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The state-space approach (SSA), traditionally utilized in modern control theory, has been
successfully adopted over the last three decades to investigate the mechanical behaviors of
complex structures composed of composite or smart materials. This is largely due to their
increasing application across various fields, including aerospace, civil and marine
engineering, and transportation vehicles. This paper provides a comprehensive review of
the establishment of state-space formulations for structures of typical configurations, such
as beams, plates, shells, and trusses, with a particular focus on their applications in the
mechanical analyses of various complex aerospace or smart structures using the transfer
matrix method. The paper first summarizes the three-dimensional SSAs applied to laminated
structureswithout any assumptions on physical fields. By employing structural theories such
as various beam, plate, and shell theories, simplified one-dimensional and two-dimensional
SSAs for laminated structures are developed. The paper then outlines the advances in
generating analytical solutions for the mechanical behaviors of laminated structures. For the
sake of completeness, the paper also provides an account of SSAs applied to complex
periodic structures, particularly in beam and truss forms. To overcome the limitations of
conventional SSAs related to structures with specialized geometric configuration or under
arbitrary boundary conditions, state-space based numerical methods have been proposed,
for example, the state-space based differential quadrature method and state-space based
finite-element method. The applications of these methods in the analyses of static and
dynamic responses of complex structures are extensively reviewed. It is observed that there
are still intriguing and potential research topics for the development of advanced SSAs with
enhanced versatility and the studies on practical complex structures used in modern
engineering, particularly in aerospace industry. Therefore, this review is expected to be
beneficial for researchers in the fields of analytical and numerical methods, composite
structures, aerospace, structural engineering, and more.
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INTRODUCTION

Composite materials typically consist of two or more distinct components, each possessing unique
mechanical, electric, magnetic, thermal, or chemical properties. As a result, structures composed of
these composite materials, such as laminated structures, often exhibit superior performance
characteristics compared to conventional structures made from homogeneous materials. These
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advantages include lightweight construction, high strength-to-weight
and stiffness-to-weight ratios, excellent tailoring properties, and high
resistant to corrosion and fatigue [1, 2]. Spacecraft and aircraft are
typical weight- and strength-sensitive structures. According to a
widely accepted rule of thumb, each pound of weight reduction in a
primary structure results in an indirect saving of another pound
elsewhere in the aircraft [3]. Today, structures composed of
composite materials are increasingly becoming a cornerstone in
modern aerospace and aviation industry [4, 5]. Moreover, these
complex structures are also finding broader applications in fields
such as mechanical and civil engineering, marine, transportation
vehicles [6, 7]. Consequently, the burgeoning industrial uses of
complex structures have spurred the development and innovation
of necessary analytical and numerical techniques for analyzing the
mechanical behaviors of these structures [8, 9].

Themechanics of three-dimensional (3D) continua are typically
governed by partial differential equations (PDEs), wherein all
physical fields, including the displacements, stresses, and strains,
are functions of the three spatial coordinate variables and/or the
time variable. Consequently, deriving exact analytical solutions for
3D elasticity structures can be challenging. To address this, various
structural theories such as rod, beam, plate, and shell theories have
been developed, introducing certain assumptions on physical fields
regarding their space distributions. These theories have been
widely used to study the mechanical behaviors of numerous
engineering structures composed of homogeneously isotropic,
transversely isotropic, or orthotropic materials. However, these
theories sometimes fall short or face significant limitations when
predicting the static and dynamic responses of structures
composed of composite or smart materials, especially accurate
distributions of displacements and stresses at interlayer interfaces.
This is due to factors such as strongmaterial anisotropy, multi-field
coupling, heterogeneity, and structural complexity. As a result,
conventional structural theories often lack the necessary generality
and accuracy when studying complex structures.

An alternative strategy involves seeking solutions for complex
structures directly based on analytical or numerical methods such as
finite element methods (FEMs), displacement and stress functions,
Taylor series expansions, and state-space approaches (SSAs), which
are the focus of this article. SSAs, traditionally used for modeling
control systems, describe the relationships between the output, input,
and the state of the system. These three variables are only functions of
the time. The state equation of the system is governed by first-order
ordinary differential equations (ODEs) with respect to the state and
input variables, and the output variables of the system can be fully
determined when the state variables are known. By using state-space
descriptions, the first-order ODEs of the system are transformed into
a matrix expression, thereby enabling efficient utilization of high-
performance computer facilities using engineering software such as
MATLAB and Mathematica. Furthermore, due to the matrix
expression of the system equation, the increase of state variables
does not increase the complexity of system descriptions. Thus, SSAs
offer better unity of expression and higher computational efficiency
than other methods for modeling control systems.

Unlike the first-order ODEs of control systems, the governing
equations of a 3D elastic body are PDEs with respect to the
selected physical fields such as displacements, stresses, or strains.

Therefore, the key to establishing the state-space formulations for
elasticity problems lies in selecting the appropriate state variables
and transforming the PDEs into a set of first-order ODEs. The
practical application of the SSA to elastic bodies dates back to the
study on vibrations of non-uniform beams by Thomson in
1950 [10]. By selecting the deflection, rotation, shear force,
and bending moment as the state variables, they reformulated
the governing equations, the fourth-order ODEs, of the beam
deflection as a set of first-order ODEs based on the beam theory.
For the non-uniform beam, the layerwise approximate technique
(LAT) was employed by them to divide the beam into many
segments such that the section of each segment could be treated as
constant. Based on state-space descriptions, the continuity
conditions at the interfaces and the boundary conditions at
the two ends of the beam can be easily expressed by the state
variables. Then a transfer relation between the state variables at
the two ends of every segment can be established, and a global
transfer matrix between the state variables at the two ends of the
beam can be finally derived by eliminating all interfacial
displacements and tractions based on interlayer continuity
conditions. With the increase of the number of the divided
segments, the approximate solutions obtained by the SSA
approach the exact solutions for free vibration of the non-
uniform beam. Evidently, in the SSA the dimensionality of the
global transfer matrix of laminated structures is independent of
the number and thickness of the layers, and thus the SSA is very
powerful and efficient for seeking exact solutions of laminated
structures no matter howmany layers there are. Furthermore, the
displacement and stress components at interlayer interfaces
predicted by the SSA are accurately continuous, which cannot
be realized by other numerical method like the FEM. Almost
simultaneously, Thomson [11] also demonstrated that the SSA
could be used for wave propagation analysis in an infinite
stratified solid medium. By selecting the particle velocity and
stresses as the state variables, the governing equations of the plane
wave propagation were transformed into a matrix form, i.e., the
state-space formulations for wave motions in a stratified medium.

Building on Thomson’s pioneer work and the increasing use of
laminated composite structures, there has been a significant
development and application of SSAs in fields such as
aerospace, geophysics [12], and structural and civil engineering
[6] since 1990s. The 3D state-space formulations for materials
with varying material symmetries and multi-field coupling
effects, such as transversely isotropic, spherically isotropic,
piezoelectric, and magneto-electro-thermo-elastic materials,
have all been established for the studies of structures of
different geometric configurations and with multi-field
couplings. Apart from the general 3D problems, since no
assumptions are adopted to simplify the physical fields for the
states of plane strain or plane stress, the SSAs applied to solve
plane-strain and plane-stress problems are also ascribed to the 3D
SSAs as special cases in this article. Leveraging sophisticated
structural theories, simplified one-dimensional (1D) and two-
dimensional (2D) SSAs have also been developed for the analyses
of laminated structures in beam, plate, and shell forms. The
mixed SSAs, integrating the transfer matrix method for state
vectors and theoretical or numerical methods, have been further
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developed to predict the mechanical behaviors of complex
periodic structures composed of beam or truss units. In
addition, various state-space based numerical methods,
combining the advantages of SSAs and the associated
numerical methods, have been proposed to solve more
practical structural problems or address numerical difficulties
associated with structures under arbitrary boundary conditions.
For instance, in the state-space based differential quadrature
method (SS-DQM), the DQM helps to overcome the
limitations associated with conventional SSAs for plates and
shells with arbitrary boundary conditions, while still retaining
the feature of the SSA that the displacement and stress
components are accurately continuous at interlayer interfaces.
This feature is also inherited by the state-space based finite
element method (SS-FEM), making the number of the
unknow functions and unknow node variables independent of
the layer number of laminated structures, which gives the SS-
FEM an edge over conventional FEMs. Other specialized state-
space based numerical methods, including the state-space based
finite difference method (SS-FDM), state-space based boundary
element method (SS-BEM), etc., have also been proposed to deal
with structures with certain geometric configurations or to
improve the computational efficiency. The overall structural
diagram of SSAs applied to complex structures is illustrated in
Figure 1.

This review aims to highlight the advances of SSAs to
structures of typical configurations and their applications in
the analyses of mechanical behaviors of complex structures
composed of composite or smart materials. We first focus on
the 3D SSAs for laminated structures of beam, plate, and shell
configurations, in which no assumptions of physical fields are
adopted. When structural theories, such as beam, plate, and shell
theories, are employed, we present the establishment of 1D and
2D state-space formulations and their extensive applications in
the mechanical analyses of laminated structures. We then provide
an account of the applications of SSAs in studies on complex
periodic structures composed of beam and truss units. The final
focus of this article is the advances of state-space based numerical
methods and their applications in static and dynamic analyses of
complex structures. This review is intended to be beneficial for
future studies on advanced SSAs and mechanical behaviors of

practical complex structures in various fields, particularly for
aeronautical, marine, civil, and transportation applications.

3D STATE-SPACE APPROACHES TO
LAMINATED STRUCTURES

As previously mentioned, laminated structures have been found
extensive applications in fields such as aerospace, aviation,
structural engineering, and marine. Despite the flexibility
offered by material and structural design and the ability to be
composed of numerous layers for carrying large loads, laminated
structures often grapple with issues such as the ply delamination
and shear destruction due to the low ratio of transverse shear
modulus to in-plane modulus. Since 1950s, 3D SSAs, which do
not introduce any assumptions on physical fields, have been
widely adopted to accurately predict mechanical behaviors of
laminated structures. These approaches also provide useful
benchmark results for comparing and clarifying various
simplified theories or numerical methods. In this section, we
will review the advances of 3D SSAs and their applications in
analyzing static and dynamic responses of laminated structures of
beam, plate, and shell configurations, as summarized in Table 1.

Laminated Beams
Beams, often utilized to represent slender structures with a length
significantly greater than their cross-sectional dimensions, are a
fundamental component in aeronautical applications. These
applications include, but are not limited to, fuselage air wings,
helicopter rotor blades, and turbine rotor blades. Laminated
beams, in particular, are of paramount importance. This
section reviews the research on 3D SSAs for beam
configuration as well as their application in the accurate 3D
analyses of both static and dynamic responses of laminated
beams.

The SSA to elasticity, initially proposed by Bahar for the
analysis of 2D plane stress problem in linear elasticity [13],
has proven to be a potent and effective tool for deriving exact
solutions of elasticity. Utilizing the state-space formulations
established for plane-stress problem, Chen et al. [14] presented
an exact solution for simply-supported cross-ply laminated

FIGURE 1 | Overall structural diagram of state-space approaches applied to complex structures.
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beams with interlaminar bonding imperfections, described by a
spring-layer model, as shown in Figure 2A. It can be seen from
Figure 2B that the transverse shear stress τxz predicted by the 3D
SSA for R = 0 was accurately continuous at the interfaces and the
imperfect bonding significantly changed its distribution along the
thickness direction. Moreover, numerical results indicated that an
increase in the imperfection bonding parameter could lead to an
increase in deflection and a decrease in the natural frequency,
suggesting that interfacial imperfections result in a decrease in the
effective stiffness of the laminated beam. The solutions obtained
can serve as a valuable benchmark for simplified beam theories or
numerical methods proposed for imperfect laminated beams.
Chen et al. [6] also employed the SSA to analyze the static
responses of laminated composite beam with partial shear
interaction, a common structure in civil engineering, subjected
to a combination of an arbitrary transverse load and a constant

TABLE 1 | Application of 3D state-space approaches in the mechanical behavior
analyses of complex structures of different configurations.

