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This work introduces Pontryagin Neural Networks (PoNNs), a specialised subset of
Physics-Informed Neural Networks (PINNs) that aim to learn optimal control actions for
optimal control problems (OCPs) characterised by integral quadratic cost functions.
PoNNs employ the Pontryagin Minimum Principle (PMP) to establish necessary
conditions for optimality, resulting in a two-point boundary value problem (TPBVP) that
involves both state and costate variables within a system of ordinary differential equations
(ODEs). By modelling the unknown solutions of the TPBVP with neural networks, PoNNs
effectively learn the optimal control strategies. We also derive upper bounds on the
generalisation error of PoNNs in solving these OCPs, taking into account the selection and
quantity of training points along with the training error. To validate our theoretical analysis,
we perform numerical experiments on benchmark linear and nonlinear OCPs. The results
indicate that PoNNs can successfully learn open-loop control actions for the considered
class of OCPs, outperforming the commercial software GPOPS-II in terms of both
accuracy and computational efficiency. The reduced computational time suggests that
PoNNs hold promise for real-time applications.

Keywords: optimal control problem, Pontryagin minimum principle, two points boundary value problem, physics-
informed neural networks, scientific machine learning

INTRODUCTION

Optimal control theory has been a major area of interest in various scientific fields throughout the
last century. Optimal Control Problems (OCPs) are fundamental in many disciplines, leading to the
development of numerous numerical methods aimed at optimising cost functions that are central to
OCPs. In general, OCPs can be addressed using two main approaches: direct methods and
indirect methods [1].

Direct methods involve discretising the continuous states and controls to transform the
continuous problem into a Nonlinear Programming (NLP) problem [2–4]. This transformation
results in a finite constrained optimisation problem solvable by various algorithms designed to find
local minima, such as trust-region methods [5]. Direct methods have been applied to a wide range of
OCPs, particularly in the aerospace sector (e.g., [6–9]). However, the general NLP problem is
considered NP-hard, meaning that the computational time required to find the optimal solution
cannot be predetermined and can be substantial. This uncertainty in convergence time can
undermine the reliability of these methods, especially in real-time applications.

To address these challenges, researchers have explored transforming OCPs from non-convex
formulations into convex optimisation problems [10, 11]. Convex problems are computationally
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tractable because their associated numerical algorithms guarantee
convergence to a global optimum in polynomial time. This
approach involves applying convexification techniques to
reformulate the optimal guidance problem into a convex one.
Such methodologies have been successfully used in various
aerospace applications, including planetary landing [10, 11],
atmospheric entry guidance [12, 13], rocket ascent guidance
[14], and low-thrust trajectory optimisation [15].

Indirect methods, on the other hand, derive first-order
necessary conditions by applying the Pontryagin Minimum
Principle (PMP) or the calculus of variations. These necessary
conditions lead to a Two-Point Boundary Value Problem
(TPBVP) that involves state and costate variables, which
must be solved numerically. Available numerical methods for
indirect approaches include single and multiple shooting
methods [16, 17], orthogonal collocation [18], and
pseudospectral methods [19]. The commercial software
GPOPS-II, based on the work presented in [20], represents
the current state-of-the-art. While the indirect method
guarantees an optimal solution, solving the TPBVP can be
challenging due to the sensitivity of the solution to initial
guesses, particularly for costate variables that lack physical
interpretation. Although direct methods may not always
yield optimal solutions, they are generally easier to compute
and are widely used in the scientific community.

In principle, these two approaches can be combined. For
instance, a solution obtained via a direct method can serve as
an initial guess for an indirect method, potentially refining the
solution and ensuring optimality.

In this work, we addressed a class of OCPs with integral
quadratic cost functions by applying the PMP and solving the
resulting TPBVP using a specialised Physics-Informed Neural
Network (PINN) framework known as the Extreme Theory of
Functional Connections (X-TFC) [21–24]. In our approach,
PINNs are tailored and trained to learn optimal control
actions by enforcing the physics constraints represented by the
TPBVP arising from the application of the PMP.We refer to these
specialised PINNs as Pontryagin Neural Networks (PoNNs).

