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This study reviews tools and approaches developed at universities and institutes for
conceptual and preliminary aircraft design. Problem, solution, and behavioral space
covered by each tool are discussed and a categorization for the methods underlying
the different disciplinary tools is proposed. Special attention is given to the search method,
if any, embedded in or supported by each tool to explore the proliferation of
Multidisciplinary Design Optimization (MDO) in aircraft design tools. The study shows
that many tools are available but most are proprietary and none covers all the aspects of
the conceptual and preliminary design process. MDO is only a small element in most of the
tools. The review can be used for the formulation of requirements and necessities for future
aircraft design tools.
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INTRODUCTION

Aircraft design tools serve multiple purposes, ranging from design education support and aircraft
conceptual design in industry, to exploration of ideas in innovation management. The objective of
this paper is to identify and review the tools developed for and used in aircraft design research at
universities and institutes as well as design tools commercially available. The term design tool in this
context is defined as a coherent set of computer programs that allow a human user to select and/or
define a set of design requirements (problem space), define or select an aircraft configuration (the
solution space) both of which are used by the tool to size a set of design parameters belonging to the
concept based on behavioral models (behavior space). For example, such a design tool would allow
the user to specify requirements such as MTOW, required number of passengers, amount of cargo,
required range for different payloads, and block speed. The user can select an aircraft configuration
such as a tube and wing type aircraft and the tool than reports the required values for the parameters
defining the selected configuration and reports the specification of the solutions. From this example it
becomes clear that design tools can vary from very simple ones, only being able to address the basic
elements of a simple design concept to tools that allow specification and analysis of novel
configurations. To be able to review such apples and oranges a classification of the tools is
proposed based on functionality and fidelity.

The review is intended to support the reader in the selection of tools that best fit the nature of the
design problem at hand. A more specific secondary goal is to identify the tools that can support
researchers in academia and industry with the selection of tools for use in Flightpath 2050 [1] related
research, which requires airplanes flying in the year 2050 to reduce CO2 emissions with 75% or more
compared to the airplanes of the year 2000. To achieve this goal, new technologies as well as novel
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aircraft concepts need to be developed. Electric or hybrid electric
propulsion aircraft, active load alleviation technologies, boundary
layer control technologies, bionic airframes and novel aircraft
configurations such as blended wing body are examples of the
solutions suggested for achieving the defined goals for future
aircraft. A review and analysis of the new technologies for the
design of future aircraft is presented by Liu et. al [2].

As the rapid progress of Multidisciplinary Design
Optimization (MDO) methods in aerospace engineering
(AGILE [3, 4] Openmdao [5, 6]), a last goal of the review is
to discover the extent to whichMDO have entered the conceptual
and preliminary design tool world to be able to define future
research and development in this area.

CLASSIFICATION OF DESIGNS, DESIGN
PROCESSES AND TOOLS

Aircraft design comes in many different flavors and a (limited)
classification is needed to compare and compartmentalize the
different tools. For this review we classify aircraft design in four
categories:

• Type A: Derivative Design, example: new stretched version
of an existing aircraft such as the design of a stretched
Airbus A320neo.

• Type B: Configuration Fixed New Design: new aircraft to
replace an existing, aging, class of aircraft models such as
Boeing New Midsize Airplane

• Type C: Configuration Free New Design: new aircraft to
answer new functional demands in an existing market such
as MIT double bubble aircraft [7].

• Type D: Open New Idea: new concepts to develop new
products for new demands or disruptively change solutions
to existing demands such as GoFly for Personal Transport1.

• Type E: New Technology Development: new tools to
develop new technologies in conjunction with new
aircraft concepts, i.e., exploring new aircraft concepts
with new technologies at a very low technology readiness
level (TRL)2 [8].

To be able to assess the applicability of design tools for a
specific aircraft design task the aircraft type also needs a
classification. One of the more useful classification principles
is functionality:

• Civil transport: passenger transport, cargo transport, leisure.
• Military: transport, fighter, bomber, reconnaissance,
communication and relay.

• Civil safety and security: border patrol, firefighting, etc.

The aircraft design process is a mixture of integration/
combinatory efforts on aircraft system level to find the best
compromise to a list of competing requirements and
subsystem design efforts when a new concept depends on
new/modified solutions to subsystem requirements. This
means that aircraft design is a multi-level exercise where
choices on one level can instigate changes on other levels. This
is well reflected in the V-figure (cf. Figure 1) from the Systems
Engineering world [9]. The left leg of the V shows the flow down
of requirement from Top Level (e.g., the aircraft level) all the way
to part level. The right leg shows the solutions to the left leg
requirements. Aircraft design requires travelling down left and
right leg until all requirements are understood and complied to.
The difficulty in design is that partial solutions themselves create
requirements for other partial solutions and the V-Figure
therefore cannot be used as a simple path starting from top
left and ending top right. Iteration is the key word. The more
freedom in the design process (Type A -> E) the more iterations
and partial solution development are needed. This will also
change the nature of the design tools. Where the designer can
build on existing solutions for Type A designs and use statistical
data of what is already out there, the design of a Type D will rely
mostly on experimental design and physics-based modelling.

To be able to judge a design with respect to the functions and
constraints in the requirements list an estimate of the design’s
behavior is required. This is where the disciplinary tools come
into play. For example, to fulfill the function “Provide
Aerodynamic performance” tools/experiments are needed to
quantify the lift, drag and aerodynamic moments on the aircraft
as well as the dependence of these behavioral parameters on
environmental conditions and system states. The type of tools/
experiments that will be adequate for this task depends on the
type of design and the confidence we can have in each of these tools/
experiments. The “newer” the solution, the better it is to experiment
with conforming prototypes. For derivative designs a computational
approach or even a statistical approachwithmaybe some corrections
based on simple experiments could be sufficient.

The disciplines considered in this review are (cf. Figure 2):

• Geometry
• Aerodynamics
• Structures and weights
• Stability and control
• Propulsion system
• Mission analysis
• Noise prediction
• Environmental impacts
• Systems
• Costs

The tools available for each of these disciplines have been
classified as well. For each tool the design behavior it can estimate
as well as the fidelity with which the tool can estimate the
behavior. A detailed description of the fidelity for each
discipline is given in Section 6.