Configuration Mechanical behavior Reference

Beam Bending and vibration [14–16]
Beam Bending [6, 17–22]
Beam Vibration [23]
Plate Bending and vibration [24–29]
Plate Bending [30–48]
Plate Vibration [49–54]
Cylindrical shell Bending, vibration, buckling [55–57]
Cylindrical shell Bending, vibration [58–60]
Cylindrical shell Bending [61]
Cylindrical shell Vibration [62–68]
Cylindrical shell Buckling [69]
Cylindrical shell Wave [70–72]
Spherical shell Bending [73, 74]
Spherical shell Vibration [75–77]

FIGURE 2 | Laminated structures of beam, plate, and shell configurations and their shear stress field predicted by the 3D state-space approach: (A) laminated
beam with bonding imperfection [14]; (B) the distribution of transverse shear stress τxz of laminated beam in (A) along the thickness direction under different imperfect
bonding parameter R; (C) imperfect laminated plate in cylindrical bending with surface piezoelectric layer [29]; (D) the distribution of transverse shear stress τxz of
laminated plate in (C) along the thickness direction under different imperfect bonding parameter R; (E) laminated cylindrical panel with bonding imperfection [60]; (F)
the distribution of shear stress τrz of laminated panel in (E) along the thickness direction under different imperfect bonding parameter R (Reproduced with permission
from Chen et al. [14], copyright 2003 by AIAA; reproduced with permission from Chen et al. [29], copyright 2004 by Elsevier; reproduced with permission from Cai et al.
[60], copyright 2004 by Elsevier).
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axial force. To account for the interfacial slip, a non-continuous
model of slip stiffness along the interface was integrated into the
SSA. Numerical results suggested that the non-uniformity of the
slip stiffness significantly influences the critical axial load and
interactions of the composite beam. Furthermore, Xu and Wu
[17] developed a new plane stress model of partial interaction
composite beam with interlayer slips based on the SSA and
presented analytical solutions for static responses of simply-
supported beams. It was found that the 2D model predicts
deflections more accurately than the 1D theory, which neglects
the shear deformation of the beam. Additionally, the rigidity of
the shear connectors for partial interaction has a substantial effect
on the flexural stiffness of composite beams. Subsequently, they
conducted an analytical study of composite beams strengthened
by externally and adhesively bonded reinforcements, such as
fiber-reinforced polymer (FRP) or steel with variable cross-
sectional properties [18]. The interfacial shear stress and axial
force in external reinforcement were particularly investigated,
and it was found that the bonded FRP with tapered ends and the
ways of tapering the FRP significantly alter the magnitude and
distribution of the shear stress at the interfaces. The developed
method provided an efficient tool for analyses of the debonding
problem and design of external reinforcement of composite
beams. Ying et al. [15] applied the SSA to study static bending
and free vibration of functionally graded material (FGM) beams
resting on a Winkler-Pasternak elastic foundation based on 2D
plane-stress theory of elasticity. They found that the gradient
index, aspect ratio, and foundation parameter significantly
influence the deformation and natural frequencies of such an
FGM beam, and these exact solutions could serve as a benchmark
for the future studies on FGM beams resting on elastic
foundations.

Unlike conventional laminated structures composed of elastic
materials, smart structures, which integrate host laminated
structures with smart components such as piezoelectric
actuators and sensors, can react to environmental changes
through actuating, sensing, and control [78–80]. By utilizing
the SSA and the LAT, Bian et al. [16] conducted an exact
analysis of the static and dynamic responses of simply-
supported FGM beams integrated with surface piezoelectric
actuator and sensor. The influence of the bonding adhesives
between the host beam and piezoelectric actuator and sensor
layers on the displacements, stresses, and natural frequency was
systematically examined. The results demonstrated that imperfect
bonding reduces the global stiffness of the entire beam structure,
as evidenced by the increase in deflection and the decrease in
natural frequency. Yan et al. [19] explored the time-dependent
responses of this smart structure with viscoelastic interfaces,
described by the Kelvin-Voigt viscoelastic model, by using the
SSA and power series expansion. They discovered that the
viscoelastic interfaces also contribute to the reduction of the
effective stiffness of the entire structure, and the developed
method can be applied for damage analyses in health
monitoring of aeronautical and engineering structures.
Furthermore, Yan et al. [23] investigated the dynamic
responses of a simply-supported laminated beam bonded or
embedded with piezoelectric layers based on the SSA. The

electromechanical impedance (EMI) technique was employed
to monitor interfacial defects, described by a linear spring-like
model, in the laminated beam. Numerical results revealed that the
output electric signal is sensitive to the bonding condition
between the piezoelectric layer and the host beam, suggesting
that monitoring the EMI can be used to conveniently detect the
interfacial defects. In addition, Alibeigloo [20] provided the
analytical solutions for simply-supported FGM beams
integrated with piezoelectric actuator and sensor under an
external electric load and thermo-mechanical load, based on
the state-space formulations and Fourier series expansion.
They found that the effect of thermal load on mechanical
behaviors is greater than that of mechanical load, and the
effect of applied voltage is strongly dependent on the length-
to-thickness ratio. Using the SSA and Fourier series expansion,
Qian et al. [21, 22] proposed an exact analytical method to predict
thermal responses of simply-supported and clamped laminated
beams subjected to non-uniform temperature boundary
conditions. For the clamped support, an equivalent model was
introduced to convert the clamped support to a simple support.
Numerical simulations indicated that the surface temperature,
length-to-thickness ratio, material properties, and the layer
number of laminated beam significantly affect the distributions
of the temperature, displacements, and stresses. Moreover, the
comparison of the results with those from the FEM verified the
accuracy and effectiveness of the proposed method.

Laminated Plates
Compared to beam configuration, the mechanical behaviors of
laminated plate structures have garnered more attention from
researchers. Since 1969, a variety of exact solutions for laminated
composite plates have been derived using Pagano’s approach
[81–88]. However, this method necessitates the discussion of
different eigenvalue cases to obtain the real solutions of the
governing equations. In contrast to Pagano’s approach, the
SSA offers a uniform matrix expression and serves as a
powerful and efficient tool for exact analyses of laminated
plates, given that the number of the undetermined constants is
independent of the number of structural layers. This subsection
summarizes the applications of 3D SSAs in the studies on the
mechanical behaviors of laminated plates.

Fan and Ye [30] utilized the 3D theory of elasticity to derive
the state equations of an orthotropic elastic body and then
presented a series solution of a simply-supported rectangular
plate under various mechanical loads. Their numerical results
indicated significant deviations between existing plate theories,
such as Reissner’s and Ambartsumyan’s theories, and their exact
results. Subsequently, they presented exact solutions for the static
and dynamic responses of three-ply orthotropic thick plates with
simply-supported edges [24]. Numerical simulations
demonstrated that the SSA surpasses the conventional
displacement method of elasticity for laminated plates, as the
latter increases the number of equations and unknown constants
with the increase of the plies. They also established the state-space
formulations for the exact analyses of the axisymmetric free
vibrations of transversely isotropic three-ply circular plates
with simply-supported and clamped edges [49]. Comparisons
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with the Reissner and Mindlin theories revealed the insufficient
accuracy of the existing plate theories. Zenkour [31] introduced
an exact and unified tool for the symmetric and antisymmetric
analyses of rectangular laminated plates subjected to sinusoidally/
uniformly distributed loads based on the SSA. The results were
compared with those in Refs [82, 84], demonstrating the
computational efficiency and accuracy of the SSA. Qing et al.
[50] presented a new solution governed by the state-space
formulations for the dynamic analyses of 3D elastic laminated
plates with damping effect, using the precise integration method
and Muller method. They examined the effects of damping
parameters on natural frequency, harmonic vibration, and
complex frequency response, which showed the predictive
capability of their approach.

In contrast to the perfect bonding in the aforementioned
works, Chen et al. [25] investigated the influence of
interlaminar bonding imperfections, described by a linear
spring layer model, on the bending and free vibration of a
simply-supported cross-ply laminated rectangular plate using
the SSA. Their numerical results were compared with those
predicted by the plate theory developed in Cheng et al. [89],
indicating that the approximate theory performs well for
moderately thick laminates with perfect bonding, but is
inaccurate for imperfect bonding. Chen et al. [32, 33] then use
the SSA to analyze the bending of a simply-supported angle-ply
laminated plate and a thick orthotropic laminate with viscous
interfaces under static load, respectively. They found that the
static response of the laminate is highly sensitive to the presence
of viscous interfaces. They also investigated the cylindrical
bending and free vibration of a simply-supported angle-ply
laminate with interfacial damage, described by the general
spring-layer model, using the SSA [26]. Numerical results
suggested that the deformation and frequency’s sensitivity to
interfacial damage could be used in nondestructive testing of
structural damage. Qing et al. [34] used the SSA along with
interfacial spring-layer model to study the energy release ratio of
stiffened laminates with a planar delamination. They discussed
the effect of the stiffeners on the distribution of the energy release
modes, and the results revealed that their approach is a powerful
and accurate alternative for solving the multiple delamination
problems of laminated structures.

In addition to the previously mentioned studies on laminated
plates composed of elastic materials, a series of theoretical
research have been conducted on the mechanical behaviors of
smart laminated plate structures. These structures combine host
laminated plates with intelligent material layers to modify the
structural responses through sensing, actuation, and control. For
instance, Xu et al. [35] utilized the 3D SSA and Fourier series
expansion to examine the coupled thermo-electro-elastic
response of a smart laminated plate composed of fiber-
reinforced cross-ply and piezo-thermo-elastic layers. They
computed the sensitivity of the static response to variations in
the mechanical, thermal, and piezoelectric material constants of
the plate. Their results could serve as a benchmark for evaluating
the accuracy and validity range of 2D models for such smart
hybrid plates. Subsequently, they presented 3D analytical
solutions for the free vibrations of laminated plates composed

of the fiber-reinforced cross-ply and piezo-thermo-elastic layers,
with initial stresses generated by either a temperature change or
an electric load [51]. They obtained the frequency sensitivity to
variations of various material constants and established a simple
approximate formula for the sensitivity coefficients. This
provided insight into the frequency dependence of initially
stressed laminates on initial temperature, electric load, and
geometric and material parameters. Lee and Jiang [36] first
derived the state-space formulations for a 3D piezoelectric
laminate of 6 mm material symmetry and performed an exact
analysis of the coupled electroelastic behaviors of a simply-
supported rectangular piezoelectric laminated plate subjected
to a mechanical or electric load. The established state-space
equations provided a useful means for the future studies on
piezoelectric laminated plates with general interlayer
(imperfect contact) or boundary conditions (bonded with
foundations). Cheng and Batra [37] proposed an asymptotic
expansion method to reduce the 3D equations to a hierarchy
of 2D equations and used the SSA to investigate the deformations
of multiple-electroded piezoelectric laminates subjected to
surface tractions and surface and internal electric potentials.
Numerical results showed excellent agreement with available
exact solutions and demonstrated the errors of existing 2D
piezoelectric plate models. Benjeddou and Deu [90] proposed
a mixed SSA that retained the standard state displacement and
transverse stress augmented with the electric potential and
electric displacement to deal with the closed and open electric
boundary condition. Its application to the exact analysis of
transverse shear actuation and sensing of simply-supported
three-layered plates with a piezoceramic core was then
performed [38]. The influences of the plate aspect ratio,
mechanical and electric excitation amplitudes, and the position
and thickness of piezoceramic core on the static responses of the
smart laminated plate were examined. The results were useful for
comparison with approximate theories and numerical solutions.
Vel and Batra [39] presented an exact 3D state-space solutions for
the static cylindrical bending of simply-supported laminated
plates embedded with shear mode piezoelectric actuators and
subjected to mechanical and electric loads on the upper and lower
surfaces. They then performed an exact analysis of the 3D
deformations of such a smart laminated plate under
mechanical and electric loads [40]. The exact displacement
and stress solutions for different plate aspect ratios were
compared with those obtained by the first-order shear
deformation theory (FSDT). They found that the deviation
between the FSDT and the exact solutions increases as the
plate aspect ratio decreases. Additionally, Chen et al. [52]
derived the state-space equations for free vibrations of
transversely isotropic piezoelectric bodies, and numerical
results illustrated that the results by 2D plate theory deviate
from their exact solutions. Ding et al. [41] derived the
axisymmetric state-space formulations of piezoelectric
laminated circular plates based on 3D theory of
piezoelectricity and the finite Hankle transform. They obtained
the exact solutions for the rigidly-slipping support and elastically-
simple support, which exhibited good agreements with those
from the FEM. Following this, Ding et al. [53] established new
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state-space formulations with lower orders for transversely
isotropic piezoelectricity by introducing two displacement
functions and two stress functions. They then investigated the
free vibration of a simply-supported rectangular piezoelectric
laminated plate. The exact results obtained could serve as a
benchmark for evaluating 2D approximate plate theories and
numerical methods. Utilizing the Hankel transform, Wang [42]
transformed the state-space formulation for the non-
axisymmetric space problem of transversely isotropic
piezoelectric media in cylindrical coordinate. They then
presented the analytical solution of a semi-infinite piezoelectric
medium based on the transfer matrix method. Subsequently,
Wang et al. [43–45] similarly established the state-space
formulations for axisymmetric problems of transversely
isotropic piezoelectric media using the Hankel transform and
transfer matrix method. Simulation results demonstrated that
their novel approaches have higher computational efficiency than
the classical displacement method and could be used to derive
solutions for more complicated loads and boundary conditions.
Qing et al. [54] established a state-space formulation for dynamic
problems of simply-supported rectangular piezoelectric
laminated plates, taking into consideration the transverse shear
deformation and rotary inertia of laminate. This was based on the
inversion of Laplace transform and modified mixed variational
principle. Its application to the analysis of harmonic vibration
and transient response of the laminate was presented to
demonstrate its accuracy. The results can serve as benchmarks
for testing thick plate theories and novel numerical methods.
Using the SSA and recursive solution approach, Sheng et al. [46]
presented an exact solution for thick orthotropic and piezoelectric
laminated plates with clamped and electric open-circuited
boundary conditions. The results, which agreed well with
those of existing analytical solutions and finite element
models, verified the effectiveness of the method. In contrast to
the existing works on FGMs with a certain exponential law for the
variations of physical fields along the thickness direction, Lezgy-
Nazargah [47] performed an exact analysis of cylindrical bending
of FGM piezoelectric laminates with arbitrary gradient
compositions based on the SSA. The exact solutions, which
exhibited excellent agreement with the published results, could
be used to assess the accuracy of approximate plate theories and
numerical methods.

