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In this article, the progress of frequently used advanced numerical methods is presented.
According to the discretisationmanner andmanipulation dimensionality, thesemethods can be
classified into four categories: volume-, surface-, line-, and point-operations–based methods.
The volume-operation–based methods described in this article include the finite element
method and element differential method; the surface-operation–based methods consist of
the boundary element method and finite volume method; the line-operation–based methods
cover the finite difference method and finite line method; and the point-operation–based
methodsmainly include themesh free method and free element method. Thesemethods have
their own distinctive advantages in some specific disciplines. For example, the finite element
method is the dominant method in solid mechanics, the finite volume method is extensively
used in fluidmechanics, the boundary elementmethod ismore accurate and easier to use than
other methods in fracture mechanics and infinite media, the mesh free method is more flexible
for simulating varying and distorted geometries, and the newly developed free element and finite
line methods are suitable for solving multi-physics coupling problems. This article provides a
detailed conceptual description and typical applications of these promising methods, focusing
on developments in recent years.
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INTRODUCTION

Most engineering problems can be represented by a set of second-order partial differential equations (PDEs)
with relevant boundary conditions (B.C.), named the boundary value problem (BVP) of PDEs [1, 2]. For
example, in thermal engineering, the diffusion-convection problem usually has the following BVP [3]:

PDE:
∂
∂xi

λij x( ) ∂T x( )
∂xj

( ) + ∂ρcvi x( )T x( )
∂xi

+ Q x( ) � 0, x ∈ Ω (1)

B.C.:

T x( ) � �T x( ), x ∈ Γ1

−λij T, x( ) ∂T x( )
∂xj

ni x( ) � �q x( ), x ∈ Γ2

−λij T, x( ) ∂T x( )
∂xj

ni x( ) � h x( ) T x( ) − T∞( ), x ∈ Γ3

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
(2)

where T is the temperature, λij the conductivity tensor, Q the heat source, vi the velocity, �q the
specified heat flux, and h the heat transfer coefficient.
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For solid mechanics problems, the BVP can be expressed as
follows [4].

PDE:
∂
∂xl

Dijkl x( ) ∂uk x( )
∂xj

( ) + bi x( ) � 0, x ∈ Ω (3)

B.C.:

ui x( ) � �ui, x ∈ Γu

Dijkl x( )nj x( ) ∂uk x( )
∂xl

� �ti x( ), x ∈ Γt

⎧⎪⎪⎨⎪⎪⎩ (4)

where uk is the displacement component, Dijkl the constitutive
tensor, bi the body force, and �ui and �ti are the specified values of
displacement and traction, respectively.

To solve the BVPs presented above, numerous numerical
methods have been developed [5], which can be globally
divided into four categories according to geometry
discretisation and operation dimensions: volume-
operation–based methods (including the finite element
method [6, 7], finite block method [8], element differential
method [4], etc.), surface-operation–based methods (including
the boundary element method [9, 10], finite volume method
[11], etc.), line-operation–based methods (including the finite
difference method [12], finite line method [13], etc.), and point-
operation–based methods (including the mesh free method
[14], free element method [15], fundamental solution
method [16], etc.). The classification of numerical methods
into four categories as described above can help to deeply
understand the innate characteristics of the various
numerical methods. In these four types of numerical
methods, most have two kinds of algorithms, the weak-form
and strong-form algorithms [5]. As described in the article, the
weak-form algorithms can be established by the weighted
residual formulation, which requires integration over
elements or divided sub-domains. Strong-form algorithms
are based on the point collocation technique, which usually
does not require integration computation. These four types of
numerical methods will be described in the following sections.

VOLUME-OPERATION–BASED METHODS
(VOBM)

Volume-operation–based methods refer to the methods
performing the operations of PDEs based on a discretisation
model that has the same size as the problem itself, i.e., 2 for
two-dimensional (2D) and 3 for three-dimensional (3D)
problems. The most commonly used VOBM is the finite
element method (FEM), which is based on volume
discretisation for 3D problems and plane region
discretisation for 2D problems, respectively. In FEMs, the
Galerkin FEM is the dominant method [6, 17], which
establishes the solution scheme by using a variational
principle in most publications. Nevertheless, as described in
the article, all the weak-form algorithms, including the
Galerkin FEM, can be derived by the weighted residual
technique in a unified way, which will be described in the
following.