The main contributions and objectives of this paper are
threefold: 1) to demonstrate the feasibility of using PINN-
based frameworks to directly learn TPBVP solutions and,
consequently, open-loop optimal control with high accuracy
and low computational time; 2) to provide an estimate of the
generalisation error associated with the proposed methodology;
and 3) to compare the performance of PoNNs with the
commercial software GPOPS-II [20].

Physics-Informed Neural Networks (PINNs) are a machine
learning framework that incorporates physical laws, expressed as
differential equations (DEs), into the training of neural networks
(NNs) by including them as regularisation terms in the loss
function [25]. In classical PINNs, the DE constraints are
included in the loss function alongside the residuals computed
within the domain. However, this approach has a significant
drawback: it requires the simultaneous satisfaction of the DEs
and their associated boundary conditions (BCs) or initial
conditions (ICs) during training, which can complicate the
optimisation process [26].

The X-TFC framework enhances the classical PINN approach
by using Constrained Expressions (CEs) from the Theory of
Functional Connections (TFC) [27]. The general form of a CE is
given by

f x( ) ≃ fCE x, g x( )( ) � A x( ) + B x, g x( )( ),
where f(x) is the unknown function to be approximated,
fCE(x, g(x)) is the CE, A(x) is a functional that analytically
satisfies the given linear constraints, and B(x, g(x)) projects the
free function g(x)—which exists over the constraints—onto the
space of functions that vanish at the constraints [28].

TFC is a functional interpolation technique applicable to
various mathematical problems, including the solution of
differential equations (DEs) [29] and the addressing of OCPs
via the PMP approach. While the original TFC employs linear
combinations of orthogonal polynomials as the free function, this
can lead to computational challenges, especially for large-scale
partial differential equations (PDEs), due to the curse of
dimensionality [29]. To mitigate these issues, PINN TFC-
based methods use neural networks as the free function.
Specifically, X-TFC employs Extreme Learning Machines
(ELMs), which are shallow neural networks with random
features, also known as Random Projection Networks.

X-TFC has been successfully applied to solve integro-
differential equations [30] with applications in rarefied gas
dynamics [31, 32] and radiative transfer equations [33]. It has
also been used for stiff systems of ODEs in nuclear reactor
dynamics [34] and stiff chemical kinetics [35], as well as
inverse problems for system identification [36, 37] and
parameter estimation in epidemiological models [38].
Additionally, X-TFC has been applied to a class of OCPs for
aerospace applications using both indirect methods [39, 40] and
the Bellman Optimality Principle [41].

This paper is organised as follows. First, we describe how PoNNs
are constructed and trained to learn control actions for the class of
OCPs with integral quadratic cost functions. We then provide an
upper bound estimate on the generalisation error of PoNNs in
learning solutions for the considered OCP class, in terms of training
error and the number and selection of training points. Two
benchmark OCPs—one linear and one nonlinear—are used to
demonstrate the effectiveness of PoNNs in learning optimal
control actions and to validate our theoretical findings. We also
compare the performance of PoNNs with the commercial software
GPOPS-II. Finally, we present our conclusions.

MATERIALS AND METHODS

Pontryagin Neural Networks (PoNNs) are a specialised class of
Physics-Informed Neural Networks (PINNs) designed to solve
Optimal Control Problems (OCPs) through the application of the
Pontryagin Minimum Principle (PMP). In this study, we focused
on OCPs characterised by integral quadratic cost functions.

The term Pontryagin Neural Networks (PoNNs) was
introduced to succinctly describe PINNs that are tailored to
learn optimal control strategies via PMP [39]. The unknown
solutions of the resulting Two-Point Boundary Value Problem
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(TPBVP), specifically the states and costates, are represented
using a PINN framework based on the Extreme Theory of
Functional Connections (X-TFC), developed by the authors.

In PINN TFC-based frameworks, unknown solutions of
differential equations are modelled using Constrained
Expressions (CEs) from the Theory of Functional Connections
(TFC), with neural networks serving as free functions. When
Deep Neural Networks (DNNs) are employed as free functions,
the framework is referred to as Deep-TFC [28], where gradient-
based optimisation methods like the ADAM optimiser [42] or the
L-BFGS optimiser [43] are used to adjust the parameters.