In addition, Chen et al. [27–29] conducted a series of research
on the effect of imperfect bonding on the mechanical behaviors of
smart laminated plates, akin to previous research on composite
laminates composed of elastic materials. Chen et al. [27, 28]
developed 3D state-space formulations to investigate the bending
and free vibration of simply-supported orthotropic and angle-ply
piezoelectric rectangular laminates. These laminates had
interlaminar bonding imperfections, which were modeled
using a general spring layer. Concurrently, they explored the
cylindrical bending and free vibration of simply-supported
adaptive angle-ply laminates, which were bonded with surface
piezoelectric actuator and sensor layers [29], as shown in
Figure 2C. The interfaces between the host elastic laminate
and piezoelectric layers were perfect, but the interlaminar
bonding of the host laminate was imperfect. Figure 2D

illustrated that the transverse shear stress τxz predicted by 3D
SSA is exactly continuous at interlayer interfaces for R = 0 and the
imperfect bonding parameter R has a substantial effect on the
distribution of shear stress field along the thickness direction. The
precise solutions, grounded in 3D exact theories of elasticity and
piezoelectricity, are instrumental in the development and
validation of 2D approximate theories and numerical methods.
Wang et al. [48] formulated state-space equations for 3D,
orthotropic, and linearly magneto-electro-elastic media and
investigated the static deformations of a simply-supported
laminated rectangular plate under mechanical and electric
load. The numerical results were compared with those by Pan
[91] to validate the SSA. This approach could be extended for
analyses of such smart composite plates with general interlayer
and boundary conditions.

Laminated Shells
Shells represent a common class of contemporary structures, with
laminated shells offering the benefits of light weight, high
strength, and excellent design flexibility in structural
configurations. These structures have been extensively
employed in critical components across modern aeronautical,
aerospace, and transportation industries, including aircraft
cabins, radome, rocket adapter, satellite central cylinder,
missile fairings, and more. The application of state-space
technique in exact analyses of cylindrical shell structure was
realized by Soldatos and Hadjigeorgiou [62, 63] using a
proposed successive approximation method. They segmented
the cylindrical shell into numerous successive and coaxial sub-
shells and transformed the Navier-type governing equation of 3D
linear elasticity into a set of simpler differential equations for thin
shells, based on power series expansion. Subsequently, they
derived the state equation and obtained the exact solutions for
the free vibration of simply-support homogeneous isotropic
cylindrical shells. As the layer number of sub-shells increases,
the solutions based on successive approximate method converge
towards the exact solutions to the free vibration problems of the
shell structure. This successive approximation method paves the
way for exact analyses of laminated shells using the SSA. This
subsection reviews the relevant research on the static and
dynamic responses of 3D laminated shells and panels based
on SSAs.

Utilizing the successive approximation method, Hawkes and
Soldatos [64] conducted an exact analysis of longitudinal
vibrations of homogeneously orthotropic and cross-ply
laminated hollow cylinders. Numerical results validated the
efficiency and rapid convergence of this approach for
addressing vibration responses in laminated shell structures.
Soldatos and Ye [55] further examined 3D static, dynamic,
thermoelastic, and buckling behaviors of simply-supported
homogeneous and cross-ply laminated hollow cylinders and
cylindrical panels using successive approximation method. In-
depth studies of 3D flexural vibrations [65], stress and
displacement distributions [61], and buckling behaviors [69] of
laminated hollow cylinders and open cylindrical panels of
symmetric and antisymmetric cross-ply were carried out by
them. They used the successive approximation method in
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conjunction with transfer matrix method, which consistently
resulted in the solutions of a sixth-order system of algebraic
equations, irrespective of the layer number of the structures under
consideration.

Fan and Zhang [58] derived the state equations for orthotropic
and doubly curved shells and presented the analytical solutions
for static and dynamic responses under simply-supported
boundary conditions. This was based on the Cayley-Hamilton
method and the SSA. Numerical results indicated that the method
can be used to study laminated shell structures with arbitrary
thickness. It also has the advantage that the scale of the final
algebraic equations is independent of the layer number of the
structure. Ding et al. [56, 57] performed the exact analyses of
axisymmetric deformation, vibration, and buckling behaviors of
simply-supported thick laminated closed cylindrical shells using
the SSA. Simulation results demonstrated the efficiency and rapid
convergence of this method. By introducing the Hellinger-
Reissner variational principle and auxiliary function at the
lateral boundary, Ding and Tang [66] employed this method
to investigate the 3D free vibration of thick laminated cylindrical
shells with two clamped edges. The results were in good
agreement with those by the FEM, indicating the accuracy of
the developed method for analyses of laminated shells with
complex boundary conditions. Chen et al. [67] established the
state-space formulations for generally anisotropic materials with
thermal effect and carried out a 3D vibration analysis of fluid-
filled orthotropic FGM cylindrical shells under simply-supported
boundary conditions using the SSA. The effects of geometric
sizes, material gradient index, and fluid contact on natural
frequencies were examined. Numerical results revealed that the
natural frequencies predicted by the SSA agree well with the exact
solution in [92], validating the effectiveness and accuracy of the
present method. Moreover, the fluid contact and the decrease of
material gradient index lower natural frequencies, and these
relationships are significantly dependent on the thickness of
cylindrical shells. Chen et al. [59, 60] carried out the bending
and vibration analyses of simply-supported cross-ply and angle-
ply laminated cylindrical panels with weak interfaces as shown in
Figure 2E, described by the spring-layer model, using the SSA in
conjunction with the LAT. It was found that the imperfect
bonding significantly influenced the distribution of the
physical fields, such as the shear stresses in Figure 2F, along
the thickness direction of laminated shell. Numerical comparison
showed that the SSA along with the LAT can be used for the exact
prediction of interface damage in laminated panels through
natural frequencies in health diagnosis of structures. Moreover,
the existing shell theories derived for perfect laminated structures
were no longer suitable for effective analyses of laminated
structures with imperfect interfaces. In addition, Talebitooti
et al. [70] presented 3D analytical solutions for wave
propagation in simply-supported orthotropic cylindrical shells
with arbitrary thickness subjected to subsonic external flow
pressure using the SSA along with the LAT. The sound
transmission loss (TL) of a thick-walled cylindrical shell at
oblique incidence was calculated. It was found that for thick-
walled shells and the plane wave in high frequencies, the
significant difference of the obtained TL from the 3D

analytical method and conventional shell theories can be
observed due to the shear and rotation effects. Thus, the 3D
analytical solutions predicted by the developed method could be a
benchmark for validating the approximate shell theories when
modeling waves propagating in thick laminated shells.

In addition to the aforementioned cylindrical shell structures,
laminated spherical shells have also found extensive applications
in aerospace, structural engineering, and geophysics [93–96]. By
introducing several displacement and stress functions, Chen and
Ding [73] established the state-space formulations of spherically
isotropic elastic body. Then they presented the exact solutions for
static deformations of a three-layered spherical shell subjected to
distributed uniform pressure. They further employed this method
to study the free vibration of multi-layered spherically isotropic
hollow spheres [75]. The frequencies of vibration modes of
different orders obtained through this method are in good
agreement with the results predicted by conventional 3D
method. These results underscored the accuracy and
effectiveness of the SSA, particularly when dealing with
spherical shell structures with multiple layers. These exact
solutions also serve as a benchmark for validating approximate
shell theories and numerical methods. Similarly, by introducing
displacement and stress functions, two separated state-space
formulations of a spherically isotropic piezoelectric body were
derived by Chen et al. [74]. They then performed an exact static
analysis of a laminated, spherically isotropic, and piezoelectric
hollow sphere. The results obtained are in excellent agreement
with the exact solutions provided by Heyliger and Wu [97],
indicating that the method offers an efficient and powerful tool
for 3D exact analyses of laminated piezoelectric spherical shells.
Subsequently, Chen et al. [76] employed this SSA to study the free
vibrations of FGM piezoceramic hollow spheres with radial
polarization, based on the LAT. They found that the
piezoelectric effect and material gradient index have significant
influences on natural frequencies. Furthermore, the SSA in
conjunction with the LAT could be applied to the 3D exact
analysis of arbitrary nonhomogeneous spherical shell structures.

In recent years, dielectric elastomers (DEs), characterized by
their electromechanical coupling and large deformation
capability, have garnered increasing interest from researchers.
These materials are being explored for the development of soft,
lightweight, and small-scale actuators, sensors, transducers, and
soft robotics [98, 99]. Efforts have been made to study vibration
and wave behaviors in nonhomogeneous or laminated DE shells
using the state-of-the-art SSAs. For instance, Zhu et al. [68]
utilized the SSA in conjunction with the LAT to conduct an exact
analysis of axisymmetric torsional and longitudinal vibration in
an incompressible DE cylindrical shell. The shell was subjected
to axial pre-stretch and inhomogeneous electric biasing fields
induced by the radial voltage. It was found that the natural
frequencies of the DE cylindrical shells predicted by the SSA are
in good agreement with those from the exact solutions for
different axial mode numbers. Wu et al. [71] investigated the
guided circumferential shear-horizontal (SH) -type and Lamb-
type waves in an incompressible DE cylindrical shell subjected to
inhomogeneous biasing fields based on the SSA along with the
LAT. Numerical results demonstrated the accuracy and

Zhejiang University Press | Published by Frontiers December 2023 | Volume 1 | Article 123948

Zhao et al. Aerospace Research Communications Advances in State-Space Approaches



efficiency of the SSA for analyses of wave propagations in
inhomogeneous shell structures. The study also found that the
propagation properties of two types of guided circumferential
waves are significantly dependent on the biasing fields and
geometric sizes. Subsequently, they further employed this
method to analyze the axisymmetric torsional and
longitudinal waves propagating in an FGM DE cylindrical
shell under the complex loads of axial pre-stretch, radial
pressure, and radial electric voltage [72]. Simulation results
indicated that the pre-stretch, radial pressure difference, and
electric load can be utilized to steer the propagation behaviors
(e.g., frequency and wave velocity) of the axisymmetric guided
waves in the FGM DE cylindrical shells. The material gradient
index has a significant influence on the tunable capacity of these
external loads. Additionally, Mao et al. [77] performed the 3D
torsional and spheroidal vibration analyses of an incompressible
DE spherical shells subjected to inhomogeneous biasing field
induced by radial electric voltage and radial pressure difference.
This work was also based on the SSA in conjunction with the
LAT. Numerical results illustrated that the SSA is also suitable
for vibration prediction of DE spherical shells with high
accuracy. Furthermore, it was found that the natural
frequencies of various vibration modes in DE spherical shell
can be flexibly tuned by adjusting the external electric voltage
and internal pressure.

SIMPLIFIED STATE-SPACE APPROACHES
TO LAMINATED STRUCTURES

Drawing upon structural theories such as beam, plate, and shell
theories, a variety of simplified state-space formulations have been
developed. These formulations, tailored to specific structural
configuration, have been extensively utilized to investigate the
mechanical behaviors of laminated structures based on the
transfer matrix method. This section provides a comprehensive
review of the evolution of these simplified SSAs with reduced
dimensions. Furthermore, it highlights the progress made in the
corresponding applications to the analyses of static and dynamic
responses of laminated structures in beam, plate, and shell
configurations. A summary of these developments is provided
in Table 2.