Last but not least is the functionality of the tool as a mimic of
the design team efforts required to do design. That is: how do we

1http://goflyprize.com/
2It has to be noted that we loosely use TRL = 0 or TRL <1, where TRL = 1 refers to
“Basic principles observed and reported” [4].
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feed ideas into the tool how do we control ideas and their
modifications by the tool? This touched upon the knowledge
acquisition and management by the tool. The input of ideas can
be in an engineering parameter space using references to e.g.,
existing airfoils and subsystems or it can be in a 3D geometry

space where a wing is defined as a geometric object which
geometry can be manipulated by an Free Form Deformation
(FFD) box [10]. The first method being very useful for Type A
design, while the latter probably required for Type C and D
designs. The manipulation of ideas can be by changing airfoil

FIGURE 1 | The V process model [9].

FIGURE 2 | Major discipline of overall aircraft design (OAD).
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selection or, as already mentioned an FFD box. The most
complete option being the use of Knowledge Based
Engineering tools where principal building blocks are defined
and grouped using ontologies. Manipulation of ideas can take
place by manipulating the building blocks and/or the ontological
relations. Level of complexity and investments associated with
these different methods is very diverse and requires careful
considerations when selection the design tool/method. Last
item to be mentioned here is the way the idea input and
manipulation interacts with the search algorithms (if any) and
the disciplinary tools. Automatic work flow generation and
execution based on a formal MDO problem definition being
the most complete but often not required or possible. For each of
the tools being reviewed the operational aspects will be discussed
as well.

• Parameterization methods
• Formulation of design constraints, design variables, design
objectives.

• Work flow manager of the design tool
• Integration strategy and architecture
• Data and design history storage

Note that a general MDO strategy for aircraft design was
discussed by Kroo [11] and a comprehensive MDO architecture
has been proposed by Martins et al. [12]. In general, the MDO

problem can be categorized into Monolithic Architectures (most
notably all-at-once problem) and Distributed Architectures [13].
According to [14], KBE can support robust parameterization of
products with topological variation possibilities for optimization,
which plays a very important role in advanced MDO. Examples
for dealing with complex but subsystem level problems using KBE
supported MDO can be found at ParaPy website3.

AIRCRAFT AND SUBSYSTEM SCOPE:
WAYS OF PARAMETERIZING

According to the goals of this review, i.e., supporting the reader in the
selection of best-fit tools for general and specific aircraft design
problems as well as discovering the future development direction of
design tools towardsMDO, we need to consider the space of options
for each element based on the following information: type of aircraft,
type of design, disciplines, subsystems, design team mimics. That
means we have to consider the level of design constraints, i.e., which
type of design it is. Based on the information available and the design
requirements, we have to consider which components need to be
taken into account (wing, fuselage, tails, engines, landing gears, etc.)
at an aircraft level. Depending on specific design problems, particular

FIGURE 3 | Top-level questions for evaluating aircraft design tools.

3https://www.parapy.nl/
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attention has to be paid to what solutions/concepts are considered
for each component, e.g., wing with sweep, taper, winglet, kinks, etc.
Once the desired properties of/disciplines related these components
can be derived from the aircraft level design behavior (e.g., weight,
cost, range, speed, noise, etc.), we need to consider the component
decomposition and parameterization. In the same time, a functional
decomposition has to be taken into account, i.e., the methods and
fidelity level for deriving component and aircraft level properties
have to be considered.

SHORT HISTORY OF DESIGN TOOLS
AND METHODS

Design of a new aircraft by integrating all these technologies and
concepts discussed in the previous sections is a challenge. Since
the 1980s, many computer supported aircraft design tools have been
developed using the traditional aircraft design methodologies, such
as those presented by Torenbeek 1982 [15], Anderson 1999 [16],
Howe 2000 [17], Raymer 2012 [18], Sadraey 2013 [19], Sforza

FIGURE 4 | Domain-restricted optimum and true global optimum [31].

TABLE 1 | Fidelity levels for each analysis disciplines, modified and extended from [28, 32, 33].

Fidelity level versus aircraft discipline Fidelity levels

1 2 3

Disciplines Geometry Simple representation Visualizable for CAD Meshable models for CFD, FEM
Aerodynamics Empirical methods VLM or panel methods Euler or RANS
Structures and weights Empirical methods Equivalent structures FEM methods
Stability and control Empirical methods VLM based methods Advanced S&C methods
Propulsion system Empirical methods Basic analytic methods Advanced system methods
Mission analysis Breguet equation Solving equations of motion 4-D trajectory modelling
Noise prediction Empirical methods Level 1 noise prediction Level 2 noise prediction
Environmental impacts Empirical methods Basic emission prediction Advanced emission prediction
Costs Empirical methods Basic cost estimations Advanced cost estimations
Systems Empirical methods Basic analytic methods Advanced system methods
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2014 [20] and Gudmundsson 2014 [21]. Rentema [22] has carried
out a survey on the computer-aided aircraft design tools in the
developed before or around 2000, where most of pioneering design
tools are out of updates and out of use. Very recently, Briggs has
reviewed several aircraft design tools [23] and the integration
approaches [24] based on recent AIAA technical committee’s
conference bibliography.

However, due to the use of statistical and (semi) empirical
methods, which are developed based on the past generations of
the aircraft, the tools using traditional design approaches do not let
the designers to easily apply those methods for the design of the
future aircraft. On the other hand, novel approaches such as KBE
supported MDO [13], artificial intelligence supported design [22],
probabilistic model supported component-based shape synthesis
[25] have shown promising possibilities to extend traditional
design approaches. For developing new design methodologies and
tools, the first step toward evolving the next-generation of aircraft
design tools is to analysis the available tools to find their strong and
weak points. This allows us to determine the requirements for
developing the next-generation of the aircraft design tools.

TOOL SCOPE

In this paper the aircraft design confines to the conceptual design
and preliminary design phases. The conceptual design phase
includes the process starting from a list of top-level
requirements, setting the aircraft overall size and
configuration, choosing the propulsion system, initial sizing of

the main aircraft components, analysis of the design in terms of
aerodynamics, structure and weight, propulsion, flight dynamics
and performance as well as cost, refining the design until the top-
level requirements are fulfilled. The preliminary design phase
includes the design and optimization at component level, such as
wing aerostructural analysis and optimization.