Weighted Residual Formulation for Solving
BVPs of PDEs
In the following, we take solid mechanics as a demonstration
example for setting up the weighted residual formulation. To do
this, multiplying the PDE (3) on both sides by a weight functionw
and integrating it through the computational domainΩ, it follows
that

∫
Ω
w x( ) ∂

∂xl
Dijkl x( ) ∂uk x( )

∂xj
( )dΩ + ∫

Ω
w x( )bi x( )dΩ � 0 (5)

Taking integration by parts and applying Gauss’ divergence
theorem to the first domain integral of Eq. 5, the above equation
becomes:

∫
Ω

∂w x( )
∂xl

Dijkl x( ) ∂uk x( )
∂xj

dΩ � ∫
Γ
w x( )ti x( )dΓ

+ ∫
Ω
w x( )bi x( )dΩ (6)

where ti is the traction component on the boundary Γ of the
domain Ω, which has the relationship with the displacement
gradient shown in Eq. 4.

In Eq. 6, the basic physical variable uk is mainly included in the
volume integral of the left-hand side; therefore, it is called the
volume-based weighted residual formulation. Taking integration
by parts to the first domain integral of Eq. 6 and applying Gauss’
divergence theorem again, the following equation can be
obtained:

∫
Γ

∂w
∂xl

DijklnjukdΓ − ∫
Ω

∂
∂xj

Dijkl
∂w
∂xl

( )ukdΩ

� ∫
Γ
wtidΓ + ∫

Ω
wbidΩ (7)

In Eq. 7, the basic physical variable uk is included in both the
surface and volume integrals of the left-hand side; therefore, it is
called the surface-volume–based weighted residual formulation.

It is noted that Eqs 6, 7 are valid for any sized closed domainΩ,
and from this feature various weak-form solution algorithms can
be generated, such as FEMs and BEMs, by taking different kinds of
the weigh function w in an element or in the whole domain.

FIGURE 1 | Elements of a 2D FEM model.
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Weak-Form Finite Element Method (WFEM)
In FEM, the computational domain is discretized into a series of
elements [6, 7] with a certain number of nodes. Usually, the nodes
on the element interfaces should be linked point-to-point, as
shown in Figure 1, for a 2D computation FEM model. Over each
element, the displacement uk is approximated using its nodal
values uαk of the element by the shape function Nα as follows:

uk � Nαu
α
k (8)

where the repeated index α represents summation through all
element nodes.

Galerkin Finite Element Method (GFEM)
In the Galerkin FEM, the weight functionw in Eq. 6 is taken as the
shape functionNc, i.e., w � Nc, with the subscript c representing
the element nodal number corresponding to the collocation point
c. Thus, for an element e with a domain Ωe bounded by the
boundary Γe, Eq. 6 results in the following element equation:

∫
Ωe

∂Nc

∂xl
Dijkl

∂Nα

∂xj
dΩ uα

k︸









︷︷









︸
Kec

� ∫
Γe
Ncti x( )dΓ︸




︷︷




︸

Ftec

+∫
Ωe

NcbidΩ︸



︷︷



︸
Fb
ec

(9)

where the left-hand side is related to the so-called element
stiffness term and the right-hand side is the total equivalent
load of element e.

We assume that the problem is discretized as N computational
points, and each point is shared by a number of elements. Thus,
for a point n, assembling all related elements’ contributions from
Eq. 9, it follows that

∑En

encn�1
Kencn � ∑En

encn�1
Ft
encn

+ ∑En

encn�1
Fb
encn

(10)

where En is the number of elements connected to point n and encn
represents the element e connected to point n at the element node
c, which corresponds to point n. It is noted that for one element
among all element nodes, only one node corresponds to point n.

In Eq. 10, the equivalent traction load, the second term in Eq.
10, has different values for interface and out boundary points, i.e.,

∑En

encn�1
Ft
encn

� 0,when n is at interface nodes

∑En

encn�1
Ft
encn

� ∑En

encn�1
∫Γen

NcntidΓ,when n is at out boundary nodes

(11)
where Γen is the out boundary of element e including point n and
Ncn is the shape function of the element node c corresponding to
point n. The first equation in (11) comes from the fact that the
equivalent traction loads from opposite surfaces of the related
elements including the interface point are counteracted by one
another, and the second equation in (11) relies on the
characteristics of the shape function Ncn, where its value is
zero on the surfaces excluding node cn.

When n in Eq. 10 goes through all the N points, the following
system of equations can be produced in the matrix form:

Ku � F (12)
where K is the global stiffness matrix, u the displacement vector,
and F the total equivalent load vector.

