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Aims: The objective of this study is to illustrate the application of a machine

learning algorithm, KNearest Neighbor (k-NN) to imputemissing alcohol data in

a prospective study among pregnant women.

Methods:We used data from the Safe Passage study (n = 11,083). Daily alcohol

consumption for the last reported drinking day and 30 days prior was recorded

using the Timeline Follow back method, which generated a variable amount of

missing data per participants. Of the 3.2 million person-days of observation,

data were missing for 0.36 million (11.4%). Using the k-NN imputed values were

weighted for the distances and matched for the day of the week. Since

participants with no missing days were not comparable to those with

missing data, segments of non-missing data from all participants were

included as a reference. Validation was done after randomly deleting data

for 5–15 consecutive days from the first trimester.

Results:We found that data from 5 nearest neighbors (i.e., K = 5) and segments

of 55 days provided imputed values with least imputation error. After deleting

data segments from the first trimester data set with no missing days, there was

no difference between actual and predicted values for 64% of deleted

segments. For 31% of the segments, imputed data were within +/−1 drink/

day of the actual. Imputation accuracy varied by study site because of the

differences in the magnitude of drinking and proportion of missing data.
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Conclusion: k-NN can be used to imputemissing data from longitudinal studies

of alcohol during pregnancy with high accuracy.
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Introduction

Accurate assessment of timing, frequency, and quantity of

prenatal alcohol exposure in longitudinal research studies is

necessary for obtaining unbiased assessments of the effects on fetal

and infant outcomes. Despite the recent development of several

biomarkers that assess the presence of alcohol exposure during

pregnancy [1], these markers have limited sensitivity in detecting

the timing and amount of alcohol exposure during pregnancy [2, 3].

Thus, we often remain reliant on maternal self-report of intake. Aside

from issues associated with the accuracy of self-report, there are other

methodological challenges in measuring alcohol exposure in

longitudinal studies [4, 5]. Recording daily intake, while providing

a temporally complete set of values, involves significant participant

burden and is likely to impact consumption behavior [6]. As a

consequence, in many studies, alcohol consumption data are

sampled at various times throughout pregnancy [7]. However,

even when data for the specific time-points are complete, there is

frequently missing information about intake during the intervals

between study visits. Addressing this missing data problem is

critical when the exposure metrics of interest are both timing and

amount during pregnancy [8].

The impact of missing data on the validity of estimates largely

depends on the reasons data is missing [9]. For example, pregnant

women of low socioeconomic (SES) background are more likely to

access antenatal care late in pregnancy, enroll late in research studies,

and, therefore, havemoremissing data early in pregnancy [10]. This is

problematic as SES is an important determinant of drinking behavior

during pregnancy [11]. In addition, women often modify their

consumption behavior following pregnancy recognition, which

happens at varying times during the first months of pregnancy.

While some women stop or reduce drinking immediately upon

pregnancy recognition, some heavy drinkers continue to binge in

the first trimester or continue heavy drinking throughout the

pregnancy [8]. The accuracy of measures irrespective of the

presence of missing data, such as the number of drinks consumed

only on drinking days, may also provide biased overall estimates

depending on when participants are interviewed. Therefore, new

approaches for managing the missing data problem are needed.

The Safe Passage Study conducted by the Prenatal Alcohol

and SIDS and Stillbirth Network (PASS) was a prospective

investigation of effects of alcohol exposure on multiple fetal

and infant outcomes in Cape Town, South Africa and the

Northern Plains, USA [12]. In this study, alcohol data were

collected using a modification of the Timeline Followback

Method (TLFB) [13], in which pregnant women reported

drinking data on their last known drinking day and then, for

the 30 days prior. While this method was deemed the best self-

report system available, the approach, by design, generates a

variable amount of missing data per participant. As an example,

recent drinkers were more likely to have higher number of

missing data points (Figure 1). Because drinking behavior

during pregnancy vary by the timing of the pregnancy, as well

as day of the week, and most participants had some daily

drinking data missing, imputation methods such as last value

carry forward and mean imputation were not applicable.

In this paper we describe a method to impute the drinking values

on missing days using a machine learning algorithm called k-nearest

neighbor (k-NN). k-NN imputes missing values using pattern

recognition without any distributional assumption about the

underlying data [14]. The K-NN algorithm is particularly suitable

for imputation of prenatal drinking data as drinking during pregnancy

follows specific patterns depending on pre-pregnancy drinking

practices and the length of pregnancy [15, 16]. The k-NN

algorithm has been used in imputation of missing data in several

research areas in the healthcare field including genetics and

metabolomics studies [17, 18]. In this paper, we provide the

methodological details of the specific application of the k-NN

algorithm for imputation of PASS exposure data and the validation

of these results.

Methods

The safe passage study

The Safe Passage Study was a prospective study of a cohort of

pregnant women and their infants evaluating the role of prenatal

alcohol exposure on incidence of adverse pregnancy outcomes

including stillbirth, sudden infant death syndrome (SIDS), and

fetal alcohol spectrum disorders (FASDs) of the surviving children.