The scope of this paper is to review the available aircraft design
tool and evaluate them based on the designmethodologies used in
them and their design abilities, i.e., which disciplines are included
within the design tool and what methods are used for the
disciplinary studies as well as for obtaining the overall aircraft
behavior. As a design tool, it is also important to take a look at the
deliverables of the tool (three projection view, full 3D model,
database with performance data, etc.).

In the first part the methods we suggested to evaluate a design
tool is discussed. Then the available design tools are presented
and evaluated based on our suggested evaluation criteria. It
should be noted that the focus of this paper is on the tools for
designing civil transport aircraft. Though, some of the tools and
methods summarized in the review might also be applicable for
designing/sizing other types of aircraft such as military aircraft,
general aviation, unmanned aerial systems, etc.

METHODS FOR EVALUATING THE
AIRCRAFT DESIGN TOOLS

As all tools have their own application scopes and limitations, the
evaluation of aircraft design tools needs to be questions/tasks-

FIGURE 5 | Nosie predictions at different levels in terms of accuracy and complexity [82].
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oriented, i.e., what the requirements are, how much freedom we
have, which kind of solutions we expect, what we need to know
about the individual/global etc. A high level of consideration is
essential for deciding the development of an aircraft design tool
or choosing a tool for an aircraft design task. Here we suggest the
following method, or questions, for evaluating aircraft design
tools. In general computer aided aircraft design includes two
main steps. In the first step the designers’ ideas should be
somehow implemented into a computer program. The next
step is to manipulate the ideas in an iterative way until the
top level requirements are satisfied. Of course in order to
manipulate (refine) the design different properties of the
design should be obtained. Based on this steps we suggest four
questions to evaluate an aircraft design tool (see Figure 3):How to
put the ideas into computer? How to manipulate the ideas? How to
get the properties/performance of desired entities? How to run the

iterative process effectively? In the next part we discuss each of
these questions in details.

How to Put the Ideas Into Computer?
The first step to design an aircraft using computers, is to define
the aircraft in the digital environment. It is critical that the aircraft
should be defined a such a way that different components/
subsystems can be explicitly analyzed and refined. To achieve
this, the aircraft need to be parameterized using a component-
based decomposition. As the overall aircraft sizing process needs
to be carried out efficiently, the disciplinary studies have to be
generated automatically based on aircraft geometry models. A
unified and centralized aircraft data is essential for aircraft design
especially when multi-disciplinary high-fidelity analysis methods
are involved. In order to further evaluate this aspect of the aircraft
design tools, the following sub-questions are suggested:

FIGURE 6 | Aircraft climate change due to the release of chemistry species [89].
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a. How is the aircraft geometry supplied to/generated by the tool?

In general, the geometry is parameterized using representative
parameters or directly using CAD file if the design tool is built
based on a CAD tool.

b. What is the scope of the geometry?

The aircraft geometry should include standard components
such as wing, empennage and fuselage. It can also include more
details such as high-lift devices, control surfaces, fairings, landing
gear, engines/pylons.

c. What is the fidelity of the geometry?

The geometry fidelity is defined as follow.

• Low fidelity: Lowest level aircraft geometry uses global aircraft
shape parameters (abstract design description [26]) such as
wing span, aspect ratio, average thickness to chord ratio, etc.,
which is adequate for simple empirical/semi-empirical analyses.

• Medium fidelity: The second level geometry model defines
the aircraft according to the outer mold-line (OML) of the
aircraft to a degree sufficient for VLM/panel aerodynamic
analyses or for simple structural analyses such as
beam model [26].

• High fidelity: A high fidelity geometry is defined as
watertight CAD such as NASA OpenVSP or meshable
models for CFD [27] or FEA [28].

d. To what level is the geometry parameterized?

As the main purpose of the aircraft geometry
parameterization is for sizing/optimizing aircraft for
desired performance, it is important to define enough
details based on the design analysis and optimization
methods. For example, if a full CFD for aerodynamic
analysis is performed, enough geometric details need to be
available to allow the designers to prevent excessive pressure
drag, detached flow etc. by modifying the geometry. It such a
case defining the wing geometry only using planform
parameters (span, sweep angle etc.) is not enough and at
least the airfoil shape at various spanwise sections need to be
parameterized as well.

FIGURE 7 | Organization of TASOPT operation [31].
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e. How is the non-geometrical data of the aircraft supplied to
the tool?

There are several types of non-geometrical data: component
mass data, performance data, engine performance data,
requirement and specification data, monetary data, emission
data, etc. Depending on the focus of the design tool, some of
the non-geometrical data can be simply hard coded (fixed)
numbers, or define as inputs, or generated by a tool in the system.

Currently there are several common data format for storing
both geometrical and non-geometrical data in XML format.
Examples are the US CAFFE with an internal data structure
and a persistent XML database [29] and the DLR CPACS [30]
with an XML format common description for aircraft design.

How to Manipulate the Ideas?
The manipulation of ideas refers to how to consider the design
process, which can be designer’s decision, a sequential sizing
procedure, or a Multidisciplinary Design Optimization (MDO)
process. Aircraft design is inherently an iterative process.
However, the iteration can be performed in different ways. In
general, two approaches are used. Sizing driven design and MDO
driven design. In sizing driven aircraft design process, aircraft
parameters are determined through iterative component sizing
process based on top level aircraft requirements and
specifications. However, in MDO driven aircraft design
process, the whole aircraft design process is formulated as an
optimization process, where all top-level aircraft requirements
and specifications are formulated as design constraints, and the

FIGURE 8 | PrADO modeling for the assessment of the new aircraft configuration with high-lift devices [132]. (A) Geometry model, (B) Aerodynamic model, (C)
Aircraft system model, (D) Bar model for fast structure design and weight estimations.
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aircraft parameters such as geometry parameters are considered as
design variables. Through MDO procedure, the aircraft parameters
(design variables) are determined when the design objective(s) (such
as fuel burn/or DOC) is/are minimized.

Independent of the method used for iteration, the following
aspects should be considered for evaluating the data
manipulation capabilities of a tool.

a. How does the tool manipulate the geometric data of the aircraft?

For example, does the tool regenerate the aircraft geometry
based on modification of the parameters like airfoils, span wise
data etc., or a flexible geometry manipulation method such as
free form deformation is used, in which the base geometry can
be perturbed based on the changes in the geometrical
parameters, without a need for regenerating the
whole geometry.

b. How is the non-geometric data manipulated/regenerated?