The Galerkin FEM results in a symmetric and a banded sparse
coefficient matrix K in the system of equations; this makes the
method very efficient and stable. In particular, when some
modern techniques are integrated into FEM, such as the
control volume finite-element method [18, 19], isogemetric
technique [20, 21], and gradient smoothing technique [22, 23],
quite complicated engineering problems can be efficiently solved.
Moreover, in recent years, a number of newly proposed FEMs
have been developed, as described below.

Surface-Volume–Based Finite Element Method
(SVFEM)
The Galerkin FEM presented above is derived based on the
volume-based weighted residual formulation (6). In the article,
another type of FEM can be generated based on the surface-
volume–based weighted residual formulation (7), which has the
same element discretisation as Figure 1. To do this, as done
above, by applying Eq. 7 to an element domain, say element e,
and by using w � Nc and substituting Eq. 8 into Eq. 7, it follows
that

∫
Γe

∂Nc

∂xl
DijklnjNαdΓuα

k︸








︷︷








︸
KΓ
ec

−∫
Ωe

∂
∂xj

Dijkl
∂Nc

∂xl
( )NαdΩ uα

k︸











︷︷











︸
KΩ
ec

� ∫
Γe
Ncti x( )dΓ︸




︷︷




︸

Ftec

+∫
Ωe

NcbidΩ︸



︷︷



︸
Fbec

(13)

Similar to Eq. 10, for the computational point n, assembling all
related elements’ contributions from Eq. 13, the following
equation can be formed:

∑En

encn�1
KΓ

encn
− ∑En

encn�1
KΩ

encn
� ∑En

encn�1
Ft
encn

+ ∑En

encn�1
Fb
encn

(14)

The right-hand side of Eq. 14 is exactly the same as that of the
standard Galerkin FEM, as shown in Eq. 11.

When n in Eq. 14 goes through all theN discretized points, the
following system of equations can be produced in the matrix
form:

~Ku � F (15)
In the above equation, ~K is also called as the global stiffness

matrix and is band-sparse, but it is not symmetric anymore; u and
F are the same as in Eq. 12.

Although ~K in SVFEM is not symmetric and this could reduce
the solution efficiency to a certain level, Eq. 15 would give more
accurate results than Eq. 12 since more mathematical treatments
have been performed in Eq. 13 than in Eq. 9.

The SVFEM presented above is included in the new research
work by the article’s authors. Some results have not yet been
published in the literature; however, and they will be put in the
public domain in the near future.
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Strong-Form Volume-Operation–Based
Methods
The above-described Galerkin FEM and SVFEM are weak-form
algorithms, which require integration over elements to form the
system of equations. In recent years, new types of strong-form
FEM-like volume-operation–based methods have been proposed,
which belong to a type of element collocation method and do not
need integration computations. However, the stability of the
strong-form algorithms is usually not as good as the weak-
form algorithms, although for general problems these
algorithms can still give satisfactory results.

Wen and Li et al. [8, 24] proposed the finite block method
(FBM) in 2014, in which isoparametric element-like blocks are
used to compute the first-order partial derivative of physical
variables with respect to the global coordinates. FBM has the
advantage of simple coding, and since element-like blocks are
used, the stability of the solution is usually good. On the other
hand, since all nodal values of physical variables over each block
are independently inserted into the system of equations by
introducing a consistent condition of physical variables and an
equilibrium condition of the physical variable gradient in the
system, there are more unknowns in the formed final system of
equations than other frequently used numerical methods in the
case of the same number of total nodes. In view of this issue, as
few blocks as possible should be used when solving a problem
using FBM to ensure that the final system of equations is not so
large.

In the same period, Fantuzzi et al. [25, 26] proposed another
type of strong-form FEM (SFEM), in which a set of formulations
computing the first- and second-order spatial partial derivatives
are derived for 2D problems and are used to collocate the
governing PDEs in solid mechanics. In SFEM, the continuity
condition among elements is determined by the compatibility,
and a mapping technique is used to transform both the
governing differential equations and the compatibility
conditions between two adjacent sub-domains into the
regular master element in the computational space. As in
FBM, the treatment of the compatibility and equilibrium
conditions between elements is still complicated; this makes
SFEM not as flexible as GFEM when solving complicated
engineering problems.