Between August 2007 and January 2015, 11,892 pregnant women

(11,083 included here) were enrolled from antenatal clinics in

Northern Plains, USA and Cape Town, South Africa. Women

were eligible to participate in the study if they were pregnant with

one or two fetuses, aged 16 years or older, were at gestational age

6 weeks or later at recruitment and spoke English or Afrikaans.

Women were followed throughout the pregnancy and 1 year

postnatally. Data on socio-demographic factors, obstetric history,

periconceptional drinking and smoking were collected at the

enrollment interview. Information on subsequent drinking during

pregnancy was updated in study visits following enrollment.
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Ethics

Ethical approval was obtained for each participating PASS

network site from their institutional review boards including

Stellenbosch University, Sanford Health, the Indian Health

Service and from participating Tribal Nations. Written informed

consent was obtained from all participants. All data collection and

analyses were performed in accordance with the guidelines of the

participating institution’s ethical review boards. The research was

also overseen by the PASS Network Steering Committee as well as

an external Advisory and Safety Monitoring Board.

Alcohol data collection method and
missing data

Alcohol exposure data were collected using a modified validated

TLFB [13], which required participants to report details of their

drinking on each day for ±15 days from the last menstrual period

(LMP) and, at each study visit, the 30 days prior to the last known

drinking day. Data were collected on the types and number of

drinks, size of the containers, amount of ice in the drink, how many

people shared drink, and duration of the drinking episodes [13].

These data were then used to estimate the total amount of alcohol

consumed and number of standard drinks on each reported

drinking day [19]. Data on drinking were collected during

1–4 prenatal study visits and 1 visit postpartum.

Due to the nature of the modified TLFB data collection

design, the number of days with missing data varied by

participant as a function of the time of enrollment and

number of subsequent visits. The number of days with

missing drinking information also varied for each participant

depending on the recentness of their drinking. Figure 1 shows

examples of how such variation emerged during the period

between LMP and the recruitment visit depending on when

the last drinking day occurred. Participants who did not drink, or

whose last drinking day was prior to their LMP had no missing

data (Figure 1A). Participants who drank but quit drinking

within 30 days of the last collection period, had less or no

missing data (Figure 1B). Participants who continued to

drink, and who reported drinking information 30 days closest

to the interview date, had missing information prior to the 30-

FIGURE 1
Timing of alcohol consumption during pregnancy and its relation to missing data. Panel (A): Participants who did not drink, or whose last
drinking day was prior to their LMP had nomissing data. Panel (B) Participants who drank but quit drinking within 30 days of the last collection period,
had no or less missing data. Panel (C): Participants who reported drinking information 30 days closest to the interview date, had missing information
prior to the 30-day period of reported drinking.
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day period of reported drinking (Figure 1C). In this example, if

Subject Z drank often, and possibly at a higher volume, she would

have a greater number of missing days than women who drink

less often. Thus, a summation of drinks over the days will reflect

less than the actual consumption and analysis using this exposure

metric will be biased.

Let’s assume that subjects X, Y, and Z were enrolled at the

same gestational ages for their respective pregnancies. The

alcohol consumption of Subject X is depicted in Panel A.

Participant X is a non-drinker given no alcohol consumption

is reported in the time interval which spans from LMP and

recrutiment. Both Subject Y (Panel B) and Subjects Z (Panel C)

did report at least an event of alcohol consumption in the same

interval. Neverthless, the timing of alcohol intake is different for

the participants, thus resulting is the absence (Subject Y) and

presence (Subject Z) of data missingess. Considering Subject Y,

the time interval between last alcohol intake and LMP is less or

equal 30 days, thus there is no gap in alcohol consumption

information, resulting in a complete timeline from recruitment

back to LMP. On the contrary, Subject Z reported her last

drinking event more recently with respect to Subject Y, thus

the interval between last alcohol consumption and LMP is greater

than 30 days. In this latter case, we have data missing by design of

the assessment instrument.

The k-NN algorithm

k-NN is a non-parametric machine learning algorithm which

can be utilized to impute missing drinking information of a subject

based on the information provided by other observations in a given

database. Figure 2 displays the imputation ofmissing data for subject

p based on the drinking information of subjects with drinking

patterns most similar to that of p. Similarity in the drinking

patterns of two subjects is measured using their cosine distance.

In this hypothetical example, there are three subjects (q, r and s) for

whom estimates of alcohol consumption were collected on three

different days during pregnancy. For subject p information is

missing for the third day. The nearest neighbor for subject p is

subject q. The angle between p′O and q′O is zero whichmeans that p

and q have exactly the same drinking pattern, as they both

consumed three times more drinks on day 1 than on day 2. The

next nearest neighbor for subject p is subject r as the angle between

them is small. In practice, it is computationally complex to calculate

an angle and we can use the cosine as a good approximation. Once

the k nearest neighbors of p are identified, the weighted average of

the drinking data of these neighbors for the day for which p’s

drinking data are missing is taken as the best estimate of the missing

data. The weighted average is taken to assure that the neighbors

nearer to p havemore influence on the predicted value than the ones

further away from it.We also scaled the imputed values to individual

consumption level. In this example, the scaling adjustment is needed

because though p and r have similar drinking patterns, p is heavier

drinker than r. Details of the computation of cosine similarity and

scaling adjustment are described in Supplementary Appendix S1.

