth and even during adolescence, there are

more neurons (about 4–5 times) than in adulthood [28–30].

Approximately 50% of the synaptic connections in selective

regions are lost due to synaptic pruning [31], which is

believed to ensure establishment of appropriate connectivity

[31, 32], reduction in energy use, and increase brain efficiency

[33, 34]. This process is also affected by myelination that begins

early in life, peaks through adolescence and continues into

adulthood [11]. Thus, increase in myelination and decline in

synaptic connection help refine brain connectivity into the adult

form [35]. However, myelination can be impacted by neurotoxic

agents such as alcohol, which can poise great danger to the

maturing brain.
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Some of the adolescent synaptic pruning appears to be

experience dependent [35]. For example, heightened stress

exposure and alcohol consumption during adolescence, can

affect neurodevelopmental resiliency [36]. On the other hand,

enriched environment during adolescence can induce a variety of

beneficial changes in the expression of genes in critical brain

areas such as in striatum, an area that plays a pivotal role in

motor and motivational behaviors [37]. Myelination is also

experience-dependent as it helps stabilize axonal pathways

[38]. It is believed that myelination, in concert with synaptic

pruning help with the “rewiring” of brain, particularly the

prefrontal cortex (PFCX), which is critical for many adult-

type behaviors including cognitive functions [39].

Reward and impulsivity during brain
development

DA system, essential for detecting, responding to, learning

from reward, cognitive control, decision making and

motivation [40, 41], undergoes significant transformation

during adolescence [42]. Specifically, there is a loss of up to

50% of DA (D1) receptors in some areas, a compromised

clearance of which, results in a reduction in social play and

social exploration [43]. However, in other areas, DA activity

may increase two-to seven-fold during adolescence [44, 45].

Thus, the mesolimbic DA pathway, considered to be the reward

circuitry, is maximally developed in adolescence [18, 46, 47],

which corresponds to peak in reward-seeking in mid-

adolescence (i.e., approximately 14–15 years) that gradually

declines into adulthood [25, 48, 49]. On the other hand,

PFCX DA system, considered to be critical in inhibitory

control of risk taking, has a protracted maturation [18, 50,

51]. This protraction results in developmental immaturities in

cognitive control, attentional regulation, and response

inhibition of behaviors [2], and may contribute to the

persistence of certain maladaptive behaviors such as alcohol

and drug use in adolescence [52, 53].

Dysregulation of PFCX behavioral control systems is

associated with impulsivity, which contributes to alcohol

seeking and use during adolescence, particularly, in stressful

and arousing situations [54, 55]. This impulsivity may even

continue into adulthood binge drinking (aged 18–30) [56].

Animal models of AUD also show impulsivity and risky

choice behavior if PFCX is dysregulated, suggesting biological

basis for such behavior [57, 58]. Excess alcohol use, in turn, by

damaging neuronal cells, could lead to dysregulation in PFCX,

further exacerbating aberrant behaviors (impulsivity/drug

seeking) which can lead to drug addiction. Therefore,

adolescent alcohol consumption can be considered a risk

factor in AUD development in adulthood [59, 60]. Thus,

delaying the onset of alcohol drinking, during this period of

vulnerability, can significantly reduce the risk of AUD [2].

Environmental and non-neuronal factors
during development

Adolescent engagement in risky behaviors commonly occurs

in social situations [61–63]. Shaping and refinement of the brain

neuronal system during this period is also impacted by exposures

to environmental factors. Microbiomes, discussed in detail

below, have recently attracted considerable attention as an

important influencer of the brain function and affected by

environmental factors such as diet, chemicals, etc.

Interestingly, it was suggested that early life antibiotic-induced

microbiota disruption may have subtle but enduring effects on

the brain function and social behaviors [64].

Microglia, also discussed below in detail, are non-neuronal

cells that constitute only 10% of the total CNS cells [65].

Nonetheless, they perform important task of surveying the

environment and responding to insult [66, 67]. Microglia are

considered CNS phagocytes, which also undergo significant

changes during adolescence [68]. These changes contribute to

neurodevelopmental fine-tuning [69–71]. Such as increase in

brain efficiency, and synaptic pruning throughout cortical and

limbic structures [71–73]. Moreover, by influencing early myelin

formation and removing aberrant myelin [74], myelination is

optimized. Interestingly, microglia may also play a role in

dopaminergic circuits refinement which, as discussed above,

are critical in reward-seeking and social behavior [75].