In 2017, Gao et al. [27] proposed a new type of strong-form
FEM, called the Element Differential Method (EDM), for solving
heat conduction problems, and later it was successfully used to
solve solid mechanics [4, 28], electromagnetic [29], and thermo-
mechanical-seepage coupled [30] problems. As in FBM, Lagrange
polynomials are used to construct high-order elements in EDM.
The essential difference between EDM and FBM is that both the
first- and second-order partial derivatives were derived for 2D
and 3D problems in EDM. The following is a brief review
of EDM.

Looking back at Eq. 8 for physical variable interpolation over
an element, the global coordinates can also be expressed by their
nodal values and shape functions, as follows:

xi � Nαx
α
i (16)

Based on Eqs 8, 16, the following expressions can be derived
for the first- and second-order partial derivatives [4, 27]:

∂uk

∂xi
� dcα′

i uα′
k (17)

∂2uk

∂xi∂xj
� dcα″

ij uα″
k (18)

where

dcα′
i � ∂Nα

∂xi
� J[ ]−1ik

∂Nα

∂ξk
(19a)

dcα″
ij � ∂2Nα

∂xi∂xj
� J[ ]−1ik

∂2Nα

∂ξk∂ξ l
+ ∂ J[ ]−1ik

∂ξl
∂Nα

∂ξk
[ ] ∂ξ l

∂xj
(19b)

where [J] � [∂x/∂ξ] is the Jacobian matrix between the global
coordinate x and the local coordinate ξ of the element. The
detailed expressions for each term in Eqs 19a, 19b can be found in
[27, 28].

The main advantage of the strong-form FEMs over weak-form
FEMs is that the derived spatial partial derivatives can be directly
substituted into the problem’s PEDs and B.C. to set up the system
of equations. For example, by using Eqs 17, 18, the PDE and B.C.
for the solid mechanics shown in Eqs 3, 4 can be directly used to
generate the following discretized equations:

dcβ′
l Dijkl x

β′( )dβ′α′
j uα′

k + bi xc( ) � 0, xc ∈ Ωe (20)
ui xc( ) � �ui, x

c ∈ Γu
Dijkl xc( )nj xc( )dcα′

l uα′
k � �ti xc( ), xc ∈ Γt{ (21)

In the above equations, Γu and Γt are the out boundaries of the
problem, over which the displacement and traction boundary
conditions are specified. The big issue in the strong-form FEM is
how to set up the discretized equation when the collocation point
xc is located on the interface ΓI between elements. To solve this
issue, Gao et al. [4, 27] proposed the summation-equilibrium
technique for all related tractions, that is, ∑

e�1,s�1
tesi � 0, to form a

single set of equations at an element interface node, which can be
expressed as

∑Ec

e�1,s�1
De

ijkl xc( )nesj xc( )decα′
l ueα′

k � 0, xc ∈ ΓI (22)

where Ec is the number of all elements connected with the
interface collocation point c. Various numerical examples
[27–31] have proved that the above equation can give correct
results. The important point is that Eq. 22 allows the final system
of equations to have the same size as the conventional FEM,
which is much smaller than those in FBM [8] and SFEM [25].

SURFACE-OPERATION–BASED METHODS

Surface-operation–based numerical methods include the finite
volume method (FVM), boundary element method (BEM), etc.,
which are operated mainly on the surfaces of a control volume or
on the boundary of the considered problem.
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Finite Volume Method (FVM)
The FVM looks like a volume-based method [32–35]. However,
in this article, it is classified into the category of surface-
operation–based methods. This is because its main operation
is over the surfaces of the control volume, rather than on the
volume itself. To see this, let us take the weight function w to be
1 in Eq. 6. This results in the following:

∫
Γ
tidΓ + ∫

Ω
bidΩ � 0 (23)

In FVM, the computational domain is discretized into a series
of control volumes [32]. Applying Eq. 23 to each control volume,
say volume Ωc, and dividing its boundary ∂Ωc into two parts, the
inner boundary ΓIc and outer boundary Γoc, Eq. 23 can be
written as:

∫
ΓIc
Dijklnj

∂uk

∂xl
dΓ + ∫

Γoc
�tidΓ + ∫

Ωc

bidΩ � 0 (24)

where ΓIc ∪ Γoc � ∂Ωc.
Equation 24 is a typical formulation of FVM, from which we

can see that the main computation is over the control surfaces of a
control volume. The key work in FVM is the evaluation of the
physical variable gradient ∂uk/∂xl included in the first control
surface integral of Eq. 24 [36, 37]. In the conventional FVM, the
interface ΓIc is taken as the mid-surface connected by the
collocation point c and around-neighbour points; thus,
∂uk/∂xl at the mid-surface can be easily computed using the
values of uk between c and the neighbour points [38–40].
However, only the linear variation of uk over the operation
surface can be easily achieved. It is difficult to construct a
high-order scheme to compute the value of ∂uk/∂xl on the
operation surface. To overcome this problem, the free element
[15, 31] can be used in FVM analysis.