Laminated Beams
As early in 1950, Thomson [10] pioneered the establishment of
state-space formulations for the depiction of beam bending,
utilizing the simplified beam theory. This was followed by a free
vibration analysis of a non-uniform beam, employing the LAT and
transfer matrix method. After nearly four decades of gradual
development, the SSAs have regained significant attention from
the research community, spurred by the rapid emergence and
widespread application of laminated composite structures.

Khdeir and Reddy [100, 101] presented analytical solutions for
the buckling and free vibration of cross-ply laminated beam with
arbitrary boundary conditions. These solutions were derived
using the SSA in conjunction with the refined beam theories.
Numerical results revealed that the discrepancies among different

shear deformation theories are significantly less than that
between any of them and the Euler-Bernoulli beam theory.
Moreover, as the length-to-thickness ratio increased, the
difference in critical buckling loads and natural frequencies
between shear deformation theories and Euler-Bernoulli theory
diminishes. Subsequently, Khdeir [103] presented an analytical
solution for the transient response of antisymmetric cross-ply
laminated beams with generalized boundary conditions and
under arbitrary loads. This was achieved by using the classical,
first-, and third-order shear deformation beam theories in
tandem with the SSA. The study concluded that the results
predicted by the high-order theory of Reddy (HOBT) and
Timoshenko shear deformation beam theory are more
accurate than those predicted by the Euler-Bernoulli theory for
thick beams. Furthermore, Khdeir and Reddy [105] developed the
analytical solutions for the bending of symmetric and
antisymmetric cross-ply laminated beams with arbitrary
boundary conditions and subjected to arbitrary loads. They
found that the shear deformation, orthotropic ratio, symmetry
of cross-ply, and boundary conditions significantly influence the
deflection of laminated beams. They also employed this method
to analyze the thermoelastic response of symmetric and
antisymmetric cross-ply laminated beam under arbitrary
boundary conditions and subjected to general temperature
fields [106]. The study concluded that the effect of
temperature fields on the deflection of composite beam is
significantly dependent on layer number, shear deformation,
cross-ply symmetry, and boundary conditions. The thermal
buckling of cross-ply laminated beams subjected to uniform
temperature distribution was also investigated by them [107]
using the refined beam theories in conjunction with the SSA. The
effects of length-to-thickness ratio, modulus ratio, thermal
expansion coefficients, boundary conditions, and layer number
on the critical buckling temperature were systematically
discussed. In addition, Srinivasan et al. [115] developed a
unified SSA based on different HOBTs taking both normal
strains and shear deformation effects into consideration. They
then presented analytical solutions for laminated composite
beams subjected to transverse loads and under various
boundary conditions. In the four HOBTs, shear deformation
was described by four warping functions corresponding to
exponential, hyperbolic, trigonometric, and parabolic
functions. Comparative studies revealed that the models
associated with the exponential and hyperbolic functions yield
accurate and identical results in all studies. Ramaprasad et al.
[116] established a unified state-space coupled field formulation
for generating analytical solutions for thin-walled composite
open section beams, which are extensively used in aerospace.
All non-classical effects such as torsional warping, warping shear,
material coupling, and shear deformation were taken into
consideration. The results for arbitrarily laminated non-
symmetric composite channel and I-section beams subjected
to bending and torsional loads showed excellent agreement
with the reported results in Ref. [140], validating the efficiency
and accuracy of the proposed method.

Considerable research has been conducted to investigate the
mechanical behaviors of smart beam systems, utilizing simplified
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beam theories and the SSA. For instance, Pota and Alberts [110],
building on the Euler-Bernoulli beam theory, developed an SSA
for the free vibration analysis of a slewing beam system. This
system was bonded with piezoelectric sensors and actuators,
which were applied by an external voltage. For the special case
where the hinged end of the structure was clamped, the results
obtained agree with those presented in Ref. [141]. Based on the
first-order beam theory (FOBT) and HOBT, Aldraihem and
Khdeir [108] presented analytical solutions for the bending of
beams bonded with thickness-shear and extension piezoelectric
actuators under various boundary conditions using the SSA. They
found that the operation modes of the piezoelectric actuator
could result in significant difference between the deflections
predicted from the FOBT and HOBT. Built upon the zig-zag
beam theory in conjunction with the SSA, they also presented
analytical solutions for the free vibration of soft-core sandwich
beams with arbitrary boundary conditions [114]. The obtained
results indicated that the support conditions have significant
influences on the relationship between resonant frequency and
length-to-thickness ratio. The comparison between the obtained
results and the existing experimental, analytical, and numerical
results in the literature showed that the zig-zag beam model
provides accurate natural frequencies for sandwich beam with a
soft core. These results also serve as useful benchmarks for
approximate solutions from numerical methods like Rayleigh-
Ritz method, FEM, etc. Furthermore, based on the Euler-
Bernoulli beam theory, Palmeri and Adhikari [111] developed
a Galerkin-type SSA for the transverse vibrations of slender
double-beam system with a viscoelastic inner layer, described
by standard linear solid model. Numerical results demonstrated
the validity and accuracy of the proposed method in both

frequency- and time-domain analyses. Subsequently, using this
Galerkin-type analytical model, Palmeri and Ntotsios [112]
investigated transverse vibrations of viscoelastic sandwich
beams under different boundary conditions as shown in
Figure 3A. It was found that the viscoelasticity significantly
affect the frequencies and transverse mode shapes of the
sandwich beams (see Figures 3B, C), and the numerical
results verified the accuracy and versatility of the proposed
method. Li et al. [113] also proposed a novel SSA for the
transverse vibration analysis of a double-beam system. They
introduced a mode-shape constant to the state space in the
modeling framework to improve the computational accuracy
and efficiency. Moreover, Sahmani and Ansari [109]
investigated the buckling behaviors of nanobeams under
various boundary conditions by utilizing nonlocal continuum
beam models of different beam theories, including the CBT,
FOBT, and Levinson beam theory (LBT), in conjunction with
the SSA. The results obtained from the developed nonlocal beam
model match those from the molecular dynamic simulation given
by Ansari et al. [142], helping to predict the appropriate value of
nonlocal parameter. It was also found that the nonlocal beam
model and boundary conditions significantly influence the
predicted value of nonlocal parameters. Additionally, Fazeli
et al. [117] performed free and forced vibration analyses of
smart orthotropic cross-ply laminated stepped beams
integrated with a piezoelectric actuator, using the SSA based
on the FOBT. The obtained natural frequency for piezoelectric
sinusoidal excitation was compared with those from FEM and
experimental study. It was found that the analytical method
provides an efficient tool to predict the vibration behaviors of
smart stepped laminated beam with high accuracy.

TABLE 2 | Summary of simplified state-space approaches based on structural theories and their applications in the mechanical analyses of complex structures in beam,
plate, and shell configurations.

Configuration Structural theory Mechanical behavior Reference

Beam CBT, FOBT HOBT Static and dynamic responses [100–102]
Beam CBT, FOBT, HOBT Dynamic response [103, 104]
Beam CBT, FOBT, HOBT Static response [105–109]
Beam CBT Dynamic response [10, 110–113]
Beam Zig-zag beam theory Dynamic response [114]
Beam HOBT Static response [115, 116]
Beam FOBT Dynamic response [117]
Plate CPT, SDPT Static and dynamic responses [118]
Plate CPT, SDPT Static response [119, 120]
Plate YNS plate theory Static response [121]
Plate SDPT Static response [122, 123]
Plate SDPT Static and dynamic responses [124–130]
Plate SDPT Dynamic response [131]
Plate TVPT Static response [132]
Plate FVPT Static and dynamic responses [133]
Plate FVPT Dynamic response [134]
C-shell CST, FOST, TOST Static and dynamic responses [135]
C- and S-shells CST, FOST, TOST Static and dynamic responses [136]
C- and S-shells CST, FOST, TOST Dynamic response [137]
C-shell FOST Dynamic response [138, 139]

Acronyms: CBT, classical beam theory; FOBT, first-order beam theory; TOBT, third-order beam theory; CPT, classical plate theory; SDPT, shear-deformation plate theory; YNS, Yang,
Norris, and Stavsky; TVPT, two-variable plate theory; FVPT, four-variable plate theory; CST, classical shell theory; FOST, first-order shell theory; TOST, third-order shell theory; C-shell,
Cylindrical shell; S-shell, spherical shell.
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This paragraph highlights the recent work on applications of
the SSA to the mechanical analyses of FGM laminated beams.
Based on the CBT, FOBT, and HOBT, Trinh et al. [104]
developed analytical solutions for predicting the fundamental
frequency of FGM sandwich beams under various boundary
conditions using the SSA. Simulation results revealed that
boundary conditions, material parameters, layer arrangement,
and length-to-thickness ratio all significantly affect the
fundamental frequency of such an FGM sandwich beam.
Subsequently, they presented analytical solutions for the
buckling and free vibration of FGM beams under mechanical
and thermal loads using the SSA based on the HOBT [102]. The
results demonstrated the efficiency and effectiveness of the
analytical model. By utilizing the multi-term Kantorovich-
Galerkin method for describing the displacement components,
Wang et al. [143] proposed a 2D elasticity model in conjunction
with the SSA to investigate the bending and free vibration of
laminated graphene-reinforced composite (GPC) beams. Five
different graphene distribution patterns were presented by
altering the volume fraction of graphene in each layer. The
study found that the laminated GPC beam with pattern X
exhibits the smallest deflection and highest fundamental
frequency for a high length-to-thickness ratio. Conversely, it
displays the largest deflection and smallest fundamental

frequency for a low aspect ratio due to the decrease in the
transverse shear stiffness.

Laminated Plates
Chandrashekara and Santhosh [144] pioneered the SSA for the free
vibration analysis of cross-ply laminated plates, utilizing the
Maclaurin series expansion along the thickness direction. The
efficacy of this method was substantiated by comparing it with
the exact elasticity solution for plates under the plane strain
assumption. Their findings revealed that the SSA, even with a
limited number of series expansion terms, yields results in excellent
concordance with the exact results for both thin and thick plates. In
a similar vein, the research team of Khdeir and Reddy carried out
extensive studies on the development of SSAs based on
approximate plate theories, demonstrating their applicability to
the analyses of mechanical behaviors of laminated plates. For
instance, Khdeir [124, 125] utilized the SSA to formulate Lévy-
type solutions for the buckling and free vibrations of antisymmetric
angle-ply laminated plates, based on the first-order shear
deformation plate theory (FSDPT). Moreover, Khdeir and
Reddy [119] generated Lévy-type solutions for the bending of
antisymmetric cross-ply rectangular laminates under sinusoidal
transverse loads, employing the classical plate theory (CPT),
FSDPT, and third-order shear deformation plate theory

FIGURE 3 | Laminated structures of beam and plate configurations and the mechanical responses predicted by the simplified state-space approaches: (A)
viscoelastic sandwich beams with its viscoelastic core modeled by an elastic spring in series with a viscous dashpot [112]; (B) first two transverse modes for undamped
sandwich beam; (C) first two transversemodes for damped sandwich beam; (D) graphene reinforced composite functionally gradedmaterial plate with different gradient
distributions along thickness direction [131]; (E) variations of critical buckling loads versus thickness-to-length ratio; (F) effect of the width-to-length ratio on critical
in-plane buckling loads under different boundary conditions for FG-X pattern (Reproduced with permission from Palmeri et al. [112], copyright 2016 by ASCE, Open
Access; Reproduced with permission from Lv et al. [131], copyright 2019 by IOP Publishing, Open Access).
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(TSDPT) in conjunction with the SSA. Their numerical results
highlighted significant discrepancies between the deflections
predicted by the CPT and those from FSDPT and TSDPT
under various boundary conditions. In another study, Khdeir
[120] presented Lévy-type solutions for shear deformable
antisymmetric angle-ply laminated plates, using the Yang,
Norris, and Stavsky (YNS) theory in combination with the SSA.
A comparative analysis between the Lévy-type solutions derived
from the FSDPT and classical Kirchhoff plate theory in
conjunction with the SSA [120] revealed significant difference
between the results from the Kirchhoff plate theory and those
from the FSDPT. In contrast to laminates with antisymmetric
angle-plies, Librescu and Khdeir [122] proposed a higher-order
plate theory and examined the static deformation of symmetric
cross-ply laminated plates using the SSA. They further employed
this method to investigate the buckling and free vibration of the
same laminated plate under various boundary conditions [126].
Built upon the laminated anisotropic plate theory as considered in
Refs [145, 146], Khdeir [127] generated Lévy-type solutions for the
buckling and free vibration of symmetric cross-ply laminated plate
utilizing the state-space technique. Khdeir [128] also used the SSA
to develop the Lévy-type solutions for the buckling and free
vibration of unsymmetric cross-ply laminated plates based on
the refined shear deformation theory used in [147]. In [118],
Khdeir commented on the application of the SSAs to bending,
buckling, and free vibration analyses of composite laminates. It was
concluded that for plate structures with the characteristic length-
to-thickness ratio greater than 20, the results from [119–122,
124–126], [127, 128] obtained from different plate theories
under various boundary conditions agree well with the exact
solutions. Lastly, based on the FSDPT, Xing and Xiang [123]
proposed an analytical method for the buckling of symmetric
cross-ply composite laminates, using the separation-of-variable
method in conjunction with the SSA to enhance the
computational efficiency and circumvent numerically ill-
conditioned problems. The accuracy and effectiveness of the
analytical model were validated by comparing the numerical
results with the those in the literature [126, 148].