Data preparation

We first converted the data to a single record (row) per person,

where drinking values were separate variables (columns), one variable

for each drinking day starting from day −15 (2 weeks prior to LMP)

and ending at day 310 (maximum possible pregnancy length). We

used the distance between a fixed date before the start of the study

(Saturday, 1 January 2000), and the beginning of pregnancy

(i.e., day −15) to find the day of the week the pregnancy started.

This was then used to temporally align each subject prior to

computation of the cosine distances. For example, when

computing the nearest neighbors of a participant p whose

pregnancy started on a Wednesday, if we encountered another

participant q whose pregnancy started on a Monday, we aligned

day −15 of p (aWednesday) with day −13 of q (anotherWednesday)

and ignored the first 2 days (days−15 and−14) of q and the last 2 days

(days 309 and 310) of p. The rationale behind this alignment is that

the drinking behavior often varies by the day of theweek [20].We also

Winsorized (capped) the outlier drinking values at 3 SD (21 for South

Africa and 28 forNorthern Plains sites) to reduce the impact of outlier

values in determining the imputed values. As the pattern of drinking

in subjects with data missing for a large number of days in pregnancy

cannot be established, we excluded subjects who did not have any data

in the first trimester and those who were missing more than 200 days

of data. Those missing more than 200 days of data were missing data

from more than two trimesters and the periconceptional period. The

final data set for imputation included 11083 subjects.

Assessment of performance
We validated our approach by comparing the actual values

from a subset of subjects with no missing data in trimester 1 and

the resulting imputed values obtained after random deletion of

data for 5 to 15 consecutive days. The first trimester was selected

for validation because the proportion of women drinking and the

magnitude of their drinking is highest in trimester 1, particularly

for the days before pregnancy recognition.

To identify the optimum number of neighbors to be

included, we examined the root mean squared error (RMSE)

for the predicted drinking values in the deleted segments

(Figure 4A) as follows,

RMSE �

����������∑n
i�1

ŷi − yi( )2
n

√√

where n is the length of a segment and for 1≤ i≤ n, yi and ŷi are

the actual and predicted value, respectively, of the ith entry of

each segment.
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We calculated the overall number of correctly imputed

segments of drinking status as proportion of accurate

classification and plotted it in a confusion matrix (Figure 4B).

We ran 500 iterations to estimate the imputation accuracy for the

chosen number of neighbors (k = 5). We then calculated absolute

differences between actual and predicted values and their

confidence interval, for drinking and non-drinking days

separately (Supplementary Figure S1).

Results

Description of missing data

Participants contributed a total of 3.2 million person-days of

observation in the study, of which 0.36 million (11.4%) person-

days were missing. Based on the data collected using the TLFB

method about 45% of the participants (n = 4,988) had alcohol use

data for every single day of their pregnancy while the remaining

55% (n = 6,096) had at least 1 day of alcohol-use data missing.

Among the study participants 62% (n = 6,872) were drinkers,

i.e., consumed at least 1 drink during pregnancy. Overall,

Northern Plains sites had fewer missing data, with over 50%

of the participants having 30 or fewer days of missing data

(Supplementary Figure S1). Most of the missing data in the

South Africa site are from the early trimesters which largely

reflects later enrollment at that site, whereas the majority of

missing data in the Northern Plains site are in the 3rd trimester

(data not shown). This has important implication for imputation,

given majority women reduce or stop drinking after pregnancy

identification. Early pregnancy missing data are more likely to

represent drinking periods compared to late pregnancy.

Application of k-NN

Length of reference segment
The largest possible reference segment for each pregnant

woman in the PASS data set is 324 days, the maximum length

of the pregnancy (310 days) plus 2 weeks before pregnancy.

However, as mentioned in a previous section, women with

complete data were more likely to be nondrinkers or light

drinkers, hence exclusively using them as neighbors would

produce an underestimate of true drinking values. We therefore

included segments of data without any missing values from all

pregnant women as reference data for imputation. The trade-off

FIGURE 2
Hypothetical example showing application of k-NN algorithmon drinking data from three subects. Subjects p, q, r and s aremapped to points p′,
q′, r′ and s′, respectively, in 2-dimensional space based on the 2 days for which data are available for all of them. If a subject had x drinks on day one
and y drinks on day two then it is mapped to point (x, y, 0) on the 2-dimensional xy plane.
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between selecting a larger or smaller segment size is that smaller

segment sizes (e.g., 7 days) allow more segments to be included as

reference; but the smaller the segment becomes, the less accurate is

the algorithm’s characterization of specific patterns of drinking. We

also determined that a reduction of segment sizes below 55 days did

not increase available reference segments significantly (Figure 3). A

segment size of approximately 2 months (55 days) retained the

majority of the subjects in the reference pool without diminishing

the ability to identify their drinking patterns.