Free Element-Based FVM (FEFVM)
In [15], the free element method (FrEM) was proposed for
thermal-mechanical analysis. In FrEM, the isoparametric
elements used in FEM are defined at each collocation point, as

shown in Figure 2. The weak-form formulation of FrEM has the
form shown in Eq. 24 [31]; however, the control volume is taken
as the free element, as shown in Figure 2. Generally, for a free
element, some of its operation surfaces are located inside the
domain and some on the outer boundary of the problem, as
shown in Figure 2. For this case, both the inner surface integral
over ΓIc and outer surface integral over Γoc will appear in Eq. 24.

However, when all the surfaces of the free element formed for
the collocation c are located within the problem, as shown in
Figure 3, only the inner surface integral exists.

In this case, Eq. 24 takes the following form:

∫
ΓIc
Dijklnj

∂uk

∂xl
dΓ + ∫

Ωc

bidΩ � 0 (25)

Since high-order free elements can be easily formed in FrEM
[15], a high accuracy of ∂uk/∂xl in FEFVM can be easily achieved.
A set of analytical expressions for computing ∂uk/∂xl over a free
element have been derived in [4]. Although it is easy to set up a
high-order free element, the accuracy of ∂uk/∂xl is not high. This
is because its value is taken on the boundary ofΩc, which is not as
accurate as inside a free element. To overcome this drawback, the
element-shell–strengthened FVM is proposed in the following
section.

Element-Shell Enhanced FVM (ESFVM)
To improve the accuracy of ∂uk/∂xl included in the first
boundary integral of Eq. 24, additional free elements are
formed for each side/surface of the collocation element Ωc,
which form an element ring/shell for 2D/3D control sides/
surfaces, as shown in Figure 4 for a 2D case.

In this strategy, the inner surface integral included in Eq. 24
can be written as follows:

∫
ΓIc
Dijklnj

∂uk

∂xl
dΓ � ∑NIs

s�1
∫

Γs
Dijklnj

∂uk

∂xl
xs( )dΓ xs( ) (26)

whereNIs is the number of inner operation surfaces of the control
volume Ωc, which is 4 in the case shown in Figure 4 and xs

denotes the coordinate of the integration point over a surface s. In

FIGURE 2 | Operation surfaces ΓIc and Γoc formed by the boundary of
the free element built for collocation point c.

FIGURE 3 | Operation surface ΓIc of the free element completely
included in the computational domain.
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ESFVM, the first spatial derivative term included in the right-
hand side of Eq. 26 is evaluated by the free element of the
element-shell including the operation surface under
integration, and thus, using Eq. 17 it follows that

∫
Γs
Dijklnj

∂uk

∂xl
xs( )dΓ xs( ) � ∫

Γs
Dijklnjd

sα′
i xs( )dΓ xs( )uα′

k (27)

where dsα′i is computed using the free element formed for the
surface s.

In ESFVM, since the operation surfaces of Ωc are included in
the additional formed elements, the accuracy of ∂uk/∂xl is higher
than using the same element Ωc built for point c.

Evaluation of the Domain Integral Involved in FVM
When the body force is considered in the computational problem,
the FVM equations inevitably involve the domain integrals, as
shown in Eqs 23–25. Evaluation of the involved domain integrals
is troublesome work. In conventional FVM, for achieving high
efficiency, the domain integral is evaluated by assuming that the
body force is constant throughout the control volume [41]. Thus,
the domain integral can be simply written as

∫
Ωc

bidΩ � �bi Ωc (28)

where �bi is the average value of bi in the control volume Ωc.
Obviously, if bi is sharply changeable inΩc, the above evaluation

gives rise to a large error. To overcome this issue and for a universal
scheme to accurately evaluate the domain integral, the Radial
Integration Method (RIM) [42] can be employed to evaluate the
domain integral in Eq. 28, which can be expressed as

∫
Ωc

bidΩ � ∫
∂Ωc

Fi

rn c, Γ( )
∂r
∂n

dΓ (29)

where ∂Ωc is the boundary of the control volumeΩc, r(c, Γ) is the
distance from the collocation point c to the boundary Γ, n is 1 or
2 for 2D or 3D problem, and

Fi � ∫r c,Γ( )

0
bir

ndr (30)

For most cases, bi is a known function and Eq. 30 can be
analytically integrated. For very complicated bi, Eq. 30 can be
evaluated using Gauss quadrature [42].