Microbiome and neurodevelopment

The gut microbiome (GM) is an ecosystem of 100 trillion

commensal microbes, complex in composition and abundance,

that mainly colonize the gut [76, 77]. Although the terms

microbiota and microbiome are often used interchangeably,

microbiota refers to the actual microbes, whereas microbiome

refers to themicrobes and their genes. The colonization of the gut

starts at neonatal period and continues throughout life. During

infancy, the ecosystem is unstable, but GM develops into a highly

diverse and robust community in adulthood [78]. It was thought

that the collective genome of microbiota, the microbiome,

encodes 100 times more genes than the human genome [79].

However, recent in-depth analyses suggest only a slightly higher

number of microbiomes compared to the human genome

[80–83]. GM is essential for the maintenance of the host’s

health including innate and adaptive immune system [80],

food digestion, fermentation of otherwise indigestible

carbohydrates and fibers, energy production, synthesis of

several vitamins (e.g., vitamins K and B) and the metabolism

of bile acids, sterols, and xenobiotics [81, 82]. GM can produce or

release neurotransmitters, choline and its metabolites as well as

short chain fatty acids (SCFAs). These products are secreted into

the gut lumen, transported across the epithelial barrier, and

carried to the effector organs including the brain, via the
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bloodstream. The gut microbiome, due to its immense impact on

human equilibrium, immune function, neurology, mental health,

and aging process, is now commonly referred to as a new

metabolic “organ” [80–83].

Maturation of GM is critical for neuronal maturation and

brain development [83]. Many studies show GM maturation

parallels the temporal course of brain development. Using several

experimental approaches, including germ-free (GF) animals, and

antibiotics, host microbiota’s effect on CNS functions have been

studied [84–86]. For example, some antibiotics such as

minocycline have profound acute effect on the microbiota

diversity and composition [87, 88]. Moreover, the fact that

most critical development of host immunity occurs within the

first few years of life, which coincides with the maturation of the

GM, reinforces the notion that GM is also involved in immune

system development [89, 90].

The synchronized communication between the CNS and GM

via GBA is critical in shaping the neurodevelopment and

influences brain’s biology under homeostatic conditions [91,

92]. Some of these functions include regulation of the

permeability of BBB [93–95], and glial functions [91]. GM’s

metabolic products SCFAs, vagus nerve, and microbe-associated

molecular patterns (MAMPs) (such as Toll-like receptors (TRLs)

are the mechanisms purported to facilitate communication

between GM and CNS [96]. Most TLRs, a family of pattern-

recognition receptors that enable the recognition of conserved

structural motifs of wide array of pathogens that drive

inflammation, are expressed in the CNS, mainly in glial cells

[97]. SCFAs monitor and integrate gut functions with emotional

and cognitive centers of the brain. SCFA also regulate peripheral

intestinal functions, intestinal permeability, and immune

activation [98]. Indeed, microglia from GF-mice display a

range of abnormalities that are dependent on GM SCFA. A

specific pathogen-free (SPF) mice constitutively lacking the

SCFA receptor FFAR2 displayed a similar aberrant phenotype

to GF animals [99], suggesting that GM metabolite, SCFAs, and

microglia are involved in the bidirectional crosstalk between GM

and the brain.

It is not surprising, therefore, that dysbiosis or disruption of

intestinal microbiota homeostasis can lead to variety of diseases

[100], including cardiovascular [86], inflammatory bowel disease

[101], and type 1 and type 2 diabetes [102, 103]. Common also,

are CNS disorders such as anxiety, depression and substance

abuse [82, 104, 105]. Dysbiosis can be caused by environmental

factors including diet [106], disruption of circadian rhythms

[107], and alcohol consumption [107], where the latter is

discussed in more detail below.