The non-geometric data can be manipulated (updated), for
example, via either simple equations or sub-modules of the design
tool or external tools connected to the design tool.

c. At what level is data manipulation possible?

Similar to the fidelity level of the parameterization, part 6.1.c,
the manipulation can be done in different levels of fidelity.

d. How does it specify that what are fixed parameters and what
are design variables during the design/optimization?

Despite the fact that all aircraft parameters can be set as design
variables, in most cases only several important parameters are
chosen to be varied during the design optimization due to
computational constraints. Wing planform parameters such as
reference area, aspect ratio, taper ratio, sweep, etc. are the most
common design variables chosen for design optimization. In
some occasions, flight conditions such as flight speed and
altitude are also chosen as design variables. As pointed out by
Drela [31], most of the design practices decouple the aircraft
design optimization and the engine optimization, which leads to
(false) sub-optimal solutions. Therefore, to achieve the true
optimal solution, the aircraft and engine parameters have to
be considered simultaneously, see Figure 4, where FPR
represents for fan pressure ratio, Tt4 for turbine inlet
temperature, W/S for wing loading, M∞ for free-stream
Mach number.

e. Is the configuration fixed during the design/optimization or is
the tool able to explore/generate multiple concepts based on a single
set of requirements?

FIGURE 9 | Design data flow and methodology of MICADO software [134, 136]. (A) Graphic view, (B) Flow diagram view.
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Changing the configuration during the design optimization is
extremely important for open new designs (Type C designs). If
the design tool keeps the configuration fixed, design and
optimization can only make moderate improvements within a
constraint design space. The advantage is that the narrow design
space can significantly save the optimization time if the initial
configuration is correctly chosen. However, being totally
dependent on the designer’s/export’s initial choice can lead to
a high risk of missing the revolutionary design possibilities.

f. What is the fidelity/resolution of the design changes that can be
made by the tool during design/optimization?

In part 6.1.c, the level of design manipulation is discussed.
However, the effect of each change can be captured with
different resolutions. This resolution depends on both the
disciplinary tools as well as the overall design framework. For
example, investigating the impacts of adding advanced leading
edge devices to an existing aircraft, not only requires reliable
aerodynamic and structure analysis for high-lift systems, but also

needs aircraft level sizing and computing the snowball impacts.
Otherwise, the overall impacts of integrating new technologies
cannot be correctly estimated.

How to Get the Properties/Performance of
Desired Entities?
In order to assess the design and get the properties or performance of
desired components, analysis methods and tools need to be applied.
The criteria of choosing correct/proper analysis tools directly
depends on the design goals and questions. As such, the tool
should have sensitivity to the question we want to address with
acceptable calculation time and complexity. In this subsection the
analysis methods for individual disciplines are reviewed. Before that,
it is important to take a look at the definition of fidelity levels for each
analysis disciplines.

According to Nickol [32], Price et al. [33] and Rizzi et al. [28], the
individual disciplines (aerodynamics, structural analysis and weight
estimations, noise, emissions, stability & control and geometry
generation) can be categorized as low fidelity, medium fidelity

FIGURE 10 | The overview structure of EDS centered system approach for aircraft design at the ASDL [157].
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and high fidelity. In this study, we modify the fidelity levels to 1 to
3 and extend the categories into 9 disciplines for better comparisons
(see Table 1). In the following part, the tools and methods for
different disciplinary analysis are reviewed and discussed.

Aerodynamics
For conceptual and preliminary aircraft design, the fidelity of
aerodynamic analysis can be described as follows:

1. Low fidelity: Low fidelity aerodynamic analysis uses empirical
and semi-empirical methods and existing databases such as
Datcom [34]. As low fidelity aerodynamic analysis takes
advantage of statistical data of existing aircraft, it can give
quite good predictions for conventional configurations. So it is
mostly used for derivative designs, where much correction
data is available for building up reliable first principle models.
In general, the low fidelity aerodynamic analysis only

FIGURE 11 | Proposed full MDO for aircraft design based on four evaluations questions.

FIGURE 12 | Summary of aircraft design tools (fidelity level versus MDO level).
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incorporates several global aircraft and flight parameters, such
as wing aspect ratio, mean aerodynamic chord, thickness to
chord ratio, sweep angle, Reynolds number and
Mach number.

2. Medium fidelity: The second level of aerodynamic analysis
includes physics-based methods based on potential flow
theory, that assumes the flow is incompressible and
irrotational. Two typical methods based on the potential
flow theory are the vortex lattice method (VLM) and the
panel methods such as XFOIL [35] for 2D analysis and
PANAIR [36] for 3D analysis. The basic VLM neglects
thickness, camber and viscosity impacts and extended VLM
such as AVL tool [37], Tornado [38] and DLR LiftingLine
(DLR LL) [39] can usually include the thickness influence. Via
proper corrections, the medium fidelity aerodynamic analysis
can give good predictions for a wide range of design spaces.
Such analysis are also sensitivity to low fidelity geometric
parameters such as wing planform parameters [40].

3. High fidelity: The third level aerodynamic analysis utilizes
Euler equations or Reynolds Averaged Navier–Stokes (RANS)

equations. The Euler equations can give reasonable
predictions of transonic flow and still holds the inviscid
assumption. While the RANS method can capture the
viscous influences. Due to the high calculation time
requirements as well as the challenge of automatic mesh
generation from geometry to CFD solver, it is still not very
often to have Euler or RANS equations implemented for
conceptual aircraft design. Currently, surrogate modelling is
one possibility to enhance the fidelity of analysis without a
high penalty on the computational cost [41].

Structure and Weights
Similar to aerodynamic analysis, the methods of structural and
weight analysis are also discussed in terms of fidelity level.

1. Low fidelity: Low fidelity structure and weight analysis applies
empirical and semi-empirical methods derived from existing
aircraft weight databases. In general, the empirical methods
are regressions of principle geometrical parameters and overall
aircraft mass parameters. As such, the statistical-based

FIGURE 13 | A summary of the domains of possible aircraft designs.
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regressions are very sensitive to the reliability of the applied
weight database and are limited to very narrow design space.
For new configurations or derivative designs with significant
alterations, historical data based low fidelity methods might
give unreasonable predictions. Note that this level of structure
and weight analysis also refers to Class I and Class II weight
estimation [42].