The above equations are suitable for any shaped control
volume, regular or irregular, since the integration is over the
boundary of Ωc. In FEFVM and ESFVM, Ωc is the free element
domain formed for the collocation point c and ∂Ωc is the
boundary of the free element. Apart from the high accuracy,
the main advantage of using RIM to evaluate the domain integral
is that only the operation surfaces of the control volume are
needed to evaluate the domain integral, with no need to perform
volume integration over Ωc.

Boundary Element Method (BEM)
In Eq. 7, if the weight function w is taken as the displacement
fundamental solution umi

* [9, 10], i.e., w � umi
*, the following BEM

integral equation can be established:

∫
Γ

∂umi
*

∂xl
DijklnjukdΓ − ∫

Ω

∂
∂xj

Dijkl
∂umi

*

∂xl
( )ukdΩ

� ∫
Γ
umi
* tidΓ + ∫

Ω
umi
* bidΩ (31)

Recalling that the displacement fundamental solution umi
*

satisfies the following equation:

∂
∂xj

Dijkl
∂umi

*

∂xl
( ) + δmkδ p, q( ) � 0 (32)

Equation 31 becomes

um + ∫
Γ
tmk
* ukdΓ � ∫

Γ
umi
* tidΓ + ∫

Ω
umi
* bidΩ (33)

where

tmk
* � Dijklnj

∂umi
*

∂xl
(34)

To evaluate the domain integral appearing in Eq. 33, the
conventional technique is to discretize the domain into internal
cells [9]; however, this eliminates the advantage of BEM where
only the boundary of the problem needs to be discretized into
elements. To overcome this drawback, a transformation
technique is usually employed to transform the domain
integral into an equivalent integral. The most extensively used
transformation technique is the Dual Reciprocity Method [DRM]
[43]. Another technique used is the Radial Integration Method
(RIM) [42], which can give more accurate results than DRM.

Using RIM, the domain integral in Eq. 33 can be expressed as

∫
Ω
umi
* bidΩ � ∫

Γ

Fmi

rn p, q( )
∂r
∂n

dΓ q( ) (35)
where the radial integral is

Fmi � ∫r p,q( )
0

umi
* bir

ndr (36)

where n = 1 for 2D problems and n = 2 for 3D problems. When bi
is a known function, Eqs 35, 36 can give rise to a very accurate

FIGURE 4 | Free elements around the operation surfaces.
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result. On the other hand, for the case where bi is not very
complicated, Eq. 36 can be analytically integrated [42]. However,
when bi is a complicated function, numerical integration should
be performed [44].

LINE-OPERATION–BASED METHODS

Line-operation–based methods include the conventional finite
difference method (FDM) [12] and the recently proposed finite
line method (FLM) [3, 13]. In these methods, the computational
domain is discretized into a series of points and lines formed by
around points are then used to compute the spatial partial
derivatives included in the PDEs, as shown in Figure 5 for a
2D case. FDM constructs the first- and second-order partial
derivatives using a line of points along the derivative
directions. The main drawback of FDM is that if the lines that
define the derivative directions are not orthogonal to one another
in 2D or 3D problems, the accuracy of the cross-partial
derivatives of different directions is usually very poor [45, 46].
This is why FDM cannot simulate irregular geometry problems
well. In contrast, FLM has a much better performance in
overcoming this drawback.

FLM uses a number of lines, named a line-set, to set up the
solution scheme. Usually, at a collocation point, two lines (for 2D
problems) or three lines (for 3D problems) are used to form the
line-set, as shown in Figure 5. Figure 6 shows the high-order
line-sets of an internal collocation point for 2D and 3D problems.