Microglia and neurodevelopment

Microglia, considered the immune cells of CNS, are primarily

responsible for neuroimmune responses and neuronal

development [108, 109]. They facilitate the maturation and

survival of neuronal progenitors and proper network

integration during CNS development [110]. In general, there

are three phases: early, pre- and adult microglia. Microglial

maturation phases are defined by expression of a subset of

genes corresponding to the core set of microglia functions

[111]. Therefore, microglia show heterogeneous transcriptional

profiles in the embryonic, early postnatal, and adult, depending

on their microenvironment in CNS [112–114]. Early on, before

BBB development, microglia derive from immature

erythromyeloid progenitors, and migrate from the yolk sack

blood islands to CNS [111, 115]. During late gestation and

early postnatal development, embryonic microglia proliferate

and colonize the whole CNS [111]. A few weeks after birth,

microglia transition to “adult microglia” stage, in which they

constantly survey their immediate surroundings and actively

maintain homeostatic conditions by phagocytizing neuronal

debris [116], and interacting with neighboring CNS cells

[117]. They achieve these through the dynamic extension and

retraction of their processes [118, 119].

Microglia can assume different phenotypes and retain the

capability to shift functions to maintain tissue homeostasis

depending on the influence of stimuli from the environment

[120]. For example, during infection or injury, microglia switch

from a homeostatic surveillance state to an activated state to

facilitate antimicrobial or tissue repair to restore homeostasis

[108]. Importantly, microglia can either be stimulated by GM

toxin lipopolysaccharide (LPS) to a pro-inflammatory (M1)

phenotype where they would express pro-inflammatory

cytokines, or by IL-4/IL-13 to an anti-inflammatory (M2)

phenotype for resolution of inflammation and tissue repair

[120]. Given their dual role in immune and developmental

functions, it may be expected that microglial dysregulation

would contribute to neurodevelopmental disorders. Indeed,

microglia overactivation could lead to neuronal damage and

onset/progression of several neurodegenerative and

neurodevelopmental disorders [121]. In addition to pro-

inflammatory cytokines, other bioactive substances released

from overactivated microglia, such as ROS and glutamate

could also play a role in microglia-dependent

neuroinflammation [122], and/or neuronal loss [123, 124].

Since microglia can also shape neurodevelopmental fine-

tuning and complex neurodevelopmental programing [125],

their transient reduction at critical stages of development can

alters synaptic plasticity [126]. Microglia interaction with various

cellular components including neuronal activity and synaptic

formation, leads to establishment of novel functional neural

network. Thus, microglia by inducing synapse formation

during development, monitor the functional state of synapses

in adulthood [70]. Moreover, during early brain development,

microglia’s main functions include synaptic remodeling,

regulating the number of neurons through mechanisms of

programmed cell death (apoptosis) [71, 125], and shaping of
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the neuronal circuitry. Thus, early on in life, the brain being

highly plastic, contains excess number of immature synaptic

connections and is shaped by sensory experience [70]. The over-

crowding of neurons is subsequently “pruned,” or eliminated,

primarily via microglia, to allow functional connectivity during

development [126, 127]. In addition, microglia’s involvement in

myelination (via oligodendrogenesis), during development and

throughout life, allows efficient and critical neuronal

communication [74]. Curiously, recent evidence implicates

microglia’s own programmed cell death via pyroptosis,

autophagy, and ferroptosis in neurodegenerative diseases,

including Alzheimer’s disease (AD) [128].

Microglial activity, governed in part by cytokines,

chemokines, neurotransmitters, and other signaling molecules

[129], is highly sensitive to environmental cues. As such, GM has

emerged as a central player in microglial maturation and

activation [120]. Sophisticated crosstalk between the CNS and

the gut microbiome, and critical interdependency between

microglia and GM, where the latter facilitates microglia’s

development, are now well-established [130]. However, the

exact mechanisms of such communications are not well

understood. Below, our current knowledge of GM-microglia

interactions in relation to brain maturity and adolescent

drinking are reviewed.

Microbiota-microglia interaction and
neurodevelopment

That GBA plays a pivotal role in regulating microglial

maturation and function during critical windows of

development is well recognized [131, 132]. Microglia, in turn,

is one of the key cellular intermediates linking CNS with GM.