2. Medium fidelity: The second level structure and weight analysis
use physics-based methods based on equivalent structures. This
fidelity level analysis is also known as Class II and 1/2 methods
[42]. The medium fidelity structure analysis decomposes the
aircraft components into different parts. By estimating the
required materials to carry critical loads, the total weight of
the primary structure can be quantified. It has to be noted that
some corrections for the weight of secondary structure such as
control devices are still necessary [42]. The FAME-W (Fast and
Advanced Mass Estimation Wing) developed by Airbus [43] is a
typical example of such class of analysis.

3. High fidelity: Using finite element analysis (FEA) to calculate
the primary structural mass requires detailed load cases,
compatible geometry model of the aircraft structure
including structural details such as cross-sectional shapes of
spars, ribs, and skins. In addition, correction methods are still
necessary for estimating the secondary structural weight that
cannot be modelled in a FEA. Typically, the aero-elastic effect
[44] is also included. A good example for high fidelity
structure code is the Boeing code for Wing
Multidisciplinary Optimization Design, or WingMOD [45].
The work of Perez at al. [46] also applies FEA for structure
analysis in the context of aircraft design.

Stability and Control
The stability and control analysis for conceptual/preliminary
aircraft design is not considered in details in many design
cases (see, EU FP6 [47, 48]). As the stability and control
analysis is directly dependent on aerodynamic derivatives, the
fidelity levels are comparable (see, Chudoba et al. [49]).

1. Low fidelity: The low fidelity stability and control analysis uses
semi-empirical methods (such as USAF Datcom [34]), which
is strongly dependent on historical aircraft data.

2. Medium fidelity: The second level of stability and control
analysis methods uses the derivative data from medium
fidelity aerodynamics studies.

3. High fidelity: The third level of stability and control analysis
methods uses the derivative data from high fidelity
aerodynamics studies.

Propulsion System
Various computational methods have been developed to facilitate
propulsion system calculations and simulations required for
aircraft design. The methods of propulsion system modeling
are also discussed in terms of fidelity level.

1. Low fidelity: The low fidelity aircraft propulsion system
modeling uses semi-empirical methods [50, 51] or rubber
engine data.

2. Medium fidelity: The second level of propulsion system
modeling uses one-dimensional thermodynamic cycle
analysis [52], where Gas Simulation Program (GSP) [53,
54] developed by the National Aerospace Laboratory of the
Netherlands (NLR), Numerical Propulsion System Simulation
(NPSS) [55], GasTurb [56].

3. High fidelity: The third level of propulsion system modelling
usually depends on 3D flow and/or chemistry
simulations [57–59].

In addition to traditional gas-turbine engines, there is growing
interest in electric propulsion and hybrid propulsion system,
which also calls for method development. Electric propulsion
system modeling consists of not only the methods
abovementioned, but also including other electric systems,
such as electric motor [60–68] and battery [69–73].

Mission Analysis
Mission analysis are divided into the following three categories.

1. Low fidelity: Lowest level of fidelity for mission analysis uses
Breguet equations to calculate the range and endurance of
cruise flight while the rest of flight (taxi-out, takeoff, climb,
descent, landing, taxi-in, and reserve flight) is calculated based
on empirical data or corrections, such as the ones presented in
Eurocontrol BADA [74] or Engineering Sciences Data
Unit (ESDU) [75].

2. Medium fidelity: The second level of mission analysis
considers aircraft as a point mass and uses the equations of
motion to describe the whole flight procedure. Note that the
detailed mission analysis requires corresponding
aerodynamics and engine performance data for each flight
condition (flight speed and flight altitude). Examples of
medium fidelity mission analysis tools are the FLIGHT
program developed by Filippone [76] for comprehensive
analysis of transport aircraft flight performance and the
APP (Aircraft Performance Program) tool developed at
ALR Aerospace [77].

3. High fidelity: For a high fidelity mission analysis the full flight
mission is described by the equations of motion (3 DoF or
6 DoF) and the inputs for iterative mission solutions including
not only detailed aerodynamic polars but also comprehensive
engine performance data from tools such as NASA Glenn’s
Engine Performance code (NEPP) for engine performance
[78] or NLR engine performance tool: GSP V.10 (simulation
tool for gas turbine engines with graphic interface [79], or
GasTurb software for engine performance [80]. An example of
such mission analysis is the MICADOmission study tool [81].

Noise Prediction
Figure 5 from Filippone [82] illustrates the needs and
applications at several level for aircraft noise predictions. It
has to be noted that the category is quite high-level that does
not show a component level fidelity diversity. A more detailed
overview of airframe noise estimations is given by Zhang et al.
[83]. Here we again categorize the noise prediction into three
levels of fidelity:
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1. Low fidelity: Pure empirical and statistic methods for
predicting noise such as FLULA24, Integrated Noise Model
(INM)5 and SIMUL at the DLR [84].

2. Medium fidelity: medium fidelity acoustic analysis uses semi-
empirical methods for jet, fan, and airframe noise modeling,
such as NASA Langley’s Aircraft Noise Prediction Program
(ANOPP) [85], the ILR Noise Simulation and Assessment
module (INSTANT, a parametric aircraft noise simulation
module developed in recent years at RWTH Aachen
University) [86], and the Parametric Aircraft Noise
Analysis Module (PANAM) developed at the DLR [87].
Most of these tools are also able to carry out assessment in
sound quality metrics of loudness, tonality and sharpness.

3. High fidelity: This level of noise analysis includes numerical
methods using Computational Aero-Acoustics (CAA),
especially for high lift wings and jet noise, fans, duct
acoustics. A summary of NASA aircraft noise predictions is
given in [88].

Environmental Impacts
Assessment of environmental impact of a design was not initially
not included in many design tools. However, as shown in
Figure 6, the aircraft emissions have not negligible effect on
the climate change. The need for the design of green aircraft
makes it necessary to include an environmental impact analysis in
an aircraft design tool. Themethods for analysis of environmental
impacts of an aircraft are categorized into the followings:

1. Low fidelity: Statistical data and pure empirical methods are
used for emission estimation directly from fuel combustion
process in aircraft engines. Emissions such as CO2, CH4,
short-lived species (H2O, O3, soot, sulfate), contrails and
cirrus are mainly considered.