SSAs have also been utilized to investigate the size-dependent
behaviors of nanoplates. Leveraging the two-variable plate theory
(TVPT) in conjunction with the Eringen’s nonlocal elasticity
theory, Sobhy [132] examined the effect of hygrothermal
conditions on the bending of orthotropic nanoplate under
various boundary conditions. The study concluded that the
results predicted by the TVPT agree well with the published
solutions, suggesting that the TVPT is more accurate than the
CPT. Furthermore, the deflection of the nanoplate was found to be
directly proportional to the temperature, moisture concentration,
scale parameter, side-to-thickness ratio, and modulus ratio, while
inversely proportional to the length-to-thickness ratio and
mechanical load. Trinh et al. [129] developed the state-space
Lévy solutions for size-dependent static, free vibration, and
buckling behaviors of FGM sandwich plates under diverse
boundary conditions. The analysis was based on a refined shear
deformation theory in conjunction with the modified couple stress
theory. It was revealed that the material distribution, geometric
parameter, characteristic length parameter, and boundary

conditions significantly alter the deflections, stresses, natural
frequencies, and critical buckling loads of the sandwich plate.
The results obtained provide a valuable benchmark for
mechanical analyses of FGM microplates. In a similar vein,
several research groups have focused on the mechanical
behaviors of FGM plates. For instance, Zhang et al. [130]
employed the state-space Lévy method to investigate the
vibration and buckling behaviors of functionally graded carbon
nanotube (FG-CNT) reinforced composite rectangular plate
subjected to in-plane loads, based on the TSDPT. The
simulation results indicated that the CNT distribution, length-
to-thickness ratio, and boundary conditions have substantial
influences on the natural frequencies, mode shapes, and critical
buckling loads of the FG-CNT composite plates. Additionally, Lv
et al. [131] employed this theory to explore the vibration
characteristics of moderately thick FGM graphene reinforced
composite plates with different gradient distributions in
Figure 3D under different boundary conditions. The effects of
graphene distribution, plate thickness-to-width ratio, length-to-
width ratio, and external load on natural frequency and critical
buckling loads were thoroughly examined and discussed.
Figure 3E showed that the dependence of critical buckling load
on thickness-to-length ratio is affected by the gradient distributions
of the graphene. Figure 3F revealed that the relationship between
the critical in-plane buckling loads and the width-to-length ratio is
dependent on the support conditions of the FGM plate. Utilizing
the four-variable plate theory (FVPT) in conjunction with the SSA,
Demirhan and Taskin [133] investigated the bending and free
vibration of porous FGM plate with two opposite simply-
supported edges. The influence of porosity parameter, plate
aspect ratio, material gradient index on the deflections and
natural frequencies were scrutinized. The analytical method was
validated by comparing the obtained results with those in the
literature [149]. Similarly, Rouzegar et al. [134] presented the state-
space Lévy solutions for the free vibration of a smart laminated
plate, with its FGM core sandwiched by two piezoelectric layers,
based on the FVPT. A comparison between the results and those
available in Refs [150, 151] verified the accuracy of the analytical
model. It was concluded that the piezoelectric layer thickness,
material graded index, plate geometric parameter, and boundary
conditions significantly influence the natural frequencies of the
smart composite structure.

Laminated Shells
Recent years have seen a surge in research focused on the
development of simplified state-space formulations based on
various shell theories and their subsequent applications in the
mechanical analyses of laminated shells. Built upon the classical,
first-order, and third-order shell theories, Khdeir et al. [135]
developed analytical solutions for the bending, free vibration, and
buckling behaviors of cross-ply circular cylindrical shells under
various boundary conditions, utilizing the stat-space technique.
The study explored the effects of boundary conditions, layer
number, and shear deformation on the deflection, natural
frequencies, and critical buckling loads. Numerical results
indicated a significant deviation between the results from the
classical shell theory (CST) and those form the shear deformation
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theories. Furthermore, the inclusion of transverse shear strain
results in the discrepancies between results from the first-order
shell theory (FOST) and third-order shell theory (TOST).
Subsequently, Khdeir and Reddy [136] presented Lévy-type
solutions for the bending, free vibration, and buckling of
doubly curved cylindrical and spherical shells under various
boundary conditions. These solutions were based on three
types of shell theories in conjunction with the SSA, and the
conclusions drawn were similar to those in Ref. [135]. In a related
study, Ye and Soldatos [69] established the state-space
formulations for the buckling analysis of simply-supported
laminated hollow cylinders and cylindrical panels subjected to
the single or combined mechanical loads, by neglecting the initial
shear stresses. Simulation results showed that the trends of the
critical buckling load parameter as a function of the stiffness of
the hollow cylinder or cylindrical shell agree with the 3D exact
results. The SSA exhibits higher efficiency than the FEM for the
shell structures with a large number of layers. Recently, Dozio
[137] developed general state-space Lévy-type solutions for the
free vibration of orthotropic multilayered cylindrical and
spherical panels under different boundary conditions. Various
shell theories can be integrated according to the shell thickness,
the degree of anisotropy of the considered problems, and the
desired accuracy. Compared with the existing Lévy-type vibration
solutions [152, 153], the final matrix of the present solutions was
invariant with respect to the 2D kinematic shell theories. A single-
layer spherical shell was selected as a numerical example and the
comparison of the displacement fields obtained from the 2D shell
theory and 3D theory validated the accuracy of themethod for the
single-layered spherical shell. Moreover, the accuracy of the
developed 2D analytical model for multilayered shells strongly
depends on the refinement of the 2D shell theory, especially when
the panel is thick and exhibits strong material anisotropy.
Hosseini-Hashemi et al. [138] performed a free vibration
analysis of FGM viscoelastic cylindrical panel made of
polymeric foams using the SSA, based on the FOST. The
effects of geometric and material parameters as well as
boundary conditions on natural frequencies were examined.
The agreement of the obtained results with those from the
FEM verified the validity and accuracy of the developed
method. Finally, Razgordanisharahi et al. [139] employed the
SSA to investigate the free vibrations of a honeycomb sandwich

panel consisting of a hexagonal honeycomb core layer and two
face sheets, based on the FOST. The comparison of the obtained
results with those in previous studies verified the accuracy of the
model. The simulation results revealed that the natural
frequencies of the sandwich panel are also significantly
dependent on the geometric parameters of the honeycomb core.

STATE-SPACE APPROACHES TO
COMPLEX PERIODIC STRUCTURES

In addition to the previously discussed laminated structures in
beam, plate, and shell forms, complex periodic structures,
composed of numerous identical units or periodic arrays in
varying geometric configurations, have been extensively utilized
in various fields such as aerospace, civil and structural engineering,
and marine. These applications include, but are not limited to,
space antenna, aircraft fuselages, and ship hulls. The multitude of
potential unit configurations or unit array often complicates the
mechanical analyses of these complex structures. To mitigate this
complexity, units of different configurations are often modeled
using approximate structural theories, which can lead to significant
discrepancies in predicting the mechanical behaviors of entire
structures [154]. The FEM is frequently employed as a robust
and effective tool for analyzing these complex periodic structures
due to its vast and comprehensive library of elements. However, the
natural frequencies of complex periodic structures composed of
many identical units are typically closely grouped within frequency
bands. The number of natural frequencies within each band is
equal to the number of the repeated units in the structure [155,
156]. Consequently, accurately predicting the natural frequencies
and corresponding mode shapes of these structures using the FEM
can be both time-consuming and potentially inaccurate. To address
these challenges, mixed transfer matrix methods (also called mixed
SSAs) have been proposed that combine numerical or theoretical
methods with the transfer matrix method based on state-space
formulations. These hybrid approaches are particularly useful for
handling the mechanical problems associated with complex
periodic structures that have intricate unit configurations. This
section will review the development and application of these mixed
SSAs in the dynamic responses of these complex periodic
structures, as summarized in Table 3.

TABLE 3 | Summary of mixed state-space approaches and their applications in complex periodic structures composed of different unit configurations.

Unit configuration Method Dynamic response Reference

Beam TMM Vibration [157–160]
Beam TMM and WPA Vibration [161]
Beam FEM and TMM Wave [162]
Duct, rod, and beam TMM and SM Wave and vibration [163]
Beam TMM and WPA Wave [164–166]
Beam TMM and WPA Vibration [167, 168]
Pipe, beam, and truss TMM and WPA Wave [169]
Beam and truss FEM, TMM, and WPA Wave [170]
Truss FEM, TMM, and WPA Vibration [171–174]
Truss FEM, TMM, and WPA Wave [175]

Acronyms: TMM, transfer matrix method; FEM, finite element method; WPA, wave propagation approach; SM, Spectral method.
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Beam-Type Periodic Structures
Professor Y. K. Lin and co-workers have conducted extensive
research on the dynamic behaviors of complex periodic beam
structures on various flexible supports, utilizing the transfer
matrix method based on state-space formulations. For
instance, Lin and Mcdaniel [157] developed an analytical
method for predicting the frequency response of a finite
periodic Euler-Bernoulli beam on multiple elastic supports as
shown in Figure 4A, which was seen as a simplified version of a
skin-stringer panel system used in flight vehicle design [176],
based on the transfer matrix method. They presented the
frequency-response functions for both undamped and damped
systems and discussed the effect of the dampers, modeled by
spring-suspended mass, on frequency responses. Subsequently,
Vaicaitis et al. [158] investigated the spatial decay in the dynamic
response of an infinite damped periodic Euler-Bernoulli beam
structure, supported by identical elastic springs and subjected to
sinusoidal excitations at a specific unit. They discovered that the
distance of spatial decay in frequency response is dependent on
the excitation frequency, the shape of spectral density, and the
cross-spectral density of the forcing field. They also found that
dampers can be used for vibration control of such a periodic beam
structure. Furthermore, Vaicaitis and Lin [161] analyzed the
frequency response of a finite N-span periodic Euler-Bernoulli
beam on evenly spaced elastic supports, subjected to turbulent
boundary-layer pressure excitation. They used the transfer matrix
method in conjunction with the flexural wave propagation
approach. Numerical results demonstrated the convenience

and suitability of the transfer matrix method based on state-
space formulations in studying the dynamic response of periodic
structures subjected to random pressure fields. Lin and Yang
[159] carried out a free vibration analysis of a simply-supported
disordered periodic beam using the transfer matrix method for
state vectors. They considered two types of disorder: the random
deviation of unit length from an ideal identical value and the
random fluctuation of the bending stiffness. They revealed that
random unit lengths significantly influence natural frequencies of
different orders, but the effect of random bending stiffness on
frequencies is negligible for such a disordered multispan beam.
Moreover, random unit lengths also led to variability in the
normal modes. Yang and Lin [160] further examined the
effect of random unit-length deviations of a disordered
periodic beam on multiple hinge supports on its frequency
responses. They applied two types of excitations to the beam
structure, namely, a concentrated force or moment and a
distributed frozen force. Their numerical results showed that
considering the disorder in unit lengths decreases the amplitude
of the statistical average of the frequency response function,
particularly near the resonance frequencies, but increases its
standard deviation when approaching these frequencies.
Furthermore, some vibration modes that do not appear in the
frequency spectrum of a perfect periodic beam can be actuated in
this disordered structure. Later, Yeh and Chen [162] employed
the finite element method and transfer matrix method to analyze
the longitudinal wave propagating in a periodic sandwich beam
structure, where the base beam was covered by the constrained

FIGURE 4 | Some cases of periodic complex structures. (A) Periodic beam structure with periodic elastic supports [157]; (B) schematic of truss-type space
periodic structure; (C) frame structure based on beams [175]; (D) small-scale five-span planar truss-type structure [174] (Reproduced with permission from Lin and
Mcdaniel [157], copyright 1969 by ASME; reproduced with permission fromCai and Lin [175], copyright 1991 by ASCE; reproduced with permission fromRen and Zhou
[174], copyright 2014 by Elsevier, Open Access).
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layer and viscoelastic layer. The study revealed that the length
ratio and base beam materials could be used to tune the location
and width of the stop and pass bands of this periodic structure,
thereby filtering certain bands of frequencies. Assis et al. [163]
examined the complex band structures and forced response of a
one-dimensional phononic system with arbitrary geometric and
material profiles using the transfer matrix method. They derived
the transfer matrix of the system from a new spectral approach
based on a Riccati differential equation with the impedance as
variable. They explored phononic systems in duct, rod, and beam
configurations, and the obtained results are consistent with those
from traditional plane wave expansion method and spectral
element method, thus validating the high accuracy and
efficient computational cost of the method.