Distinct developmental stages are present during which there is

heightened microglia susceptibility to immune mediators and

environmental cues [110, 113]. For example, environmental

exposure to chemicals such as alcohol can disrupt microglia

development and maturation, primarily due to dramatic changes

in microbiota. Similarly, antibiotics-induced loss of GM causes

microglia to assume an immature status reminiscent of

developing juvenile microglia [133]. On the other hand,

recolonization of the gut with complex microbiota restores its

plasticity, a finding that was also confirmed in mice born from

GFmaternal mice [134]. Indeed, GF-mice exhibit a wide range of

microglia abnormalities including increased density and

distribution across various brain regions and altered

cytometric expression patterns for developmentally regulated

proteins [99]. Moreover, such microglia are less reactive when

challenged with LPS, again, suggesting GM’s crucial role in

microglia maturation and neuronal function [99].

Interestingly, microglial changes appear to be dependent on

SCFAs, as specific pathogen-free (SPF) mice constitutively

lacking the SCFAs receptor FFAR2 display a similar aberrant

phenotype as seen in GF animals [99]. Furthermore, GF and

antibiotic treatment not only disrupt typical microglial spatial

network throughout the brain but also result in forming atypical

contacts between processes of adjacent cells [99].

Importantly, however, is the finding that even transient

perturbations in microglial function could have life-long

effects on neuronal patterning, functional connectivity and

behavior [135, 136]. Thus, it has been demonstrated that a

transient reduction in microglia number at critical stages of

development alters synaptic plasticity including differentiation

and maturation of precursors into neurons or neurogenesis [126,

137]. This is because most newborn neurons undergo apoptosis

and are phagocytosed by microglia as part of normal

neurodevelopment. However, over time, this process becomes

limited to neurogenic niches of the adult brain [127]. In addition,

microglia not only play a critical role in debris clearance but may

also facilitate neuroblast differentiation in response to signals

[138]. Maternal immune activation results in accelerated

microglial maturation that exhibit adult microglia phenotype

[110, 113] and can present with detrimental consequences

including neurological disorders that continue long after the

microglia phenotype is restored [113]. On the other hand,

microglia’s expression of pro-inflammatory cytokines such as

TNF- α, IL-1 β, and IL-6 and trophic factors, help mediate the

interactions between the host’s microbiome and the developing

brain [139], resulting in refinement of functional neuronal

circuits [131, 132, 140]. It was demonstrated recently that

microglia’s secreted factors directly increase differentiation of

human neural stem cells to a dopaminergic lineage [83].

However, whether microglia are involved in heightened

reward-seeking and/or risk-taking including development of

AUD, remains to be determined.

Collectively, these findings suggest that bidirectional

crosstalk between the gut and the brain may influence disease

pathogenesis. Thus, alteration in GM during the early stages of

development may have long-lasting effects on the GM

composition throughout the lifespan with clear implications

for the immune system as well as neuronal development.

Because excessive alcohol consumption results in dysbiosis

and microglia alteration, it is not surprising that AUD would

be associated with neurological diseases [141]. Below, further

association between alcohol, GM, and microglia in relation to

neurodegenerative/neuropsychiatric disorders is elaborated.

Adolescent alcohol drinking

Alcohol is the most used drug among adolescents [142–144],

where experimentation and initiation usually begins in early

adolescence (50%–70% of 15 year-old use alcohol) [145], and

peaks during young adulthood (18–24 years of age), where binge

drinking is more common [146]. US prevalence of binge drinking

in adolescents aged 12–17 and 18–25 are 4.7% and 34.9%
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respectively [147]. Binge drinking is considered consuming 4 or

more drinks for females and 5 or more drinks for males within

2 h [143, 148]. A single drink consists of about 14 g of pure

alcohol, which is found in 12 ounces (355 mL) of regular beer

(usually containing 5% alcohol); 5 ounces of wine (usually

containing about 12% alcohol); or 1.5 ounces of distilled

spirits, which is about 40% alcohol. Although, binge drinkers

drink less frequently, they drink more alcohol per drinking

episode achieving a blood alcohol level (BAL) topping 0.08%

(>80 mg/dL) and hence increasing alcohol-associated risks and

consequences [143, 148, 149]. A small percentage (10%) of binge

drinkers are considered heavy binge drinkers, where 10 or more

drinks are consumed per occasion, and yet 5% are extreme binge

drinkers where over 15 drinks is consumed in a binge session

[142, 150]. Epidemiological report indicates that early initiation

of alcohol drinking before the age of 15 years increases the risk of

AUD in adulthood by fourfold [6, 7]. About 30%–40% of

adolescent binge drinkers, i.e., 1.6% of 12–17 year-olds and

~14% of older adolescents, meet criteria for AUD [147, 151,

152]. Although males are overrepresented in the extreme binge

drinkers, the gender gap is narrowing [142, 153].