2. Medium fidelity: This level of analysis include physics based as
well as semi-empirical methods for measuring both direct
release of chemical species as well as indirect climate change
impacts (average temperature response). Examples of such
methods are liner climate models [89], time varying
normalized radiative forcing (RF) [90] and lifetime average
climate impacts [89].

3. High fidelity: For high fidelity analysis of environmental
impact of a design, climate-chemistry models for the
predictions of aviation climate impacts are used.

Systems
In conceptual and preliminary design phases a detailed design of
different aircraft systems may not be necessary. However, some
aspects of the systems such as weight and power requirements are
needed to be estimated. The following methods are used for such
a purpose:

1. Low fidelity: Statistical data and pure empirical methods are
used to estimate systems’masses, in which regressions are built
up in relation to typical aircraft parameters such as MTOW
[17], number of passengers [91].

2. Medium fidelity: Semi-empirical methods are used to estimate
system masses and power input/output [92].

3. High fidelity: Detailed modelling of sub-system mass, power
input/output during the flight missions, such as the methods
of Liscouët-Hanke [93] and Koeppen [94].

Costs
Cost analysis is an extremely important part of an aircraft design
process, as the cost is a key parameter determining the success or
failure of a design! However, achieving a good and reliable cost
estimation is quite challenging. Cost estimation can only be
performed using statistical and empirical methods, as there is
not physics behind the cost analysis! Therefore, categorizing the
cost analysis is done based on the different cost components that
are estimated in a design tool.

1. Low fidelity: Only direct operating costs (DOC) is
estimated [95].

2. Medium fidelity: both DOC and recurring costs (RC) are
estimated such as NASA RC Method [96].

3. High fidelity: The whole life-cycle cost (LCC) estimation is
performed [97].

How to Run the Iterative Process
Effectively?
Considering the design as an iterative process, the following
questions are suggested to evaluate the efficiency of the
iterative process:

a. Does the tool come with a work flow manager?

Working with a work flow manager makes the design process
clearer which also provides a basis for treating the design problem
as an MDO problem via only interacting with the work
flow manager.

b. Can it be used in a PIDO (Process Integration and Design
Optimization) framework?

A PIDO such as ModelCenter®, iSight®, and Optimus® can
significantly ease the operation of the optimization problems,
such that the designers can focus more on the aircraft related
problems instead of spending much time and effort on making
the MDO environment work. Alternatively, design tools can have
their own MDO environment [24].

c. How are the data and the design history stored?

The storage of design data and design history data plays an
important role especially when it comes to cases involving many
disciplines and many iterations. For example, using a center

4https://www.empa.ch/documents/56129/103151/SaT_FLULA2_Dokument/
62e3c7e1-e395-4975-9eba-fda3adf17962
5https://www.faa.gov/about/office_org/headquarters_offices/apl/research/models/
inm_model/inm7_0c/media/INM_7.0_Technical_Manual.pdf

Zhejiang University Press | Published by Frontiers May 2024 | Volume 2 | Article 1309615

Liu et al. Aerospace Research Communications Aircraft Design Review

https://www.empa.ch/documents/56129/103151/SaT_FLULA2_Dokument/62e3c7e1-e395-4975-9eba-fda3adf17962
https://www.empa.ch/documents/56129/103151/SaT_FLULA2_Dokument/62e3c7e1-e395-4975-9eba-fda3adf17962
https://www.faa.gov/about/office_org/headquarters_offices/apl/research/models/inm_model/inm7_0c/media/INM_7.0_Technical_Manual.pdf
https://www.faa.gov/about/office_org/headquarters_offices/apl/research/models/inm_model/inm7_0c/media/INM_7.0_Technical_Manual.pdf


aircraft database (e.g., DLR CPACS) for data exchange of
disciplinary analyses can largely reduce the interfaces of
different disciplines, thus increasing the efficiency of MDO
process [98].

d. Can it be used on a cluster?

MDO based design methods were in the past (and mostly till
now) more component/discipline oriented, i.e., only several
disciplines are incorporated [99]. The full design space
exploration in many cases are computationally too expensive.
The capability of running the optimization on a computer cluster
can significantly reduce the calculation time which enables
exploring larger design spaces with more design variables
accounted, or enables higher fidelity disciplinary analysis that
takes longer time.

In this section of the paper different aspects of an aircraft
design tool is discussed. In the next section, a review of the
existing design tools is presented. In order to evaluate each tool,
the method presented in this section is used.

EXISTING AIRCRAFT DESIGN TOOLS

Since 1970s, numerous overall aircraft design (OAD) programs
have been developed at various universities. However many of
them are not operational any more [100]. In this section, a
selective of presentative OAD tools developed at NASA,
DARcorporation, Raymer, Stanford University, MIT, RWTH
Aachen, TU Braunschweig will be reviewed and discussed. For
better overview, a full list of OAD tools is given in Supplementary
Appendix SA.

NASA
In addition to the ACSYNT [101], that is not often used in the
community any more, the Layered and Extensible Aircraft
Performance System (LEAPS), the Intelligent Synthesis
Environment (ISE), and the CAD tool OpenVSP [102], the
most popular aircraft design tool developed at NASA is the
Flight Optimization System (FLOPS) software [103]. FLOPS
enjoys widespread use in NASA collaborations, with its
capability validated in studies like the FLOPS vs. Pacelab APD
comparison. FLOPS offers a systematic design approach with
parameterized aircraft geometry definitions that can be
transferred to OpenVSP for enhanced CAD and detailed
analyses. Its design variables and constraints support thorough
optimization, and its performance assessment modules cover a
wide range of fidelity across disciplines. It uses semi-empirical
methods for aerodynamics, structure and weight estimation (with
special consideration for unique configurations [104]), noise
calculations using established methods [105], stability, and
control assessments. Emissions and systems analysis also
employ semi-empirical methods, while mission segments are
meticulously simulated. Its engine module can integrate with
NPSS for performance data [106], and it boasts detailed cost
estimation modules. FLOPS operates within a PIDO framework
and is suited for cluster computing, with design data presumably

stored in separate text files, though specifics on data storage are
not detailed [103, 107].