Alternatively, when shallow neural networks trained using the
Extreme Learning Machine (ELM) algorithm [44] are used as free
functions, the framework is known as Extreme-TFC (X-TFC)
[21]. The ELM algorithm initialises the input weights and biases
randomly, keeping them fixed during training, which means that
only the output weights are optimised [44]. This approach allows
for robust and fast training using least-squares methods.

For linear differential equations, X-TFC optimises the free-
function parameters (i.e., the neural network output weights)
using a single-pass least-squares method. In the case of nonlinear
differential equations, iterative least-squares procedures are
required to optimise the parameters, as detailed in [21].

This section outlines the design and training process of PoNNs
to learn optimal control actions for the class of OCPs under
consideration. Additionally, following Refs. [22, 45], we derive an
estimate for the upper bounds on the generalisation error of
PoNNs in learning solutions for this class of OCPs.

A general OCP can be formulated as:

min
u∈U

J t, x, u( ) � ϕ x tf( )( ) + ∫tf

t0

L t, x, u( ) dt

subject to:

_x � f t, x, u( )
x t0( ) � x0
x tf( ) ∈ C
t ∈ t0, tf[ ]

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ (1)

Here, x ∈ Ωx ⊆ Rn represents the states that may be subject to
path constraints, u ∈ U ⊆ Rm denotes the controls that may be
subject to inequality constraints, and C ⊂ Ωx defines the terminal
conditions. The cost function includes both a Meyer term
(dependent on the final state and time) and a Lagrangian term
(dependent on the states and controls over time). The final time
tf can be fixed or a function of the initial states x0 (e.g., in time-
free problems). Applying PMP transforms the OCP into the
following TPBVP:

Hu t, x, λ( ) � 0
_x � Hλ t, x, λ( )
_λ � −Hx t, x, λ( )

⎧⎪⎨⎪⎩
subject to:

x t0( ) � x0, λ t0( ) � − ∂J

∂x0
, H t0( ) � ∂J

∂t0

x tf( ) ∈ C, λ tf( ) � ∂J

∂xf
, H tf( ) � − ∂J

∂tf

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ (2)

with t ∈ [t0, tf], where H is the Hamiltonian of the problem,
and Hu � ∂H

∂u , Hx � ∂H
∂x , Hλ � ∂H

∂λ , with λ being the costates.

Equation 2 encompasses all possible transversality conditions
for unconstrained OCPs, although the specific conditions applied
depend on the problem at hand. Further details are available
in [46, 47].

In this work, we focus on unconstrained OCPs with a fixed
final time and a fixed final state, leading to the
following TPBVP:

_x � Hλ t, x, λ( )
_λ � −Hx t, x, λ( ){ subject to:

x t0( ) � x0
x tf( ) � xf
∀t ∈ t0, tf[ ], tf ≥ t0

⎧⎪⎪⎨⎪⎪⎩ (3)

Here, x, λ, Hλ, Hx , x0, and xf are all n-dimensional vectors,
with n being the number of states. Equation 3 is well-posed and
can be expressed compactly as:

dX
dt

� F t,X( ), X ∈ R2n

x t0( ) � x0 ∈ Rn

x tf( ) � xf ∈ Rn

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(4)

where X � [x⊤, λ⊤]⊤ ∈ R2n and F � [H⊤
λ ,−H⊤

x ]⊤ ∈ R2n.
We assume that F is globally Lipschitz continuous,
meaning that there exists a constant Cf ≥ 0 (independent of
t) such that:

‖F X( ) − F Y( )‖≤Cf‖X − Y‖, ∀X,Y ∈ t0, tf[ ] (5)
To apply the X-TFC algorithm to solve Equation 4, we need to

specify the training set S and define the residuals. Considering the
time domain [t0, tf] ⊂ R, we selected the training set S ⊂ [t0, tf]
based on suitable quadrature points, such as those corresponding
to a composite Gauss quadrature rule or randomly selected
points, as suggested in Ref. [45]. The training points are
defined as:

S � ti{ }, 1≤ i≤N, ti ∈ t0, tf[ ]
Using the constrained expressions, we approximate the

solution of Equation 4. The states are approximated by:

xi t; βxi
( ) � gxi t; βxi

( ) + tf − t

tf − t0
xi t0( ) − gxi t0; βxi

( )[ ]
+ t − t0
tf − t0

xi tf( ) − gxi tf; βxi
( )[ ]