In addition to adolescent drinking, individuals with fetal

alcohol syndrome disorder (FASD), a heterogeneous group of

conditions defined as the physical, behavioral, and learning

impairments that occur in the offspring of women who drank

alcohol during pregnancy, may also exhibit increased risk of

substance abuse including AUD in adulthood. Thus, alcohol

exposure may impact behavioral outcomes throughout

neurodevelopmental period where the earlier the exposure, the

worse the outcome [154]. However, disentangling underling

factors in each case remains a challenge [155].

It is noteworthy that adolescents, compared to adults, are

insensitive to various intoxicating effects of alcohol such as motor

incoordination, social impairment, and sedation [3]. It is thought

that adolescent-typical insensitivities to aversive stimuli in the

presence of greater reward sensitivity contribute to their

proclivity to associate more benefit and less cost to alcohol

and drug use. This could encourage pursuit of or continued

engagement in risky activities, particularly when prior activities

proved rewarding but without disastrous consequences

[62, 63, 156].

Alcohol use disorder and microbiome

A potential connection between GM and AUDwas suspected

since mid 1980s. Initially, the role of GM in alcoholic liver disease

was intensely investigated. Later, possible role of GM in addiction

to alcohol was advocated. With our advancement in

understanding of the GBA, it is anticipated that novel GM-

targeted therapies will become available [157].

It is important to reiterate that harmful consumption of

alcohol (alcoholism) is responsible for approximately 5.3%

annual deaths in all age groups, and at an alarming rate of

13.5% for the younger age group of 20–39 years old [144].

Although alcoholism has been studied for decades, only

relatively recently the examination of gastrointestinal (GI)

microbiome and its impact on AUD has been intensely

investigated. An initial observation reported that the content

of Gram-negative anaerobic bacteria in jejunal aspirates from

alcoholic individuals were significantly higher compared to

control individuals [158]. Animal studies, confirmed this

involvement where it was shown that more than 10 weeks of

ethanol ingestion in rats led to significant dysbiosis of the colonic

microbiome [159]. In subsequent years, many sequencing studies

of the microbiome from rodent models of alcoholism, humans

with AUD, as well as non-human primate studies of addiction

have solidified GBA’s importance in alcohol addiction [157].

Thus, GM not only plays an important role in development

of AUD but also in a variety of neurological and neuropsychiatric

diseases including Parkinson’s disease, Alzheimer’s disease,

depression, and autism spectrum disorder [160–162]. Chronic

alcohol consumption can cause changes in the composition of

GM and impair the gut mucosal barrier as well as homeostasis.

Once the mucosal barrier is compromised, LPS from GM is

released and translocated to peripheral blood circulation, where

it acts on TLR4 [163]. Activation of TLR4 can lead to increases in

proinflammatory cytokines which further disrupt BBB and hence

result in further neuroinflammation [164], a major contributor to

AUD. For these reasons it has been suggested that the gut–brain

axis might be a potential target to reduce alcoholic relapse risk.

In addition to the central effects of AUD, GM dysbiosis, can

lead to liver disease. Indeed, GM changes occur in parallel to liver

injury, with an increase in endotoxin-producing bacterial taxa,

leading to cirrhosis and alcoholic hepatitis. In this regard, AUD

effect on GBA can further potentiate alcohol misuse and hasten

hepatic encephalopathy. Thus, strategies that address both

alcohol cessation and microbiota alteration are needed for

meaningful improvement in all AUD spectrum [165].