In addition to the previously mentioned transfer matrix
method, a wave propagation approach has also been adopted
to investigate the dynamic behaviors of infinite or semi-infinite
periodic structures. While this method falls outside the purview
of this article, we provide a selection of representative literature
[177–184] for the readers’ convenience. By integrating the
transfer matrix method and wave propagation approach, Lin
and others proposed an innovative theoretical method to analyze
the dynamic response of long periodic beams subjected to
external excitations. For instance, Lin et al. [164] investigated
the dynamic behaviors of a surface-mounted pipeline, modeled as
an infinitely long Euler-Bernoulli beam, under seismic excitation.
The seismic input was introduced to the pipeline structure
through evenly spaced supports. Simulation results validated
the efficacy of this method, which could be expended to
examine the effect of random variation of the support
spacings and the ground motion on the pipeline’s response.
Furthermore, Cai and Lin [165] explored the localization
property of wave propagation in disordered periodic structures
using the transfer matrix method in conjunction with the wave
propagation approach. They proposed a new perturbation
scheme to calculate the localization factor, defined as the
average exponential decay ratio of wave propagation along the
propagation direction, based on probability theory. The
numerical example of a multi-supported Euler-Bernoulli beam
with an additional torsional spring at each support highlighted
two significant features of the developed method: its high
accuracy and the inclusion of damping effect in practical
structures. Moreover, they utilized the proposed method to
study the high-level dynamic response near the point of
dynamic excitation, induced by the structural disorder in a
disordered periodic structure [167]. Their simulation results
indicated that both the number of disordered units and the
deviation level of disorder significantly influence the
concentrated response near the excitation point. An increase
in either one of these factors leads to larger standard
deviations of responses. However, structural damping can help
to reduce the response level and the likelihood for the responses
to reach a much higher level. Additionally, Qiu and Lin [166]
computed the localization factor of mono- and multi-channel
waves in disordered periodic beam structures supported by linear
torsional and translational springs. Their study found that the
computed results agree well with those from Monte Carlo

simulations, except near boundaries of each wave-passage
band. Prof. Lin provided an insightful review of these works
on wave propagation and frequency responses of disordered
periodic beam structures [185]. Furthermore, Romeo and
Paolone [169] employed the transfer matrix method to
conduct the wave propagation analysis in three-coupled
periodic structures among transversal, longitudinal, and
torsional waves. They considered three types of periodic
structures, namely, pipes, thin-walled beams, and truss beams.
Their unique band structures, including the stop, pass, and
complex domains, were computed and presented. Saeed and
Vestroni [168] presented an exact closed-form method for
frequency response analysis of periodic beam system under
multiple excitations using the wave transfer matrix method.
The wave solutions were formed by a free wave field
incorporating the dynamic response of the entire structure and
a forced wave field generated by constrained forces or external
excitations. Two numerical examples, namely, a multi-
constrained translating string and a beam on multiple
supports, demonstrated the efficiency and accuracy of the
proposed approach.

Truss-Type Periodic Structures
Complex truss-type structures composed of spatially periodic
truss units are a prevalent form of large space structures as shown
in Figure 4B used in aerospace and civil engineering due to their
light weight, high strength, and design flexibility. The truss units
are interconnected end-to-end, forming sections of a spatially
periodic array, with different sections potentially intersecting or
interconnecting. The dynamic analysis of these truss-type
periodic structures presents a greater challenge compared to
finite periodic beams for two primary reasons. First, the
shared degrees of freedom at the interface between two
adjacent truss units are larger than those between beam units.
Second, the quantity of truss units surpasses that of beam units,
and truss-type periodic structures are often considered infinitely
long. To address these challenges, Lin and others proposed a
novel method that integrates the FEM, the transfer matrix
method, and the wave propagation approach. The FEM was
employed to model a truss unit or each type of periodic unit
array in the structure, accurately representing the dynamic
characteristics of the unit, irrespective of its complexity.
Traditional transfer matrices for state vectors were converted
into the transfer matrix for wave vectors, enabling the
identification of various types of waves, dependent on the
number of degrees of freedom at the interface of two adjacent
truss units, propagating along the structure in two opposite
directions [186]. Moreover, the innovative concept of wave
reflection and transmission matrices was introduced to replace
single wave reflection matrix in the traditional wave propagation
approach. This innovation circumvents computational errors
associated with the apparent growing wave in the opposite
propagation direction caused by the damping effect of
practical structures.

Yong and Lin [170] applied this method to investigate the
dynamic responses of long and complex periodic structures
composed of beam and truss units under external excitation.
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Their numerical examples demonstrated that this method
is more computationally efficient than applying the FEM
directly to the entire structure. They [171] further studied
the dynamic behaviors of complex truss-type periodic
structures, consisting of two intersecting arrays of truss-cell
units, subjected to sinusoidal and impulse point excitations.
The numerical results validated the efficiency, accuracy,
and numerical robustness of this novel method for
analyzing truss-type space structures with damping. Built
upon this method, Cai and Lin [175] performed the
dynamic response analysis of engineering frame structures
composed of interconnected slender components as shown
in Figure 4C, subjected to either concentrated or distributed
loads. Every slender component was treated as a multi-channel
waveguide, with its dynamic property characterized by wave-
reflection and transmission matrices. The entire frame
structure was then conceptualized by a network of these
waveguides. Numerical examples, encompassing different
boundary types and external loads, demonstrated numerical
efficiency and theoretical accuracy of this approach for
analyzing frame structures composed of interconnected
members. In a further development, Yong and Lin [172]
developed an enhanced computational scheme for dynamic
response analysis of truss-type space periodic structures with
complicated structural configurations and subjected to
arbitrary excitations. This scheme featured three significant
improvements: the characterization of individual truss-arrays
via wave-scattering matrices, a new bookkeeping system
to track transmitted, reflected, and re-directed waves in
various direction, and a procedure to eliminate step-by-step
superfluous unknowns for simplifying the calculation. Their
research demonstrated that this innovative scheme offers a
more efficient and general numerical tool for the response
analyses of entire truss-type periodic structures and even
individual structural members. In a parallel development,
Luongo and Romeo [173] proposed a modified version of
traditional complex wave vector approach for the dynamic
analysis, including the free and forced vibrations, of long
undamped periodic structures. This version introduced two
significant features to address the numerical difficulties
encountered by the complex wave vector method. First,
the real transfer matrix for state vectors was transformed
into a transfer matrix for wave vector, which remained real,
thus avoiding an ill-posed problem. Second, the wave vectors
were rearranged to let the computation to proceed in
the propagation direction of waves, thereby avoiding the
transfer matrix ill-conditioning. Numerical examples of an
N-span Euler-Bernoulli beam structure validated the
efficiency and superiority of this modified wave vector
approach. Recently, Ren and Zhou [174] proposed a strain
response estimation strategy for the fatigue monitoring of
an offshore truss structure, using the state-space formulations
and a Kalman filtering process. A small-scale planar truss
periodic structure in Figure 4D subjected to deterministic and
stochastic excitations was simulated to estimate the effectiveness
and integration capacity of the proposed theoretical algorithms
with the fatigue monitoring system.

STATE-SPACE BASED NUMERICAL
METHODS

In general, the state equations of complex structures can be
resolved either analytically or numerically. Traditional state-
space analytical methods often encounter challenges when
dealing with boundary conditions other than the simply-
supported ones, such as the free and clamped end conditions.
As a result, over the past two decades, several state-space based
numerical methods have been proposed. These methods
amalgamate the benefits of both the SSA and the
corresponding numerical methods. Examples include the
state-space based differential quadrature method (SS-DQM),
the state-space based finite element method (SS-FEM), and the
state-space based finite difference method (SS-FDM), among
others. This section provides a succinct introduction to the
state-space based numerical methods and reviews their
applications in analyzing the mechanical behaviors of
complex structures. These advances are then summarized in
Table 4 for easy reference.

State-Space Based Differential Quadrature
Method
To circumvent the limitation that traditional state-space
methods, which struggle with free and clamped boundary
conditions, Chen et al. [187–189, 196, 197] proposed a semi-
analytical approach that combines state-space formulations with
the differential quadrature method (DQM). In this SS-DQM,
state-space formulations are established with the transfer
direction along the thickness of complex structures, and the
state equations are discretized along the in-plane direction.
This results in new state equations expressed by state
variables at discrete points. The final system algorithm
equation can then be obtained by applying various boundary
conditions. Since its inception, the SS-DQM has been
extensively applied to study the static and dynamic responses
of laminated structures in beam, plate, and shell configurations,
as summarized in this subsection.

Chen et al. [187] utilized the SS-DQM to present elasticity
solutions for the free vibration of thin and thick laminated
beams under arbitrary boundary conditions. The agreement
between the obtained natural frequencies and those from other
works [227, 228] validated the accuracy and effectiveness of the
SS-DQM. Numerical results indicated that the SS-DQM
predicts frequencies more accurately than the approximate
beam theories. Subsequently, they investigated the bending
and free vibration of arbitrarily thick beams resting on a
Pasternak elastic foundation using the SS-DQM [188]. The
SS-DQM was found to be superior to other numerical
methods and the beam theories when compared with the
exact solutions for simply-supported beams. Moreover, the
foundation parameter significantly affects the natural
frequencies of the beam system. They further employed this
method to examine the free vibration of generally laminated
beams, where the principal material axes of orthotropic plies do
not coincide with the reference axes [189]. This promoted the
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applications of the state-space formulations for generally
anisotropic materials in structural analysis. Additionally, the
SS-DQM was employed by Xu and Wu [190] to investigate the
buckling and free vibration of partially interactive composite
beams with interlayer slip under various end conditions. This
research served as an extension of the work presented in [17],
further demonstrating the versatility of the SS-DQM in
addressing diverse end conditions.

The SS-DQM has also been used to study the mechanical
behaviors of FGM beams. For instance, Lü and Chen [191]
studied the free vibration of FGM orthotropic beams with
various boundary conditions using the LAT and the
orthotropic elasticity theory of plane stress problem. They
concluded that the SS-DQM can deal with arbitrary boundary
conditions and meanwhile maintain good accuracy even for
higher-order mode shapes of thick plates. Furthermore, the
method in conjunction with the LAT allows for easy handling
of arbitrary material inhomogeneity. Subsequently, they
conducted a 2D thermoelasticity analysis of an FGM thick
beam as shown in Figure 5A, whose material properties vary
continuously and smoothly along the thickness direction,
utilizing the SS-DQM along with the LAT [192]. In the
numerical calculations, the joint coupling matrices (JCM) were
adopted to express the continuity conditions at all mathematical
interfaces, thereby avoiding numerical instability. It can be seen
from Figure 5B that the excellent agreement between the stress
field distributions obtained from the SS-DQM and the exact
solutions validated the accuracy of the method. Also, these results
could serve as useful benchmarks for analyses of FGM thick
beams using other numerical methods. Next, based on the SS-
DQM in conjunction with the LAT, they presented semi-
analytical elasticity solutions for the bending and thermal
deformations of a 2D FGM beam with bi-directional
inhomogeneity under various end conditions and subjected to
the temperature load [193]. The bi-directional inhomogeneity
refers to the Young’s modulus of the beam varying exponentially
along both the thickness and longitudinal directions. Simulation
results demonstrated that material inhomogeneity along the

longitudinal direction significantly affects the deflection of the
beam. Moreover, the introduction of bi-directional FGM
materials can potentially reduce thermal stresses of the beam
when subjected to temperature load. Li and Shi [194] extended
the SS-DQM to investigate the free vibration of a functionally
graded piezoelectric material (FGPM) beam under different
boundary conditions. This was based on the elasticity and
piezoelectricity theory in conjunction with the LAT. The
strong agreement between the obtained results and those from
the FEM validated the accuracy and reliability of the proposed
method. Furthermore, the study revealed that the gradient
index, boundary conditions, and beam aspect ratio have
substantial influences on the fundamental frequency of
FGPM beams. Additionally, the SS-DQM based on the
elasticity theory was employed by Alibeigloo and Liew [195]
to investigate the bending and free vibration of functionally
graded carbon nanotube-reinforced composite (FG-CNTRC)
beam sandwiched by two piezoelectric layers serving as the
sensor and actuator. The effects of the CNT volume fraction,
CNT distribution, beam aspect ratio, and boundary conditions
on the deflection and natural frequencies were thoroughly
examined and discussed.