Advance Aircraft Analysis
Advanced Aircraft Analysis (AAA) is a comprehensive tool
developed by DARcorporation, building on the foundations set
by Prof. Roskam. It provides an interactive, sequential sizing-
based design process without built-in optimization features.
Users interact with the software to define initial low-fidelity
geometrical and non-geometrical data, selecting global
configurations such as wing type, tail, canard, control devices,
and engine specifics. AAA has been validated across numerous
research and industrial endeavors [100]. The tool applies semi-
empirical methods for analyzing aerodynamics, structure and
weight, and stability and control. While it lacks noise and
emissions calculations, it features a mission analysis module
employing Breguet equations and a statistics-based systems
analysis module. Engine performance is assessed using
statistical methods, and a comprehensive module provides
estimates for operating and life cycle costs. AAA’s geometry is
parameter-based, suitable for low-fidelity studies but not directly
applicable to external design or high-fidelity analyses. It operates
outside of a PIDO framework and is not designed for cluster
computing, focusing instead on a user-driven, iterative design
approach without optimization.

Raymer’s Design System
Raymer’s Design System (RDS), created by Daniel Raymer and
grounded in his aircraft design textbook [18], is a versatile tool
that caters to various types of aircraft design, from advanced
fighters and tactical UAVs to civil transport aircraft [108]. RDS
allows users to generate and manipulate low-fidelity aircraft
component geometries, such as wings, tailplanes, and
fuselages, with provisions for creating new components and
editing existing ones via its design layout module (DLM)
[108]. While the professional version of RDS features
optimization capabilities with eight design variables, the
configuration remains static throughout the design process.
Performance calculations in RDS are completed using low-
fidelity modules for aerodynamics (employing semi-empirical
analyses like USAF DATCOM), structures and weight (via
empirical and statistical methods), and stability and control
(with semi-empirical methods). Mission analysis is conducted
using 3-DOF trajectory equations for improved accuracy,
whereas system-wide performance and costs are estimated
using statistical methods. For geometrical definitions, RDS
uses the super conic surface component design method with
4th degree Bezier polynomials and allows for CAD exports
through its DLM [80]. Though the professional version has
optimization capabilities, RDS does not appear to be used
within a PIDO framework or on clusters. Throughout the
sizing and optimization process, data is stored in an “Aircraft
Data File.”

Stanford University
The PASS tool, initiated by Prof. I. Kroo in the 1980s [109],
implements decomposition-based MDO strategies [110, 111] for
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aircraft design, providing fast and efficient conceptual and
preliminary design analyses. Its usage spans a variety of
studies, from climate impact assessment [29, 89, 90, 112, 113]
to new technology integration [114]. PASS manages geometry
generation and modification with a focus on global planform
parameters. It handles numerous design variables and
constraints, as indicated in recent updates to optimize
complex configurations [114]. Component performance
analyses use multiple fidelity methods, interfacing with tools
like ANOPP [115] and LinAir [116] for aerodynamics and
noise evaluation, respectively. Mission analysis follows a
segment-based approach, and emissions are analytically
assessed. The tool’s optimization process involves sequential
quadratic programming within a PIDO framework, and data is
handled in an ASCII database with visualization capabilities for
iterative changes [110]. Recently Stanford’s Aerospace Design
Lab has gradually transferred to SUAVE, an aircraft design tool
created by Stanford’s Aerospace Design Lab, excels in multi-
fidelity analyses of various aircraft and propulsion systems [91,
117] It is Python-based, emphasizing flexibility in optimization
and analysis rather than initiating design from base requirements.
Capable of handling complex vehicle models, SUAVE integrates
design variables optimization within a PIDO framework using
tools like pyOpt and SciPy. It effectively manages data and
supports detailed aerodynamics and performance evaluations,
although it lacks emission calculations [91, 118, 119].

MIT
TASOPT is a Transport Aircraft System OPTimization tool from
MIT designed for conceptual aircraft design within the NASA
N+3 project, focusing on tube-and-wing configurations [120]. It
integrates advanced airframe and engine technology
advancements into the design process, including high bypass
ratio turbofan engines and novel materials. TASOPT allows for
detailed customization of aircraft geometry and engine
parameters. It follows a nested iterative optimization process
compatible with a PIDO framework, using genetic algorithms and
Monte Carlo methods for multi-objective optimization
[121–126]. Notably, TASOPT has contributed to the design of
the MIT double-bubble D8 aircraft for NASA Subsonic Fixed
Wing Project and has been expanded with newer methods like
geometric and signomial programming for aircraft and engine
design optimization [122–126]. Figure 7 shows the organization
of TASOPT operation.

TU Braunschweig
The Preliminary Aircraft Design and Optimization Program
(PrADO), established at Braunschweig University of
Technology, specializes in detailed modelling for
comprehensive structure analysis and has been utilized in
numerous research projects for both conventional and
unconventional aircraft designs [127–131]. PrADO is
recognized for its application in the design of a short takeoff
and landing aircraft with active high lift systems, contributing to
the SFB 880 project [130]. PrADO features a meticulous geometry
definition covering standard components and detailed aspects
like cabin arrangements and primary structures, all managed

within a data management system (DMS) supporting high-
fidelity analyses. The design process comprises a sequential
sizing procedure with optimization for wing planform
parameters, while overall configuration remains unchanged
during the process. A suite of interdisciplinary analysis models
validates PrADO’s performance, as demonstrated in projects like
SFB880 and EU FP5 VELA [130]. PrADO incorporates various
analytic methods for aerodynamics, structure and weight
assessments, stability and control, and engine performance,
although it lacks emission calculations. Mission analysis is
conducted via equations of motion, and direct operating costs
can be estimated. With its iterative sizing and optional
optimization post-convergence, PrADO stores data in its
database and design history in ASCII files, capable of running
parallelized operations on clusters [131]. Figure 8 shows the
PrADO modeling.

TU Braunschweig’s new aircraft design framework evaluates
the energy efficiency impacts of cutting-edge technologies like
active flow control on passenger aircraft, suitable for both
conventional and blended wing body designs [132, 133].