Number of neighbors, k
To identify the optimal number of neighbors to be included

in imputation, we varied the number of neighbors k from 1 to 10.

Figure 4 shows the distribution of root mean square errors

(RMSE) for each k for drinking and non-drinking segments

separately. For the prediction of nondrinking segments, k =

1 provided the lowest RMSE (panel a) and using k > 1

(multiple neighbors) provided lower RMSE for the prediction

of drinking segments. The mean RMSE value in the drinking

segments decreased as the value of k is increased, while the

increase in RMSE for non-drinking segments after inclusion of

more than 1 neighbors (k > 1) was very small, given the mean

RMSE in these segments are very small to begin with. We

additionally considered the classification accuracy (Figure 4B)

and we concluded that k = 5 provided reasonable accuracy for the

imputation of both drinking and nondrinking days. The

classification accuracy in non-drinking segment is highest

when k = 1, while the accuracy in drinking segments

increased when more than one neighbor is included.

Classification accuracy for non-drinking segments decreased

as the number of neighbors increased (Figure 4B).

Considering both the RMSE values and classification accuracy

in drinking and non-drinking segments, we selected 5 neighbors

for the imputation.

Imputation accuracy using k = 5
We found the k-NN algorithm made exact predictions of

drinking status for 76% drinking segments in the site combined

analysis. The algorithm predicted nondrinking status (drinking

segment or nondrinking segment) accurately in 74% and 58% of

the deleted segments in South Africa and Northern Plains

respectively (data not shown). We then examined the absolute

difference between the actual and predicted values for non-

drinking segments (Supplementary Figure S1). Using K = 5,

the algorithm predicted nondrinking segments within +/−

1 drinks, for 78.6% of deleted segments in South Africa and

67.6% in the Northern Plains. Notably, in segments where the

prediction was not exact, the difference between the predicted

and actual values was minimal in terms of the numbers of drinks

per drinking segment.

Average drinking after imputation

Supplementary Figure S2 shows the mean number of drinks

per person by trimester before and after imputation. Following

imputation, the mean number of drinks in South Africa increased

by an average of 2 drinks in first trimester, while the increase for

the Northern Plains sites was just below 1 drink in first trimester.

Following imputation, the magnitude of increase in mean drinks

in South Africa was higher than that in Northern Plains. The

Northern Plains had fewer missing data than the South African

site. In addition, the proportion of drinkers and drinking volume

was lower in the Northern Plains site. Consequently, although

many individual drinking values were changed, imputation had a

small effect on the average drinking values in Northern

Plains sites.

Discussion

The objective of this article is to illustrate the application of a

machine learning algorithm to impute missing daily alcohol

consumption data in a prospective study among pregnant

women. When pregnant women were asked about alcohol

consumption during their prenatal visits, a variable amount of

missing data was generated as a consequence of the Timeline

follow back data collection method and there were more missing

data among recent drinkers. We implemented an extension of a

k-NN algorithm which accounted for the absence of a “typical/

classic” reference group, i.e., training data set with no missing

days. To our knowledge, the present report is the first to describe

this method to impute missing alcohol consumption data in a

longitudinal study among pregnant women. Validation of our

approach showed high agreement between actual and predicted

drinking values.

There is a paucity of studies addressing the potential bias

introduced by missing data as well as a lack of methodological

FIGURE 3
Average number of complete segments without missing data
(y-axis) for each segment length (x-axis) are shown. A segment
size of approximately 2months (55 days) retains themajority of the
subjects in the reference pool without reducing the ability to
identify their drinking patterns.
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FIGURE 4
(A): Distribution of RMSE in drinking and nondrinking segments for k = 1 to 10. The mean RMSE value in the drinking segments decreased (blue
line) as the value of k is increased andmean RMSE after k = 5 did not decrease substantially. Given the overall RMSE in non-drinking segments (green
line) are small, increase in RMSE after inclusion of more than 1 neighbors (K > 1) was very small. (B): Classification accuracy for k = 1, 5, and 10. This
confusionmatrix shows the proportion of participants classified as drinkers or nondrinkers following imputation after randomly deleting data for
5–15 consecutive days from the first trimester. While the classification accuracy in non-drinking segment is highest when k = 1, the accuracy in
drinking segments increased when more than one neighbor is included.
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tool to impute missing data in alcohol and drug use research [21].

Published work has not yet reported the performance of any

machine learning method for imputation of missing alcohol data.

In a simulated dataset, Hallgren et al. compared methods of

imputation including complete case analysis, last observation

carried forward, the worst-case scenario of missing equals any

drinking or heavy drinking, multiple imputation (MI), full

information maximum likelihood (FIML) and concluded that

MI and FIML yielded less biased estimates [22, 23]. A recent

study by Grittner et al. also found MI produced least bias based

on their work in a longitudinal study in Denmark with five

alcohol measurements over a period of 5 years [24]. However, all

methods in the study including the MI produced an

underestimate of the actual drinking level. In addition, MI

models are originally recommended for imputation of a single

value per subject [25]. To impute irregularly spaced missing

longitudinal data as in PASS, complex extensions of MI would

be needed [26].