Apart from the beam configuration, the SS-DQM has also
been used to study the mechanical behaviors of complex
structures of plate and shell configurations. For example, Chen
and Lee [196] performed a free vibration analysis of a cross-ply
laminated plate in cylindrical bending under different boundary
conditions using the SS-DQM. Numerical results validated the
efficiency of the method when dealing with the clamped and free-
end conditions. Subsequently, Chen and Lü [197] developed the
SS-DQM to investigate the 3D free vibration of a cross-ply
laminated plate with one pair of opposite edges simply-
supported and with arbitrary boundary conditions at the other
pair of opposite edges. Numerous numerical examples of
laminated plates, with both symmetric and unsymmetric
cross-plies as well as different boundary conditions, were
executed to demonstrate the efficiency of the SS-DQM. Lü
et al. [198] also investigated the free vibration of generally
supported rectangular Kirchhoff plates with internal rigid line
supports under generally boundary conditions, utilizing the SS-
DQM in conjunction with the JCM. The study underscored the
superiority of the developed method over the traditional SSA.
Leveraging the SS-DQM developed from the theory of
piezoelasticity, Zhou et al. [199] conducted the static and
dynamic analyses of orthotropic piezoelectric laminates, as
shown in Figure 5C, in cylindrical bending under various
boundary conditions. It can be noted from Figure 5D that the
physical field distributions along the thickness direction obtained
from the SS-DQM with the number of discrete points M =
7 agreed well with those from the exact solutions, validating
the accuracy and effectiveness of the semi-analytical method.
Subsequently, they extended the SS-DQM to study the effect of
interfacial imperfection, described by a general spring layer
model, on the mechanical behaviors of this laminate in
cylindrical bending [200]. These studies concluded that the SS-
DQM is highly accurate and efficient in dealing with non-simple
support and imperfect interface problems. Yas andMoloudi [201]

TABLE 4 | Summary of state-space based numerical methods to complex
structures with different configurations.

State-space based numerical methods Configuration Reference

SS-DQM Beam [187–195]
SS-DQM Plate [196–201]
SS-DQM Shell [202]
SS-FEM Beam [203–208]
SS-FEM Plate [209–218]
SS-FEM Shell [219–221]
SS-BEM Plate [222]
SS-FDM shell [223]
SS-FSM Plate [224]
SS-RKP-FSM Plate [225]
SS-DSC Beam [226]

Acronyms: SS-DQM, state-space based differential quadrature method; SS-FEM, state-
space based finite element method; SS-BEM, state-space based boundary element
method; SS-FDM, state-space based finite difference method; SS-FSM, state-space
based finite strip method; SS-RKP-FSM, state-space based reproducing kernel particle
finite strip method; SS-DSC, state-space based discrete singular convolution.
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employed the SS-DQM to analyze the 3D free vibration of multi-
directional FGPM annular plates resting on Pasternak elastic
foundation under different boundary conditions. The influences
of material gradient index along the thickness and radial
directions, the Winkler and shear stiffness of the foundation,
and boundary conditions on natural frequencies of the FGPM
plate were examined. They found that a decrease in the multi-
directional gradient index, an increase in plate thickness, and a
change from clamped-clamped to clamped-simple all reduce the
natural frequencies of the FGPM plate. The relationships between
these factors and frequencies significantly depend on the Winkler
and shear elastic coefficients.

Few effort has also been devoted to the mechanical analyses of
complex shell structures based on the SS-DQM. Alibeigloo [202]
performed static and free vibration analyses of an axisymmetric
angle-ply laminated cylindrical shell with various boundary
conditions. The accuracy of the method for laminated
cylindrical shells was verified by comparing the obtained results
with the analytical solutions for simply-supported shells. The effect
of different boundary conditions on the static and vibration
properties of laminated cylindrical shells was then studied.

State-Space Based Finite Element Method
The 3D finite element method serves as a robust and versatile tool
for the mechanical analyses of complex structures under various
boundary conditions and subjected to diverse external loads.
However, it is widely recognized that the conventional 3D
FEM only ensures the continuity of displacement components
across all element boundaries. The stresses derived from the
displacement components, based on the constitutive equations,
are invariably discontinuous across the element boundaries. This

discontinuity hampers the accurate prediction of the mechanical
behaviors of laminated composite structures, particularly the
stress distribution at interlayer interfaces, using the 3D FEM.
To address this issue of stress discontinuity inherent in traditional
3D FEM, a semi-analytical method known as state-space based
finite element method (SS-FEM) has been recently proposed.
This method ingeniously integrates the 3D FEM with the state-
space formulations [203–209]. In this approach, a laminated
structure is partitioned into finite elements in the in-plane
direction, while the displacement and stress distributions along
the thickness direction are directly solved from the state equation
of the structure. The SS-FEM is characterized by two significant
features: 1) it ensures continuous displacement and stress
distributions across all interlayer interfaces; and 2) the scale of
the final system algorithm equation is independent of the number
of layers in the laminated structures. This subsection provides a
comprehensive overview of the development of the SS-FEMs for
various laminated structures and their applications in the
analyses of the mechanical behaviors of these structures.

Ali and Ahankar [203, 204] utilized the SS-FEM to investigate
the time-domain dynamic responses of a laminated beam. Their
findings were instrumental in developing a novel damage
detection method for assessing the composite beam with
delamination of varying sizes and positions, based on the
Eigen-system Realization Algorithm (ERA). The method
demonstrated remarkable accuracy in assessing the size and
location of the delamination and predicting the reduction of
the bending stiffness of the delamination element, with over 97%
accuracy. Similarly, Li and Qing [205] presented a semi-analytical
solution for the free vibration of laminated composite beams with
delamination, using the SS-FEM based on the modified

FIGURE 5 | Some cases of applications of the SS-DQM to mechanical analyses of laminated structures: (A) functionally graded material beam and its layerwise
approximate model [192]; (B) comparison of stress fields of the beam in (A) along the thickness direction obtained from the SS-DQM and exact solutions; (C)
piezoelectric laminated plate in cylindrical bending [199]; (D) comparison of physical fields of the plate in (C) along the thickness direction obtained from the SS-DQM and
exact solutions (Reproduced with permission from Lü et al. [192], copyright 2006 by Springer Nature; reproduced with permission from Zhou et al. [199], copyright
2009 by Elsevier).
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Hellinger-Reissner (H-R) variational principle. They modeled the
delamination between the upper and lower sub-laminates using a
non-linear spring-layer model and examined the influences of the
delamination size, depth, and boundary conditions on natural
frequencies. Their model proved to be a potent and efficient tool
for addressing multiple delamination issues in laminated
structures. Zhou et al. [206] introduced the SS-FEM for the
static response analysis of laminated beams fully sandwiched
by piezoelectric actuating layers, based on a modified mixed
variational principle. They presented the relationship between
the deflection and the secondary converse piezoelectric effect
(SCPE), finding that the SCPE significantly affects the deflection
of the laminated beam fully covered with piezoelectric actuators.
Subsequently, Zhou et al. [207] expanded the aforementioned SS-
FEM to investigate the static deformation of laminated curved
beams bonded with piezoelectric actuators on the top and bottom
surfaces of the substrate. Their model was validated through
several complex cases, such as multi-morph piezoelectric curve
beams and clamped piezoelectric unimorph C-block beam, and
comparison of the obtained results with those from the ANSYS
demonstrated the efficiency and accuracy of the new
mathematical model. dos Santos et al. [208] proposed a
nonlinear SS-FEM based on the von Kármán strain-
displacement relation to analyze the nonlinear responses of a
laminated beam covered by a piezoelectric sensor, acting as an
energy harvester, induced by the flow-structure interaction. The
good agreement between the computational results and the
experimental data underscored the importance of modeling
structural and aerodynamic nonlinearity for accurately depicting
the practical electro-aeroelastic behavior of the entire system.

In the context of plate configuration, Zou and Tang [210, 211]
presented the semi-analytical solutions for the static deformation
and thermal responses of laminated composite plates within the
Hamilton system, using the SS-FEM. The quadrilateral element
was used as the shape function. Numerical results validated the
accuracy and efficiency of the SS-FEM for deformation analyses
of laminated plates, particularly for extensive geometry and
complex boundary conditions. Built upon the principle of
virtual displacement, Sheng and Ye [212] developed the SS-
FEM for 3D static deformation analysis of simply-supported
three-layered composite plates, using an eight-node
quadrilateral element. The comparison of the obtained results
with the exact solution in [24] confirmed the accuracy and
efficiency of the proposed method. They later applied the SS-
FEM to perform stress analysis of orthotropic cross-ply
multilayered composite plates, again using an eight-node
quadrilateral element [209]. The agreement between the stress
fields predicted by the SS-FEM and the existing 3D analytical
solutions [229] as well as traditional FEM [230] validated the
developed method. Numerical tests also revealed the superiority
of the SS-FEM, which provides accurate continuous displacements
and transverse stresses along the thickness direction, over the
traditional FEM. Ye et al. [213] subsequently conducted the
stress analysis of a laminated composite plate with free edges
and subjected to transverse and in-plane loads based on the SS-
FEM. He et al. [214] explored static displacements and stresses of
laminated composite plates under three boundary conditions (free,

clamped, and simply-supported) and subjected to thermal load,
using the SS-FEM based on the mixed variational principle and an
eight-node quadrilateral element. Numerical results again
demonstrated the superiority of the SS-FEM over traditional
FEMs. Qing et al. [215] developed a general SS-FEM to obtain
semi-analytical solutions for the static deformation of magneto-
electro-elastic laminated plates, based on the derived modifiedH-R
mixed variational principle for magneto-electro-elastic bodies.
They emphasized that the elastic, piezoelectric, and
piezomagnetic laminated plates can be considered as special
cases of the present model by neglecting certain material
constants. They then used this mathematical model, in
conjunction with the linear quadrilateral element, to investigate
the static response of a simply-supported hybrid laminate and
dynamic responses of a clamped aluminum plate with piezoelectric
patches [216]. The comparison between the present results and
those from the ANSYS validated the efficiency of the developed
model. Furthermore, they studied the free vibration of laminated
plates reinforced by ribs or beams as the stiffeners [217], and
discussed in detail the effect of stiffener height and types on natural
frequencies and mode shapes. The same research group also
carried out a free vibration analysis of laminated piezoelectric
plates with delamination, modeled by a nonlinear spring layer,
using the SS-FEM based on the modified H-R variational principle
[218]. These numerical simulations indicated that the SS-FEM is a
powerful tool for dealing with complex stiffener reinforcement and
delamination problems in complex structures.

Additionally, some effort has been invested in applying the SS-
FEM to the mechanical analyses of laminated shell structures. For
instance, Zhou and Yang [219] conducted a 3D analysis of simply-
supported laminated cylindrical shell and panel with arbitrary shell
thickness. Their study demonstrated that the proposed method
could accurately provide 3D stress and displacement distributions
of thin or thick composite shell structures. In a study parallel to the
previous research on plate configuration, Sheng and Ye [220]
utilized the SS-FEM to generate a semi-analytical solution for
stress fields of cross-ply laminated composite shells by using a
thin shell element. Simulation results showed that the distributions
of stress fields along the thickness direction predicted from the SS-
FEM agreed well with those from the exact solutions in [61],
suggesting that the method is adept at handling stress problems of
laminated shells. Also, the results could serve as a valuable
benchmark for testing new shell theory and finite element
codes. Built upon the SS-FEM for circular cylindrical shells,
Qing et al. [221] proposed a mathematical model for the free
vibration of thick double-shell systems, where two cylindrical shells
are connected by the springs. Numerical results revealed that the
proposed model is not only independent of the thickness and the
number of layers in the shell system, but also capable of handling
complex support boundaries and the arbitrarily distributed
interconnecting springs.