RWTH Aachen University
RWTH Aachen University’s MICADO is an object-oriented
software for aircraft design with XML-based parameterization,
applicable to derivative and white sheet designs. It incorporates a
wide range of applications, from fast design space exploration to
assessing technology integration impacts on aircraft systems [134,
135]. MICADO produces detailed component geometry that can be
exported for advanced visualization and analysis, storing various
design and performance data within the adaptable AiX format.
Geometry modifications primarily affect wing and tail planform
parameters, and the tool’s reliability is proven through its use in the
CeRAS reference aircraft program [136]. It integrates modules for
aerodynamics, structure, noise, stability, emissions, mission analysis,
and engine performance, supporting cost estimation as well.
Optimization is executed via a workflow manager with potential
for MDO studies, storing the design history separately for possible
parallel run on clusters [136–138]. Figure 9 shows the design data
flow and methodology of MICADO software.

Other Tools
In addition to the tools described above, there are other notable
aircraft design tools available such as CADLab developed at
Linköping University [139–141], the Computerized
Environment for Aircraft Synthesis and Integrated
Optimization Methods (CEASIOM) developed at the KTH
[142–145], Initiator developed at TU Delft [146–150],
pyACDT [151, 152] developed at the University of Toronto,
the Aircraft Design and Analysis Software (ADAS, a JAVA
programmed tool suite for conceptual/preliminary aircraft
design) [153, 154] developed by the Design of Aircraft and
Flight Technologies Research Group (DAF) at University of
Naples and VAMPZero [155] developed at the DLR, and
Fixed-wing Aircraft Sizing Tool developed by ISAE-SUPAERO
and ONERA [156].

In addition to the aircraft design tools mentioned above, one
notable framework is Environmental Design Space (EDS)
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developed at Georgia Institute of Technology (mainly the ASDL).
EDS is a systems engineering oriented tool for aircraft design [9],
see Figure 10. The EDS was initially developed with U.S. Federal
Administration Office of Environment and Energy for specifically
for assessing the aircraft level noise and emissions [158]. The
vehicle modelling uses either NASA FLOPS code [158] or the
recently developed Rapid Airframe Design Environment (RADE)
is developed at the ASDL [159].

A Summary in Terms of Application Scopes,
Fidelity Levels and MDO Levels
In this section, a summary of existing aircraft design tools and
environments is given. In the beginning, the application scope for
each aircraft design tools are compared. In total, we categorize all
the design capabilities of the reviewed tools into 7 groups, in
which the subsonic/transonic civil transport aircraft have been
further divided into tube and wing (TAW), blended wing body
(BWB) and strut-braced wing according to the aircraft
configurations.

The indicators of MDO level are considered with the following
criteria (cf. Figure 11).Figure 12 shows a summary of aircraft design
tools in terms of fidelity level versus MDO level. Note that the
horizontal axis MDO is loosely defined according to the capability of
MDO studies using the approach proposed in [160]. For design
variables, the number of design variables, whether design variables
covering different disciplinary parameters, whether design variables
coupling flight parameters, whether both engine and airframe
parameters considered simultaneously; For design objective,
whether one single objective defined or bi-objectives or multiple
objectives pursued for design optimization. The fidelity level is
roughly indicated by an arithmetic mean fidelity of the most
significant/representative 9 disciplines selected above. Note that
for the same order calculation methods, those with more
components or sub-components included are considered as
higher fidelity.

Development Indications for Aircraft Design
Tools and Methods
According to the review, most aircraft design tools do not cover
all the important disciplines and some have only a limited
number of disciplines such as aerodynamics and structures
(e.g., CADLab and CEASIOM). As such, it is important to
have a balanced consideration of different disciplines in order
to have a good design for the overall aircraft.

Most design tools have only simplified description of aircraft
components. For example, high lift devices and control devices
are in most design tools not explicitly described or parameterized.
Lack of detailed description or parameterization of important
components may lead to sub-optimal design solutions due to
neglecting take-off and landing modelling.

Most design tools have very limited design variables of
airframe such as wing planform parameters, which can lead to
a very narrow design space. Design tool such as TASOPT that can
consider airframe and engine optimization simultaneously, is of
great significance for future large design space exploration.

Few design tools have considered design uncertainty (either
from design requirements or manufacturing) or multiple design
objectives (e.g., optimizing for cost, emission, noise at the
same time).

No design tools have configurational optimization capability,
i.e., the configuration is decided by designer’s choice instead of by
design/optimization process, which also limits the possible design
space. An inappropriate configuration can even lead to false
optimal design results.

In addition to the aspects mentioned above, it is also important to
take a look at the domains of possible aircraft designs in terms of
engine systems, configurations, flight speed, and what it carries (see
Figure 13 showing a summary where question mark indicates the
unknown option and the boxes show possible combinations). For
derivative design and conventional new design only gas turbine and
jet fuel is possible, while unconventional new design covers
additionally gas turbine + CH4/LH2, fuel cell + LH2, and
E-motor + batteries. Besides, unknown new types of engine
systems might be introduced to open new design. For
configuration, flight speed, and payload, these are currently pre-
defined requirements or design specifications despite that the flight
speed can be varied/optimized for a certain range.

According to the design tool review aforementioned, there is
currently no design tools capable of doing all the combinations in
Figure 13 especially for an open new design.

CONCLUSION

Via setting four top-level evaluation questions, a comprehensive
review study on aircraft design methods and tools have been
carried out. According to our review, most aircraft design tools do
not include complete analysis disciplines or at least without
balanced considerations of varied disciplines. In addition, the
fidelity of most tools are not high. In most cases high fidelity
methods have been only used to primary components, e.g., very
seldom have design tools included high lift or control devices for
analysis and many even have no sufficient description of these
components.

MDO levels have been discussed in terms of the number of
design variables, coverage of significant disciplines, coupling of
airframe and engine parameters, and PIDO framework capability.
Together with fidelity, disciplines, components, full MDO with
appropriate fidelity levels might be key elements for future
aircraft design tasks.

As almost all aircraft design tools do not have configurational
optimization capability, future aircraft design tools should work
on the determination of a configuration instead of only analyzing
or optimization a known configuration.

The ultimate goal is to develop an aircraft design tool with
human driven capability, i.e., automatic identifying possible
technologies as well as design constraints. Under this
condition, as indications for future aircraft design tools, we
propose the following aspects: from low fidelity trade-off
studies to high fidelity full MDO to deal with new approach
and new concept to possibly avoid sub or false optimal solutions
due to incomplete disciplines or components or insufficient
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fidelity levels. Of course, the increased complexity requires
improved or totally new PIDO framework.
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