The costates are approximated by:

λi t; βλi
( ) � gλi t; βλi

( )
where

gxi t; βxi
( ) � ∑L

j�1
βj,xiσ wjt + bj( )

and

gλi t; βλi( ) � ∑L
j�1

βj,λiσ wjt + bj( )

Zhejiang University Press | Published by Frontiers November 2024 | Volume 2 | Article 131513

Schiassi et al. Aerospace Research Communications PONNs for Optimal Control Problems



In these expressions, w � [w1, . . . , wL]⊤ and b � [b1, . . . , bL]⊤
are the input weights and biases, respectively, and L is the number
of hidden neurons. Since gxi and gλi are single-layer neural
networks with random features, the weights w and biases b
are randomly initialised and remain fixed during training; only
the output weights β are optimised. Notably, xi(t; βxi) and
λi(t; βλi) constitute the PoNNs.

We define the residuals as:

R t;Ξ( ) � d

dt
XΞ t( ) − F XΞ t( )( ) (6)

where

Ξ � β⊤x , β
⊤
λ[ ]⊤

with

βx � β⊤x1 , . . . , β
⊤
xn

[ ]⊤ ∈ RnL, βxi
∈ RL, i � 1, . . . , n

βλ � β⊤λ1 , . . . , β
⊤
λn

[ ]⊤ ∈ RnL, βλi
∈ RL, i � 1, . . . , n

To train the PoNNs and learn the unknown solutions, we
minimise the following vector-valued loss function:

L Ξ( ) �
R t1;Ξ( )

..

.

R tN;Ξ( )

⎧⎪⎪⎨⎪⎪⎩
⎫⎪⎪⎬⎪⎪⎭ ∈ R2nN (7)

With the loss function defined, the X-TFC algorithm is fully
specified and can be executed to learn the solution of the TPBVP
in Equation 4 resulting from the application of the PMP. The

learnt PoNNs are denoted as X* � XΞ*, where Ξ* are the
optimised output weights obtained from training.

If the loss function in Equation 7 is linear, it simplifies to a
system of linear algebraic equations of the formH Ξ � T, which
can be solved using a single-pass least-squares method. For
nonlinear loss functions, an iterative least-squares procedure is
necessary, as described in [21].

Figure 1 illustrates the flowchart for learning optimal control
problem solutions using the proposed PoNNs.

Estimation of the Generalisation Error
We are interested in estimating the generalisation error for
X-TFC, which is defined as

εG � ∫T

t0

‖X t( ) − X* t( )‖2dt( )1/2

∈ R (8)

where εG, according to [45] and references therein, is the error
emerging from approximating the true solution, X(t), via X-TFC,
within the domain t0 ≤ t≤ tf. We estimate the generalisation
error in terms of the training error defined as,

ε2T � ∑N
i�1

wi‖RΞ* ti( )‖2 � ∑N
i�1

wi
d

dt
XΞ* ti( ) − F Xti,Ξ* ti( ), ti( )∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
2

∈ R

(9)
which is computed a posteriori once the training is completed.

According to Ref. [45], we also need the following assumptions
on the quadrature error: for any function y ∈ Cl([t0, tf]), the
quadrature rule corresponding to the quadrature weights wi at
points ti ∈ S, with 1≤ i≤N, satisfies,

∫tf

t0

‖y t( )‖dt −∑N
i�1

wi‖y ti( )‖
∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣≤Cquad ‖y‖Cl( )N−α

where α> 0 and different order quadrature rules can be used
(details can be found in [45]). The estimate of the generalisation
error for X-TFC is given by the following theorem.