Other State-Space Based Numerical
Methods
Apart from the elegant SS-DQM and SS-FEM, other state-space
based numerical methods have also been proposed to address
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structures with unique geometric configurations, such as half-
space, or large aspect ratio, or improve the convergence efficiency
of numerical methods. In this subsection, we provide a succinct
introduction to these state-space based numerical methods.
Additionally, we summarize their applications in the mechanical
analyses of complex structures.

For instance, Jiang et al. [222] proposed the state-space based
boundary element method (SS-BEM) to study the stress
distribution of multilayered anisotropic media or half-space
under various loads. They employed a procrustean technique
to enhance the speed of convergence. On one hand, the SSA can
yield the fundamental solutions for orthotropic elastic layers
under arbitrary boundary conditions, where the number of
equations remains independent of the layer number of the
structures. On the other hand, since these fundamental
solutions satisfy the boundary conditions and continuity
conditions, no elements are required on the boundaries and
interfaces. Consequently, when these fundamental solutions
are implemented in the spline BEM, the number of elements
is significantly reduced without sacrificing numerical accuracy.
Undoubtedly, the SS-BEM outperforms the traditional BEM in
solving mechanical problems in multilayered anisotropic media,
particularly in multilayered half-space. They selected a problem
of a spring-supported anisotropic layer containing a uniformly
pressurized elliptic cavity under two boundary conditions as the
numerical example (schematic of the elastic layer with fixed

boundaries was shown in Figure 6A). They found that even
though only four elements are used for the entire boundary of the
elliptic cavity, the results obtained from the SS-BEM still exhibit
good agreement with those from the FEM as shown in Figure 6B.
These results validated the accuracy and efficiency of the
proposed SS-BEM.

To address the limitations of the SS-FEM and SS-BEM in
analyzing structures with large aspect ratios, which necessitate
numerous in-plane elements and consequently result in high
computational costs, Ruddock and Spencer [223] introduced the
state-space based finite difference method (SS-FDM). This
method was specifically developed for the static deformation
and stress analyses of laminated or inhomogeneous,
anisotropic, elastic, and thermoelastic plates and shells
subjected to various mechanical or thermal loads. The SS-
FDM employs the finite-difference approximation to discretize
the derivatives with respect to the in-plane directions, thereby
formulating the elasticity equations as a system of linear first-
order ODEs of the stress and displacement variables at the grid-
points. By judiciously selecting proper state variables, the state-
space formulations were established with the transfer direction
along the thickness. Given the inherent efficiency and accuracy of
the FDM, the SS-FDM, which is derived from the FDM, also
exhibits high efficiency and accuracy, particularly for laminated
or inhomogeneous structures. As a demonstration of its
effectiveness, Ruddock and Spence conducted a stress analysis

FIGURE 6 | Some cases of application of state-space based numerical method to mechanical analyses of laminated structures: (A) an orthotropic elastic layer with
an elliptic cavity subjected to uniform internal pressure [222] (B) comparison of the horizontal displacement of the structure in (A) along the horizontal direction predicted
by FEM and SS-BEM; (C) cross-section view of 3-ply laminated cylinder [223]; (D) variation of stress fields of the cylinder in (C) versus radius (solid line for analytical
solutions and dot for state-space based finite difference method) (Reproduced with permission from Jiang and Lee; copyright 1994 by ASCE; reproduced with
permission from Ruddock and Spencer [223], copyright 1997 by The Royal Society).
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of a laminated circular thermoelastic and anisotropic cylinder in
plane strain, as shown in Figure 6C, under four external loads. It
can be seen from Figure 6D that the results obtained are in
excellent agreement with those from the analytical solutions,
thereby validating the viability and accuracy of the SS-FDM.
However, they also emphasized the need for further research to
enhance the robustness of the SS-FDM and to address the
challenges associated with the incorporation of boundary
conditions.

The finite strip method (FSM) is another well-established
numerical method that is particularly suited for the 3D
analysis of homogeneous structures with regular geometric
configurations [231, 232]. By integrating the FSM and the
SSA, Attallah et al. [224] presented a semi-analytical solution
of simply-supported laminated composite plates. The FSM was
employed to represent the displacement and stress components
along the in-plane direction, utilizing polynomial shape
functions, while the SSA was used to determine their
distributions along the thickness direction of laminated plates.
Recently, Khezri introduced a novel variant of FSM, known as the
reproducing kernel particle finite strip method (RKP-FSM), to
address issues related to abrupt thickness changes or material
discontinuities [233]. Subsequently, the same research group
[225] proposed an innovative numerical method for the static
analysis of thick and orthotropic rectangular laminated
composite plates under various boundary conditions. This
method was based on the SSA in conjunction with the newly
developed RKP-FSM. Similar to the classical FSM, the RKP-FSM
was utilized to approximate the in-plane distributions of the
displacements and stresses. The SSA was adopted to predict the
displacements and stresses in the thickness direction of laminated
plates. The SS-FSM and SS-RKP-FSM retained the advantages
of the SSA, namely, the number of unknown variables in
these methods is independent of the number of plate layers. A
series of numerical examples were conducted to evaluate
and validate the convergence, accuracy, and robustness of
these methods.

Lastly, it is worth noting the state-space based discrete
singular convolution (SS-DSC) algorithm proposed by Xin
and Hu [226] for the free vibration analysis of laminated
magneto-electro-elastic beams. In the SS-DSC approach, the
DSC was employed to discretize the length direction of the
beam, thereby transforming the original PDEs of a magneto-
electro-elastic body into a set of first-order ODEs. By carefully
selecting the state variables, the state equation of the beam was
established with the transfer direction along the thickness
direction. The thickness domain was then analytically solved
by using the SSA. The combination of the DSC with the Taylor’s
series expansion enabled the implementation of various
boundary conditions. Numerical examples demonstrated that
the SS-DSC can accurately predict the natural frequencies of
laminated composite beams with a low calculation cost.
Furthermore, no special arrangement of grid points along the
length direction is required, further enhancing the practicality
of this method.

CONCLUSION AND OUTLOOKS

Conclusion
This paper presents a comprehensive review of the
development and applications of SSAs (also known as
transfer matrix methods for state vectors) in the analyses
of the mechanical behaviors of complex composite structures
of varying configurations, including the beams, plates, shells,
and trusses. Utilizing the 3D SSA, simplified SSAs based on
structural theories, and state-space based numerical methods,
the static deformation and free vibration of laminated
structures in beam, plate, and shell forms have been
thoroughly investigated. For the sake of completeness,
mixed SSAs for the dynamic response analyses of complex
periodic structures have also been summarized. It can be
generally concluded that SSAs offer a powerful and efficient
tool for accurately predicting the static and dynamic
responses of laminated and periodic structures. The results
obtained could serve as valuable benchmarks for evaluating
the developed approximate theoretical methods, numerical
methods, and finite element codes. Compared to past
research, significant advancements have been made in
recent decades, which are summarized as follows:

1) State-space formulations for various material symmetries and
geometrical configurations have been established. Leveraging
these state-space formulations, transfer matrix methods have
been integrated with a range of theoretical or numerical
methods, including layerwise approximate technique, wave
propagation method, structural theories, finite element
method, and differential quadrature method, to facilitate
the development of comprehensive SSAs. These approaches
provide a more general, efficient, and accurate means of
predicting the mechanical behaviors of complex composite
and smart structures, particularly in aeronautical applications,
under different boundary conditions and subjected to various
external loads.

2) Applications of SSAs in the mechanical analyses of complex
structures composed of novel smart and composite materials
have been documented. These materials include dielectric
elastomers, thermo-magneto-electro-elastic coupling
materials, and fiber- or graphene-reinforced composite
materials. It can be concluded that SSAs can accurately
predict the influences of multi-field coupling, material
gradient index, external electric, thermal, and mechanical
loads, and reinforcement distributions on the mechanical
behaviors of these structures.

3) SSAs have also been applied to novel complex structures,
such as disordered periodic structures with random unit
lengths or random elastic supports, phononic crystal
systems with arbitrary geometric configuration, complex
structures on various elastic supports or foundations. Novel
frequency responses (e.g., high-level response) and wave
properties (e.g., stop and pass bands) can be validly
revealed and accurately predicted using SSAs.
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It is worth mentioning that the state equations of the
structures can be solved not only by the transfer matrix
method, i.e., the SSA, in this article, but also by the
method of reverberation-ray matrix (MRRM) [234–236].
The MRRM is particularly suitable for steady-state or
transient response analyses of a truss-type complex
structure or a multi-branched frame structure. Different
from the system matrix in SSAs, the reverberation-ray
matrix consists of two global matrices, namely, the global
scattering matrix and the global phase matrix. The detailed
differences between the SSA and MRRM can refer to Ref.
[237]. In addition, in SSAs, the standard transfer matrix
relating the displacements and stresses at the layer top and
bottom would become problematic when the layer thickness
or frequency increases, resulting in numerical instability of
the transfer matrix method. Consequently, the stiffness
matrix method (SMM) has been developed to solve this
instability [238]. In SMM, the stresses at the top and
bottom of the layered structure are expressed by the
displacements at the top and bottom through the global
stiffness matrix derived through a recursive algorithm
based on layer stiffness matrix. In summary, the MRRM
and SMM can be a viable alternative to SSAs for the
mechanical analyses of certain complex structures in
aeronautical and engineering applications.

Outlooks
Despite the substantial advancements that have been made,
several significant issues listed in the following remain to be
addressed in the future research.

1) SSAs have proven to be efficient and accurate in predicting the
mechanical behaviors of low-frequency modes, including
bending and extension, in complex composite and smart
structures of various geometric configurations. However,
high-frequency modes such as thickness-shear and
thickness extensional modes exhibit more complex
deformation patterns along both in-plane and thickness
directions than their low-frequency counterparts [239, 240].
Consequently, the development of SSAs for analyzing the
mechanical behaviors of high-frequency modes in these
complex structures presents a valuable and intriguing
avenue for the future research.

2) State-space techniques have been reported to accurately
predict the wave properties of beam-type phononic crystals
composed of elastic materials. However, the wave properties
of these elastic material phononic crystals remain unalterable
once their geometric parameters and configurations are
established. Recently, the concept of dielectric elastomer
phononic crystals has been introduced, offering the
potential for tunable band structures through the
application of mechanical and electrical excitations [99,
241, 242]. Consequently, there is a pressing need for the
development of appropriate SSAs that can accurately
predict the band structures of dielectric elastomer phononic
crystals under mechanical and electrical loads. This area of
research warrants further investigation.

3) While certain specialized state-space based numerical
methods have been proposed to investigate the
mechanical behaviors of complex structures of
specialized geometric configurations or boundary
conditions, their application to such structures remains
limited. Consequently, the robustness and versatility of
these methods remain uncertain, and potential numerical
difficulties may arise in certain applications. This
highlights a significant need for the further refinement,
rigorous testing, and robustness validation of these state-
space based numerical methods. This is a crucial step
towards ensuring their reliability and applicability in a
wide range of complex structural analyses.

4) The skin-stringer panel system, commonly used in aircraft
fuselage, has been modeled as a 1D periodic beam structure
on multiple elastic supports. Its dynamic responses have
been effectively predicted using the transfer matrix method
based on state-space formulations. However, the neglect of
the curvature inherent of practical skin panels in the
theoretical model may significantly influence the
dynamic responses of the actual skin panel system
[157]. As a result, investigating the dynamic behaviors
of a curved periodic beam structure using the transfer
matrix method for state vectors presents a valuable and
challenging future research topic.

5) Fluid-solid interaction remains a crucial and challenging
issue, particularly due to the extensive use of cylindrical
shell and pipeline structures in maritime transportation.
There is a pressing need to establish appropriate
mechanical models that describe the interaction between
the solid structures and various fluids. Built upon these
models, the analyses of frequency responses and wave
propagation in cylindrical shell structures or periodic pipe
structures using SSAs is of vital importance. Such analysis is
particularly relevant to the health monitoring and damage
warning of these structures, and thus warrants further
attention in the future research.

6) With the advancement of micro-electro-mechanical
systems (MEMS) and nano-electro-mechanical systems
(NEMS), novel laminated structures and devices at the
nano or micro scale have been recently fabricated,
exhibiting unique, size-dependent behaviors [243, 244].
However, current research on size-dependent behaviors of
these miniaturized laminated structures is still in its
infancy. Therefore, the development of SSAs in
conjunction with various modified continuum theories
[243, 245] to explore the size-dependent behaviors of
such nanostructures are worth in-depth investigation in
future research endeavors.
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