There are several advantages with using a non-parametric

algorithm such as the k-NN algorithm for imputation of missing

data. The majority of standard software packages rely on the

assumption of normal distribution of multivariate data, therefore

imputation of repeated longitudinal data in most software

options is challenging [26]. In the PASS dataset, alcohol data

were collected at the daily level resulting in a high total volume of

both data per participant and associated missing data. Alcohol

consumption in pregnancy is highly skewed with the majority of

the drinking concentrated in the first trimester. We observed

similar pattern in our data that there was also a gradually

decreasing drinking pattern among many study subjects. In

such scenarios, a nonparametric method such as k-NN has the

advantage of not making a distributional assumption.

The sample size required to achieve a reliable performance of

k-NN imputation depends on the variability of the data being

imputed. Specifically, the higher the variability in the sample, the

greater the number of observations needed to derive making

inference from that data. The choice of number of neighbors (k)

depends on the nature of the problem under investigation, the

available data as well as downstream analyses goals. On average, a

higher number of neighbors results in a greater prediction accuracy

but presents the limitation of standard deviations to be significantly

inflated [27]. In most scenarios, the use of a smaller k is a good

compromise between performance and preservation of original

distribution of the data. In fact, higher number of neighbors fails

the purpose of detecting the most appropriate observations like the

one under consideration. In addition, computational load in terms

of neighbor searching and storing the training set must be taken into

consideration [28]. While it is not possible to provide a priori

indication on the optimal number of neighbors for a given dataset

without conducting a sensitivity analysis, in the context of our work

we found k = 5 as a reasonable trade-off between RMSE for drinking

and non-drinking segments. Similar values of k were also reported in

prior studies [29, 30].

To evaluate imputation performance, we used a confusion

matrix showing the imputation accuracy in the binary drinker

and non-drinker classification (Figure 4: Panel b) and mean

absolute difference between the predicted and actual daily

drinking values with their confidence intervals (Figure 5). Our

choice of imputation metric is dictated by the type of data to be

imputed and our downstream analysis goal. The imputed data we

derived was used for such cluster analyses identify distinct group

of participants with similar drinking patterns considering the

timing and quantity of the drinks consumed [31]. While our

validation data shows that k-NN can impute missing drinking

data with high accuracy, the algorithm cannot overcome bias

introduced in the data when participants report drinking days as

non-drinking days.

The k-NN algorithm is increasingly used to impute missing data

in research with high volume data such as genetics and

metabolomics studies [32, 33]. In several recent reports the k-NN

algorithm was shown to produce the smallest imputation error

compared to methods such as mean and median imputation,

Bayesian linear regression, K-Means, K-Medoids clustering

algorithms [34, 35]. However, some studies reported that simpler

methods such as mean or median replacement were as adequate as

methods like k-NN when imputation was followed by clustering of

genetic data [36]. On the other hand, some have reported slightly

better performance of random forest over k-NN to impute

metabolomics data [37]. Another study noted improvement of

performance of k-NN when additional information such as SES

and demographic data were included in the prediction model [38].

We have used cosine distance to measure the similarity in the

drinking patterns of two subjects. Chomboon et al evaluated

11 distance measures which showed that several other distance

measures perform adequately [39]. Future studies could evaluate

performance of multiple distance measures in imputing alcohol

data. The validity and accuracy of imputation will likely vary with

the data type, data structure, mechanism of missingness, amount of

missing data and the choice of downstream analyses. Therefore,

future studies are needed to evaluate the performance of different

machine learning algorithms to impute alcohol consumption data.

In this paper, we provide a comprehensive description of

imputation of prenatal alcohol data using k-NN algorithm with

high accuracy. Data collection methods like Timeline follow back

[40] and the food frequency questionnaires [41] collect extensive

longitudinal consumption data but they are prone to informative

missing data. The methodologic details presented in this paper

are of high relevance to various research areas including

substance use and nutrition research that suffer from missing

data in longitudinal studies.

Short summary

Missing data are a source of bias in many epidemiologic studies.

This is problematic in alcohol research, where data missingness is
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linked to drinking behavior. The Timeline Followback Method

(TLFB) for assessment of alcohol consumption, where

participants report drinking on their last known drinking day

and for the 30 days prior, is deemed the best self-report system.

However, TLFB method, by design, generates a variable amount of

missing data per participant. In this paper, we describe a method to

impute the drinking values on missing days using a machine

learning algorithm called k-nearest neighbor (k-NN). k-NN

imputes missing values using pattern recognition without any

distributional assumption about the underlying data. This

algorithm is particularly suitable for imputation of prenatal

drinking data as drinking during pregnancy follows specific

patterns depending on pre-pregnancy drinking status and the

length of pregnancy. The k-NN algorithm has been used in the

imputation ofmissing data in several research areas in the healthcare

field, including genetics and metabolomics studies. Using data from

a prospective cohort study among 11083 pregnant women from the

United States and South Africa, we demonstrate that the k-NN

algorithm can be used to impute missing alcohol data during

pregnancy with high accuracy.
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FIGURE 5
Distribution of difference between predicted and actual values by study site are shown. The differences and their 95% confidence intervals were
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prediction (difference = 0) is higher for South African data compared to data from the US. Notably, the in segments where the prediction was not
exact the difference between the predicted and actual values were minimal in terms of the numbers of drinks per drinking segment.
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SUPPLEMENTARY FIGURE 1
The distribution of missing data by study site is shown. Northern Plains
sites had fewer missing data, with over 50% of the participants having 30
or fewer days of missing data.