Furthermore, a plethora of indirect evidence point at the

involvement of GM dysbiosis in microglia activation (discussed

below) and AUD. For example, GM metabolite SCFAs can cross

BBB and affect microglia directly [166]. Both infiltrating

macrophages and microglia become activated in response to

tissue damage and can release proinflammatory cytokines,

which may contribute to neuroinflammation and BBB

breakdown [167, 168]. Orally administrated mixture of the

three major SCFAs acetate, propionate and butyrate can

sufficiently drive maturation of microglia [169]. Of these,

butyrate has been demonstrated to possess multiple benefits,

including enhancing the gut barrier, reshaping the gut

microenvironment, and repressing the inflammatory

progression. Moreover, butyrate has shown to be

neuroprotective against alcohol toxicity in an in-vitromodel [170].

Alcohol abuse via changes in GM composition and metabolic

function can lead to oxidative stress and leaky gut (allowing
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bacterial passage into the lumina), and subsequent development

of alcohol-related diseases [81, 171]. Also, GM dysbiosis by

disrupting microglial maturation and activation can causes

behavioral changes associated with AUD. However, despite

frequent reports of dysbiosis in AUD patients, microbiome-

targeting therapies for this disorder awaits clinical trials (see

also below for more detail).

Alcohol use disorder and microglia,
and role of toll-like receptors

Microglia involvement in AUD pathology is amply

supported by the findings that prolonged and heavy exposure

to alcohol can not only lead to appreciable reduction in glial cell

numbers in both temporal and frontal cortices [172], but also to

impairment of neuronal and glial cell functionality [173]. In the

developing brain, these effects are more pronounced and extend

to cerebral white matter, corticolimbic system and cerebellum

(especially the vermis) [173]. Cortical microglia, however, show

remarkable morphological plasticity as they rapidly deactivate

following acute severe alcohol exposure [174]. Following chronic

high alcohol exposure, there is a marked increase in microglia

activation [167, 175], accompanied by high levels of

proinflammatory mediators and reactive oxygen species that

can lead to tissue damage and cell death [103]. Conversely,

chemical depletion of microglia, can block the production of

inflammatory mediators in the brains of mice after acute binge

ethanol withdrawal [176].

Epidemiological studies, based on FASD, also suggest a role

for microglia in early neurodevelopment [177], as areas that are

dependent on neuroglial cells for their formation such as corpus

callosum and anterior commissure exhibit abnormal glial

migration [178] and underdevelopment [179]. Moreover,

during brain growth spurt, characterized by rapid glial cell

proliferation and maturation, ethanol exposure can lead to

microencephaly, suggesting potential effect of ethanol on

proliferation, growth, and maturation of glia [180]. Likewise,

during adolescence, binge drinking causes devastating effects as

reflected in morphological changes in hippocampal microglia

that can last over 1 month [181]. Accompanied

neuroinflammatory processes induce behavioral changes such

as sedation and alcohol withdrawal symptoms including memory

impairment, neuronal cell death and diminished neurogenesis

[182, 183]. Insensitivity to sedative effects to alcohol, blackouts

and kindling, contribute to exacerbation of withdrawal episodes

with each cycle of withdrawal during adolescence [184, 185].

Chronic alcohol consumption induces microglia

proliferation [167, 186, 187] and microglia morphological

changes reflective of a proinflammatory phenotype in a

context-dependent manner [9, 186]. During context-

dependent activation of microglia, prior insults are recalled,

resulting in amplified responses to a second inflammatory

insult [188, 189]. This suggests that prior ethanol exposure

potentiates a subsequent microglia response that is primed by

initial alcohol exposure. Alcohol can directly activate microglia to

increase expression of proinflammatory chemokines and

cytokines. The chemokines and cytokines in return, can alter

sensitivity to alcohol-induced sedation, alcohol withdrawal

severity [182], memory impairment [183], as well as alcohol

drinking patterns [190].

Alcohol-enhanced microglia-specific immune responses can

be blocked byminocycline, a microglia activation inhibitor [191].

This blockade of microglia immune response alters alcohol-

induced motor impairment decreases alcohol self-

administration in mice [192], and attenuates withdrawal-

induced anxiety and relapse drinking in rats, suggesting that

microglia may be the critical mediator of alcohol behavioral

effects [193]. Minocycline also reduces traumatic brain injury

(TBI) induced by microglial activation [194]. Since alcohol use is

associated with microglial activation, it would be reasonable to

expect that adolescent binge drinking may enhance TBI.