Along a line of a line-set, the coordinates and physical
variables can be expressed as

xi � ∑m
α�1

Lα l( )xα
i ≡ Lα l( )xα

i (37)

uk � ∑m
α�1

Lα l( )uα
k ≡ Lα l( )uα

k (38)

where m is the number of nodes defined along a line of the line-
set, l is the arclength measured from node 1, and Lα is the
Lagrange polynomial:

Lα l( ) � ∏m
β�1,β ≠ α

l − lβ

lα − lβ
, α � 1 ~ m( ) (39)

By differentiating Eqs 37, 38 with respect to l, we can obtain
expressions for computing the first- and second-order partial
derivatives at the collocation point xc, as follows [3, 13]:

∂uk xc( )
∂xi

� dcα′
i uα′

k (40)
∂2uk xc( )
∂xi∂xj

� dcα″
ij uα″

k (41)

where

dcα′
i �∑d

I�1
J[ ]−1iI

∂Lα
I l( )
∂l

∣∣∣∣∣∣∣∣∣
l�l xc( )

(42)

dcα″
ij � dcβ′

j dβ′α′
i (43)

where the repeated indexes represent summation, and d = 2 for
2D problems, d = 3 for 3D problems, and I represents the line
number.

Using Eqs 40, 41, we can easily discretize a PDE and the
related boundary conditions. For example, the PDE for the solid
mechanics shown in Eqs 3, 4 can directly generate a set of
discretized equations which have the same forms as those
shown in Eqs 20, 21.

POINT-OPERATION–BASED METHODS

Point-operation–based methods cover a number of numerical
methods, such as the mesh free method (MFM) [5, 47–50],
fundamental solution method [16], radial basis function
method [51–53], and the newly developed free element
method (FrEM) [15, 31]. In these types of methods, the
computational domain is discretized into a series of points
and solution schemes are established by collocating the
governing PDEs or their integral forms at each collocation
point. In MFM, the partial derivatives at the collocation point
c are derived based on a group of scatter points within a specified
support region around c, as shown in Figure 7A, while in FrEM,
partial derivatives are derived based on an isoparametric element
freely formed for point c, as shown in Figure 7B. In MFM and
FrEM, both weak-form and strong-form solution schemes are
available. In the following sections, the two schemes of FrEM will
be described in detail.

Weak-Form Free Element Method (WFrEM)
In FrEM, a free element is independently formed for each
collocation point c [31], with the domain denoted by Ωc. The
shape function shown in Eq. 8 is still employed for the formed
free element. Let us apply the weighted residual formulation (6) to
Ωc and take the weight function as the shape function of the
collocation point c, i.e., w � Nc. Thus, the following equation can
be obtained:

FIGURE 5 | Line-set consisting of two crossed lines for a 2D problem.
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∫
Ωc

∂Nc

∂xl
Dijkl

∂uk

∂xj
dΩ � ∫

∂Ωc

Ncti x( )dΓ + ∫
Ωc

NcbidΩ (44)

where the derivatives of the shape functions are computed using
Eq. 19a.

Dividing the boundary ∂Ωc of Ωc into two parts; the inner
boundary ΓIc, which is located within the problem and the outer
boundary Γoc, which is located on the outer surface of the
problem. Remembering that Nc is zero on the surfaces
excluding point c, making the integral over ΓIc zero, as a
result, Eq. 44 can be written as:

∫
Ωc

∂Nc

∂xl
Dijkl

∂Nα

∂xj
dΩ uα

k � ∫
Γoc
Nc�tidΓ + ∫

Ωc

NcbidΩ (45)

where Γoc � ∂Ωc ∩ ∂Ω, which is the outer boundary containing c.
From Eq. 45, it can be seen that the form of the basic

equation in WFrEM is similar to that in the conventional
FEM. The essential difference between them is that the
element in WFrEM is freely formed at each collocation
point, the nodes of which are not restricted to any
particular nodes of adjacent elements. It is also noteworthy
that the free elements formed by around-collocation points
are overlapped in FrEM since they are formed locally and
independently at each point.

Strong-Form Free Element Method (SFrEM)
The SFrEM is a type of collocation method [15]. To achieve a
highly accurate result, the collocation point c should be placed
inside the formed free element. For this reason, the free
elements used should have at least one internal node. In
principle, any type of isoparametric elements with internal
nodes can be utilized in SFrEM analysis [54–56]. For example,
Figure 8 shows new types of quadratic triangular and
tetrahedral elements [55] and Figure 9 shows a 21-noded
block element [15].

The shape functions for the above triangular and tetrahedral
elements can be found in [55] and that for the 21-noded quadratic
block element in [15].

For higher-order elements, the best method is to use Lagrange
elements. For example, Figure 10 shows a 16-noded 2D third-
order Lagrange element.