SUPPLEMENTARY FIGURE 2
Average drinks per trimester before and after imputation, by study sites
and combined. Following imputation, the mean number of drinks in
South Africa increased by an average of 2 drinks in first trimester, while
the increase for the Northern Plains sites was just below 1 drink in
first trimester.

References

1. Trius-Soler M, Praticò G, Gürdeniz G, Garcia-Aloy M, Canali R, Fausta N, et al.
Biomarkers of moderate alcohol intake and alcoholic beverages: a systematic literature
review. Genes Nutr (2023) 18(1):7. doi:10.1186/s12263-023-00726-1

2. Häkkinen M, Arponen A, Jylhä A, Sulin K, Gunnar T. Phosphatidylethanol is a
promising tool for screening alcohol consumption during pregnancy. Clin Exp Res
(2024) 48(10):1892–7. doi:10.1111/acer.15418

3. Howlett H, Abernethy S, Brown NW, Rankin J, Gray WK. How strong is the
evidence for using blood biomarkers alone to screen for alcohol consumption
during pregnancy? A systematic review. Eur J Obstet Gynecol Reprod Biol (2017)
213:45–52. doi:10.1016/j.ejogrb.2017.04.005

4. Dawson DA. Methodological issues in measuring alcohol use. Alcohol Res
Health (2003) 27(1):18–29.

5. Feunekes GI, van ’t Veer P, van Staveren WA, Kok FJ. Alcohol intake
assessment: the sober facts. Am J Epidemiol (1999) 150(1):105–12. doi:10.1093/
oxfordjournals.aje.a009909

6. Buu A, Yang S, Li R, ZimmermanMA, Cunningham RM,Walton MA. Examining
measurement reactivity in daily diary data on substance use: results from a randomized
experiment. Addict Behav (2020) 102:106198. doi:10.1016/j.addbeh.2019.106198

7. McQuire C, Paranjothy S, Hurt L, Mann M, Farewell D, Kemp A. Objective
measures of prenatal alcohol exposure: a systematic review. Pediatrics (2016)
138(3):e20160517. doi:10.1542/peds.2016-0517

8. O’Keeffe LM, Kearney PM, McCarthy FP, Khashan AS, Greene RA, North RA,
et al. Prevalence and predictors of alcohol use during pregnancy: findings from
international multicentre cohort studies. BMJ Open (2015) 5(7):e006323. doi:10.
1136/bmjopen-2014-006323

9. Rubin D. Inference and missing data. Biometrika (1976) 63(3):581–92. doi:10.
1093/biomet/63.3.581

10. Simkhada B, Teijlingen ER, Porter M, Simkhada P. Factors affecting the
utilization of antenatal care in developing countries: systematic review of the
literature. J Adv Nurs (2008) 61(3):244–60. doi:10.1111/j.1365-2648.2007.04532.x

Advances in Drug and Alcohol Research Published by Frontiers10

Sania et al. 10.3389/adar.2024.13449

https://www.frontierspartnerships.org/articles/10.3389/adar.2024.13449/full#supplementary-material
https://www.frontierspartnerships.org/articles/10.3389/adar.2024.13449/full#supplementary-material
https://doi.org/10.1186/s12263-023-00726-1
https://doi.org/10.1111/acer.15418
https://doi.org/10.1016/j.ejogrb.2017.04.005
https://doi.org/10.1093/oxfordjournals.aje.a009909
https://doi.org/10.1093/oxfordjournals.aje.a009909
https://doi.org/10.1016/j.addbeh.2019.106198
https://doi.org/10.1542/peds.2016-0517
https://doi.org/10.1136/bmjopen-2014-006323
https://doi.org/10.1136/bmjopen-2014-006323
https://doi.org/10.1093/biomet/63.3.581
https://doi.org/10.1093/biomet/63.3.581
https://doi.org/10.1111/j.1365-2648.2007.04532.x
https://doi.org/10.3389/adar.2024.13449


11. Skagerstrom J, Chang G, Nilsen P. Predictors of drinking during pregnancy: a
systematic review. J Womens Health (Larchmt) (2011) 20(6):901–13. doi:10.1089/
jwh.2010.2216

12. Dukes KA, Burd L, Elliott AJ, Fifer WP, Folkerth RD, Hankins GD, et al. The
safe passage study: design, methods, recruitment, and follow-up approach. Paediatr
Perinat Epidemiol (2014) 28(5):455–65. doi:10.1111/ppe.12136