However, the effects of adolescent binge drinking on microglia

and potential use of minocycline in AUD remains to be

investigated.

Adolescent alcohol drinking impacts central inflammatory

cells and signaling molecules [167]. Sensitized microglia can

interfere with homeostasis by decreasing expression of

homeostatic genes [195]. For example, several genes in Toll-

like receptor (TLR) signaling pathways are activated by alcohol

[96]. TLRs are important mediators of inflammatory pathways in

the gut and play a crucial role in maintaining the balance between

commensal bacteria in the gut and the mucosal immune system

[196]. TLRs are evolutionarily conserved receptors belonging to

the family of pattern recognition receptors (PRRs) which play a

vital role in immune responses. Indeed, TLRs hold a key position

in the first line of defense against pathogens because of their

ability to recognize the conserved pathogen-associated molecular

patterns (PAMPs) that are conserved structures of the pathogens.

Activation of PRRs results in the downstream transcriptional

activation and expression of numerous inflammatory mediators.

In addition, PRR signaling also leads to the triggering of various

processes involved in autophagy, cell death, cytokine processing,

and phagocytosis. Thus, TLRs are directly involved in the

regulation of inflammatory reactions and activation of the

innate or adaptive immune responses for the elimination of

infectious pathogens and cancer debris [196].

To date, 222 TLRs have been identified in invertebrates and

28 TLRs in vertebrates. Depending upon their functionality and

location in the host cell, TLRs are further categorized into two

types: 1. Cell membrane TLRs, which are expressed in their active

form on the cellular surface. They include TLR1, 2, 4, 5, 6, and

10.2. Intracellular TLRs, which are expressed within the host cells

on the organelle biomembranes like endoplasmic reticulum (ER),

endosomes, and lysosomes. They include TLR3, 7, 8, and 9 [196].

TLR4 is the major pattern recognition receptor of bacterial
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endotoxin, LPS [163]. Although endotoxins are not generally

believed to cross BBB [197], they can induce proinflammatory

microglia. Indeed, in TLR4 knockout and postmortem tissue of

AUD patients, there is breakdown of BBB [198]. Interestingly

most of the TLRs are expressed in microglia and astrocytes [164,

199, 200]. n addition to microglia, peripheral macrophages can

be recruited into the CNS under pathologic conditions and may

serve to amplify ongoing neuroinflammation [201]. Alcohol’s

activation of TLRs triggers downstream stimulation of nuclear

factor-κB (NFκB) and the induction of genes that encode

inflammation-associated molecules such as cytokines [202,

203]. Thus, activation of the TLRs can significantly contribute

to neuroinflammation [204]. Indeed, increased TLR4 activation

is often the reason for neurodegeneration exacerbation [205].

Hence, it may be concluded that at least some of

neurodegenerative consequences of heavy alcohol drinking

might be mediated via TLR4 stimulation.

As mentioned earlier, adolescent exposure to alcohol

significantly increases the risk of AUD in adulthood.

Although the reason(s) behind this association is not fully

known [206], it may be speculated that alcohol’s priming

effect of microglia or changes in TLRs may have major roles.

Interestingly, TRLs are also involved in bidirectional

communication between GM and CNS and are believed to

play an essential role in regulating intestinal barrier

permeability and maintaining intestinal microbial homeostasis.

The intestinal microbiota, in turn, plays an essential role in TLR

ligand activation and distribution [207]. Thus, alcohol-induced

dysbiosis in adolescence may be a major contributory factor to

AUD development in adulthood. This discovery, as discussed

below, may present with novel interventions in AUD.

Possible microbiome directed
therapies against alcohol use disorder

Based on above discussion, it is likely that manipulations of

GMmay offer a novel intervention in AUD. In this regards, fecal

microbiota transplantation (FMT) in patients with alcoholic liver

disease [208, 209]. andmore recently for the treatment of AUD in

general, has been attempted [210]. The latter study noted a

reduction of serum IL-6, reductions in craving, cognitive

functioning improvements, and reduction in negative

psychosocial impacts following administration of

Lachnospiraceae and Ruminococcaceae. The authors also

reported an increased abundance of Roseburia in FMT-

recipients. Interestingly, Faecalibacterium and Roseburia have

been implicated to have a protective role on GBA and intestinal

epithelium in alcoholism [211, 212]. Thus, the possibility exists

that by restoration of beneficial bacteria significant improvement

in CNS health can be achieved. Moreover, manipulation of TLRs

as discussed above, could offer additional targets. It is anticipated

FIGURE 1
Schematic diagram depicting involvement of Gut-Brain Axis in neurodevelopment that renders the adolescents more vulnerable to drug
seeking behavior and eventual manifestation of alcohol use disorder (AUD).
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that with continuous studies in this field, further refinement of

treatment modalities involving GM in addiction in general and

AUD, in particular may be achieved [207].