The shape functions of Lagrange elements for 2D and 3D
problems can be constructed as follows [4]:

Nα ξ, η( ) � LI ξ( )LJ η( ), for 2D
Nα ξ, η, ζ( ) � LI ξ( )LJ η( )LK ζ( ), for 3D (46)

where LI, LJ, and LK are determined by Eq. 39 and the
superscript α is determined by the permutation of subscripts I,
J, and K sequentially.

FIGURE 6 | Node distributions over line-sets defined at 2D or 3D internal points. (A) 2D problem (B) 3D problem.

FIGURE 7 | 2D patterns for MFM (A) and FrEM (B) at a collocation point.
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From the shape functions shown in Eq. 46, the analytical
expressions for computing the first- and second-order partial
derivatives can be derived, which are the same as those shown in

Eqs 17–19a, 19b. The collocation scheme to form the system of
equations for the governing PDEs is the same as that in EDM,
shown in Eqs 20, 21, the difference being that in SFrEM, only the
interior and out boundary nodes are used.

NUMERICAL EXAMPLES

To demonstrate the performances of some of the numerical
methods described in the article, a dual-struts supersonic
combustor [57] is simulated in the following. The physical
problem and relevant dimensions are shown in Figure 11. The
Yong’s modulus and Poison ratio of all materials in the problem
are taken as E � 206GPa and ] � 0.3. To constrain the four
frames supporting the combustor, the lower surface of the left
frame is fixed and the lower surfaces of the other three frames are
free only in the longitudinal direction (x-direction). All
remaining outer surfaces of the combustor are imposed with a
traction-free boundary condition. Pressure loads are applied on
the inner surfaces of the combustor, which are distributed along
the x-direction, as shown in Figure 12.

To simulate the problem using some of the described methods
above, the whole structure is discretized into different numbers of
nodes. Figure 13 shows the computational mesh connected by all
finite lines in the FLM model with 657,582 nodes. Figure 14
shows a contour plot of the computed displacement amplitude
over the deformed FLMmesh, with displacements enhanced ×20.
For comparison, the problem is also computed using the FEM
software ABAQUS, employing the same level nodes as those used
in FLM. Figure 15 shows the comparison of the computed
displacement amplitude along the line MN using four different
methods; ABAQUS (FEM), finite line method (FLM), weak-form
free element method (WFrEM), and the strong-form method
(SFrEM). For the last two methods, two meshes with different
numbers of nodes are used, in which WFrEM-880k indicates the
result of WFrEM using 880,000 nodes. To clearly examine the
differences between the different methods, Figure 16 shows the
enhanced curves along two local parts of the line MN.

From Figure 14, it can be seen that the deformations of two
areas after the struts are large. This is because the combustion

FIGURE 8 | Quadratic 7-noded triangular and 11-noded tetrahedral elements.

FIGURE 9 | 21-noded 3D quadratic block element.

FIGURE 10 | 16-noded 2D third-order Lagrange element.
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FIGURE 11 | Configurations of a combustion chamber with tow struts.

FIGURE 12 | Pressure applied on the inner surfaces of the combustor.

FIGURE 13 | Computational mesh used in FLM analysis.
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occurs immediately after the two struts; thus, the temperature and
pressure are higher in these areas than other areas. Moreover,
from Figure 15, it can be seen that all the computed results are in
good agreement globally; this indicates that the methods
presented in the article can handle real, complicated
engineering problems. On the other hand, from Figure 16, it
can be observed that the weak-form free element method
(WFrEM) and the finite line method (FLM) give results closer
to the finite element method (FEM). The essential reasons for this
are that in WFrEM, numerical integration is performed over each
free element, which is similar to FEM, giving very stable and

accurate results. In FLM, the recursive technique is employed to
evaluate the high-order derivatives, as shown in Eq. 43, making
more points contribute to each collocation point [3]; therefore,
more stable and accurate results can be obtained using FLM over
other strong-form solution schemes [50].

FIGURE 14 | Contours of the deformed mesh, with displacements multiplied ×20.

FIGURE 15 | Computed displacements along the line MN using the four
different methods.

FIGURE 16 | Enhanced curves along two parts of line MN.
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SUMMARY

In this article, four types of numerical methods are
overviewed, most of which are newly proposed methods in
recent years. Classification of all numerical methods into
volume, surface, line, and point operation methods is
performed for the first time in this article. This
classification is conceptually clear and helpful for readers
to understand the discretisation of problems and to realize
the advantages and disadvantages of the different methods.
Computational experience shows that the finite element,
weak-form free element, and finite line methods have
excellent performances.
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