13. Dukes K, Tripp T, Petersen J, Robinson F, Odendaal H, Elliott A, et al. A
modified Timeline Followback assessment to capture alcohol exposure in pregnant
women: application in the Safe Passage Study. Alcohol (2017) 62:17–27. doi:10.
1016/j.alcohol.2017.02.174

14. Cover T, Hart P. Nearest neighbor pattern classification. IEEE Trans Inf Theor
(2006) 13(1):21–7. doi:10.1109/tit.1967.1053964

15. Ethen MK, Ramadhani TA, Scheuerle AE, Canfield MA, Wyszynski DF,
Druschel CM, et al. Alcohol consumption by women before and during pregnancy.
Matern child Health J (2009) 13(2):274–85. doi:10.1007/s10995-008-0328-2

16. Muggli E, O’Leary C, Donath S, Orsini F, Forster D, Anderson PJ, et al. “Did
you ever drink more?” A detailed description of pregnant women’s drinking
patterns. BMC Public Health (2016) 16(1):683. doi:10.1186/s12889-016-3354-9

17. Elliott P, Hawthorne G. Imputing missing repeated measures data: how should we
proceed? Aust N Z J Psychiatry (2005) 39(7):575–82. doi:10.1080/j.1440-1614.2005.01629.x

18. Waljee AK, Mukherjee A, Singal AG, Zhang Y, Warren J, Balis U, et al.
Comparison of imputation methods for missing laboratory data in medicine. BMJ
Open (2013) 3(8):e002847. doi:10.1136/bmjopen-2013-002847

19. Brick J. Standardization of alcohol calculations in research. Alcohol Clin Exp
Res (2006) 30(8):1276–87. doi:10.1111/j.1530-0277.2006.00155.x

20. Room R, Makela P, Benegal V, Greenfield TK, Hettige S, Tumwesigye NM,
et al. Times to drink: cross-cultural variations in drinking in the rhythm of the week.
Int J Public Health (2012) 57(1):107–17. doi:10.1007/s00038-011-0259-3

21. Grigsby TJ, McLawhorn J. Missing data techniques and the statistical conclusion
validity of survey-based alcohol and drug use research studies: a review and comment on
reproducibility. J Drug Issues (2018) 49(1):44–56. doi:10.1177/0022042618795878

22. Hallgren KA, Witkiewitz K. Missing data in alcohol clinical trials: a
comparison of methods. Alcohol Clin Exp Res (2013) 37(12):2152–60. doi:10.
1111/acer.12205

23. Hallgren KA, Witkiewitz K, Kranzler HR, Falk DE, Litten RZ, O’Malley SS,
et al. Missing data in alcohol clinical trials with binary outcomes. Alcohol Clin Exp
Res (2016) 40(7):1548–57. doi:10.1111/acer.13106

24. Grittner U, Gmel G, Ripatti S, Bloomfield K, Wicki M. Missing value
imputation in longitudinal measures of alcohol consumption. Int J Methods
Psychiatr Res (2011) 20(1):50–61. doi:10.1002/mpr.330

25. Rubin D.Multiple imputation for Nonresponse in surveys. New York:Wiley (1987).

26. Huque MH, Carlin JB, Simpson JA, Lee KJ. A comparison of multiple
imputation methods for missing data in longitudinal studies. BMC Med Res
Methodol (2018) 18(1):168. doi:10.1186/s12874-018-0615-6

27. Beretta L, SantanielloA.Nearest neighbor imputation algorithms: a critical evaluation.
BMC Med Inform Decis Making (2016) 16(3):74. doi:10.1186/s12911-016-0318-z

28. Hastie T, Tibshirani R, Friedman JH. The elements of statistical learning: data
mining, inference, and prediction. Springer (2009).

29. Jin L, Bi Y, Hu C, Qu J, Shen S, Wang X, et al. A comparative study of
evaluating missing value imputation methods in label-free proteomics. Scientific
Rep (2021) 11(1):1760. doi:10.1038/s41598-021-81279-4

30. Xu X, Xia L, Zhang Q,Wu S, WuM, Liu H. The ability of different imputation
methods for missing values in mental measurement questionnaires. BMC Med Res
Methodol (2020) 20(1):42. doi:10.1186/s12874-020-00932-0

31. Pini N, Myers MM, Elliott AJ, Shuffrey LC, Lucchini M, Sania A, et al. Cluster
analysis of alcohol consumption during pregnancy in the safe passage study. Annu
Int Conf IEEE Eng Med Biol Soc (2019) 2019:1338–41. doi:10.1109/EMBC.2019.
8857428

32. Liao SG, Lin Y, Kang DD, Chandra D, Bon J, Kaminski N, et al. Missing value
imputation in high-dimensional phenomic data: imputable or not, and how? BMC
Bioinformatics (2014) 15:346. doi:10.1186/s12859-014-0346-6

33. Shah JS, Rai SN, DeFilippis AP, Hill BG, Bhatnagar A, Brock GN. Distribution
based nearest neighbor imputation for truncated high dimensional data with
applications to pre-clinical and clinical metabolomics studies. BMC
Bioinformatics (2017) 18(1):114. doi:10.1186/s12859-017-1547-6

34. Jadhav A, Pramod D, Ramanathan K. Comparison of performance of data
imputation methods for numeric dataset. Appl Artif Intelligence (2019) 33(10):
913–33. doi:10.1080/08839514.2019.1637138

35. Mahboob T, Ijaz A, Shahzad A, KalsoomM, editors. Handling missing values
in chronic kidney disease datasets using KNN, K-means and K-medoids algorithms.
2018 12th international conference on open source systems and technologies
(ICOSST) (2018).