Other therapeutic potentials

In addition to manipulation of GM, extensive effort is being

expended in understanding the neurobiological substrates of

AUD with the hope of discovering effective novel targets

[212]. As it currently stands, three approved medications are

available to combat alcoholism or AUD, aiming to stop or reduce

the drinking habit and prevent relapse. These include disulfiram,

an inhibitor of the degrading enzyme aldehyde dehydrogenase,

that acts by inducing aversion nalmefene or naltrexone,

antagonists of opioid receptors that act by blunting the

rewarding effects of alcohol, and acamprosate, a gamma

amino butyric acid (GABA) synthetic analog that acts by

modulating or antagonizing NMDA receptors. The latter is

primarily used for maintenance of abstinence from alcohol in

detoxified alcohol-dependent patients [213]. However, all these

medications are only modestly effective. In addition, about one in

six people globally, is estimated to receive treatment, with the rate

being at even lower in low and lower-middle-income countries

[214]. For potentially life-threatening condition, manifested

during withdrawal and believed to be caused by glutamate

overactivity, benzodiazepine are the primary medications

applied [215]. In addition, “talk therapy” or behavioral

interventions, consisting of therapies that build motivation

and teach skills for coping and preventing relapse, when

combined with medications yield a better outcome. Physical

activity may also be used as adjunctive treatment for severe

AUD [216]. Potential application of neurosteroids, polyphenols,

neuropeptides, modulators of nicotinic acetylcholine receptors

[217], muscarinic acetylcholine receptors, glutamate receptors,

GABA receptors, cannabinoid receptors, G protein-coupled

receptors (GPCRs), tyrosine-kinase receptors as well as

various nutrients such as carnitine, folic acid, selenium, omega

3 fatty acids and zinc were recently reviewed [212].

Discussion

Adolescence is a period of human development that span

between childhood and adulthood. The neurodevelopmental

transformations during adolescence are geared towards

acquiring cognitive and social skills that are required to

enable the dependent teen to eventually transform to an

independent adult. However, some developmental or

maturation imbalance in circuitries that control reward vs.

inhibition in adolescence, can lead to increased presentation

of risk-taking and reward-seeking behaviors, which can

include heightened risk of substance abuse such as alcohol

drinking. Mirroring the adolescent neurodevelopmental

changes, the gut microbiota also undergoes significant

maturation, and at the same time establishes a strong

bidirectional communication with the brain. This reciprocal

communication, referred to as GBA plays a crucial role in

driving the behavioral changes associated with AUD.

There are emerging mechanisms by which altered microglial

functions could contribute to several major etiological factors of

AUD. Pre- and postnatal exposure to alcohol can modulate

microglial cell phenotype and function, supporting the notion

that reciprocal interactions between microglia and intestinal

microbes could play a crucial role in AUD etiology. Alcohol-

associated inflammatory signaling contributes not only to CNS

inflammation and neurodegeneration but also to

alcohol addiction.

Chronic and high alcohol use can cause GM dysbiosis,

leading to neuroinflammatory condition via microglia

activation and eventual manifestation of AUD (Figure 1). It is

estimated that adolescents who begin drinking alcohol between

the ages of 11–14 are 4 times more likely to develop AUD

compared to peers that postponed drinking until after the

age of 20.

Based on crucial role of GM and microglia in AUD

manifestation, particularly during adolescence, and our

deeper understanding of the interaction between these two

systems, novel promising interventions are presented.

However, further investigation on not only the efficacy of

the approaches but also the potential role of gender and/or

ethnicity in AUD manifestation and treatment are of crucial

importance.
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