36. de Souto MC, Jaskowiak PA, Costa IG. Impact of missing data imputation
methods on gene expression clustering and classification. BMC Bioinformatics
(2015) 16:64. doi:10.1186/s12859-015-0494-3

37. Kokla M, Virtanen J, Kolehmainen M, Paananen J, Hanhineva K. Random
forest-based imputation outperforms other methods for imputing LC-MS
metabolomics data: a comparative study. BMC Bioinformatics (2019) 20(1):492.
doi:10.1186/s12859-019-3110-0

38. Schwender H. Imputingmissing genotypes with weighted k nearest neighbors.
J Toxicol Environ Health A (2012) 75(8-10):438–46. doi:10.1080/15287394.2012.
674910

39. Chomboon K, Chujai P, Teerarassammee P, Kerdprasop K, Kerdprasop N. An
empirical study of distance metrics for k-nearest neighbor algorithm. 2015.

40. Merrill JE, Fan P, Wray TB, Miranda R, Jr. Assessment of alcohol use and
consequences: comparison of data collected via timeline Followback interview and
daily reports. J Stud alcohol Drugs (2020) 81(2):212–9. doi:10.15288/jsad.2020.
81.212

41. Parr CL, Hjartåker A, Scheel I, Lund E, Laake P, Veierød MB. Comparing
methods for handling missing values in food-frequency questionnaires and
proposing k nearest neighbours imputation: effects on dietary intake in the
Norwegian Women and Cancer study (NOWAC). Public Health Nutr (2008)
11(4):361–70. doi:10.1017/S1368980007000365

42. Pini N. Physiology based machine learning and data Analytics for perinatal
monitoring. Milan: Milan Politecnico di Milano (2020).

43. Sania A, Pini N, Nelson M, Myers M, Shuffrey L, Lucchini M, et al. The K
nearest neighbor algorithm for imputation of missing longitudinal prenatal alcohol
data. SSRN Electron J (2022). doi:10.2139/ssrn.4065215

Advances in Drug and Alcohol Research Published by Frontiers11

Sania et al. 10.3389/adar.2024.13449

https://doi.org/10.1089/jwh.2010.2216
https://doi.org/10.1089/jwh.2010.2216
https://doi.org/10.1111/ppe.12136
https://doi.org/10.1016/j.alcohol.2017.02.174
https://doi.org/10.1016/j.alcohol.2017.02.174
https://doi.org/10.1109/tit.1967.1053964
https://doi.org/10.1007/s10995-008-0328-2
https://doi.org/10.1186/s12889-016-3354-9
https://doi.org/10.1080/j.1440-1614.2005.01629.x
https://doi.org/10.1136/bmjopen-2013-002847
https://doi.org/10.1111/j.1530-0277.2006.00155.x
https://doi.org/10.1007/s00038-011-0259-3
https://doi.org/10.1177/0022042618795878
https://doi.org/10.1111/acer.12205
https://doi.org/10.1111/acer.12205
https://doi.org/10.1111/acer.13106
https://doi.org/10.1002/mpr.330
https://doi.org/10.1186/s12874-018-0615-6
https://doi.org/10.1186/s12911-016-0318-z
https://doi.org/10.1038/s41598-021-81279-4
https://doi.org/10.1186/s12874-020-00932-0
https://doi.org/10.1109/EMBC.2019.8857428
https://doi.org/10.1109/EMBC.2019.8857428
https://doi.org/10.1186/s12859-014-0346-6
https://doi.org/10.1186/s12859-017-1547-6
https://doi.org/10.1080/08839514.2019.1637138
https://doi.org/10.1186/s12859-015-0494-3
https://doi.org/10.1186/s12859-019-3110-0
https://doi.org/10.1080/15287394.2012.674910
https://doi.org/10.1080/15287394.2012.674910
https://doi.org/10.15288/jsad.2020.81.212
https://doi.org/10.15288/jsad.2020.81.212
https://doi.org/10.1017/S1368980007000365
https://doi.org/10.2139/ssrn.4065215
https://doi.org/10.3389/adar.2024.13449

	K-nearest neighbor algorithm for imputing missing longitudinal prenatal alcohol data
	Introduction
	Methods
	The safe passage study
	Ethics
	Alcohol data collection method and missing data
	The k-NN algorithm
	Data preparation
	Assessment of performance


	Results
	Description of missing data
	Application of k-NN
	Length of reference segment
	Number of neighbors, k
	Imputation accuracy using k = 5

	Average drinking after imputation

	Discussion
	Short summary

	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Author disclaimer
	Supplementary material
	References