Theorem 1. Let X ∈ Ck([t0, tf]) be the unique classical solution
of the general TPBVP (Equation 4), resulting from the PMP
application to Equation 1, with the dynamics F satisfying
Equation 5. Let X* � XXi* be the solution approximated via
X-TFC, corresponding to the loss function (Equation 7).
Then, the generalisation error (Equation 8) can be estimated as,

εG ≤CDE ε2T + CquadN
−α + ‖λ̂ t0( )‖2( )1

2 (10)
where εT is given by Equation 9, the constant CDE is given by,

CDE � e− 1+2Cf( )t0
1 + 2Cf

e 1+2Cf( )tf − e 1+2Cf( )t0( )( )
1
2

and

λ̂ t0( ) � λ* t0( ) − λ t0( )
which is a function of the residuals R,

FIGURE 1 | Flowchart for learning optimal control problem solutions
using the proposed PoNNs.
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λ̂ t0( ) � λ̂ t0( ) ‖R‖2Ck−1( )
Also

Cquad � Cquad ‖R‖2Ck−1( )
which is a positive constant depending on the number of training
points, the quadrature scheme used, and the residuals evaluated
on the training points [45].

Proof
Using the definitions of the residuals (Equation 6), and the

system (Equation 4), we can verify that the error X̂ � X* − X
satisfies the following equation,

dX̂
dt

� F X*, t( ) − F X, t( ) +R, ∀t ∈ t0, T[ ]
x̂ t0( ) � 0
x̂ tf( ) � 0

(11)

Here, we have denoted R � RΞ* for convenience of notation.
Multiplying both sides of the system (Equation 11) by X̂ yields

X̂ · dX̂
dt

� X̂ · F X*, t( ) − F X, t( )[ ] + X̂ ·R

where · is the inner product. That is,
1
2
d

dt
‖X̂‖2 � X̂ · F X*, t( ) − F X, t( )[ ] + X̂ ·R (12)

By leveraging on the following inequality (X̂ −R)2 ≥ 0, Equation
12 is bounded by,

1
2
d

dt
‖X̂‖2 ≤ ‖X̂‖ F X*, t( ) − F X, t( )‖ ‖ + 1

2
‖R‖2 + 1

2
‖X̂‖2

By Equation 5, we have the following,

1
2
d

dt
‖X̂‖2 ≤ ‖X̂‖Cf ‖X* − X‖︸���︷︷���︸

‖X̂‖
+1
2
‖R‖2 + 1

2
‖X̂‖2

Rearranging we get,

d

dt
‖X̂‖2 ≤ 1 + 2Cf( )‖X̂‖2 + ‖R‖2

Integrating the above inequality over [t0, �T] for any t0 ≤ �T≤ tf,
we obtain,

‖X̂ �T( )‖2 − ‖X̂ t0( )‖2 ≤ ∫ �T

t0

‖R‖2dt( ) + 1 + 2Cf( )∫ �T

t0

‖X̂‖2dt( )
where,

‖X̂ t0( )‖2 � ‖x̂ t0( )‖2 + ‖λ̂ t0( )‖2

with ‖x̂(t0)‖2 � 0 because of the CE.
Also,

∫ �T

t0

‖R‖2dt( )≤ ∫tf

t0

‖R‖2dt( )
since ‖R‖2 ≥ 0 and t0 ≤ �T≤ tf. Thus,

‖X̂ �T( )‖2 ≤ ∫tf

t0

‖R‖2dt + ‖λ̂ t0( )‖2( ) + 1 + 2Cf( )∫ �T

t0

‖X̂‖2dt( )
Applying the integral form of the Grönwall’s inequality to the
above, we get

‖X̂ �T( )‖2 ≤ ∫tf

t0

‖R‖2dt + ‖λ̂ t0( )‖2( ) e 1+2Cf( ) �T−t0( )( )
Integrating over [t0, tf] in d�T,

ε2G � ∫tf

t0

‖X̂ �T( )‖2d�T≤ ∫tf

t0

‖R‖2dt + ‖λ̂ t0( )‖2( )
× e− 1+2Cf( )t0

1 + 2Cf
e 1+2Cf( )tf − e 1+2Cf( )t0( )( )

That is,

ε2G ≤
e− 1+2Cf( )t0
1 + 2Cf

e 1+2Cf( )T − e 1+2Cf( )t0( )( )
× ∑N

i�1
wi‖R ti( )‖2 + Cquad ‖R‖2Ck−1( )N−α + ‖λ̂ t0( )‖2⎛⎝ ⎞⎠

Thus,

ε2G ≤
e− 1+2Cf( )t0
1 + 2Cf

e 1+2Cf( )tf − e 1+2Cf( )t0( )( )
ε2T + Cquad ‖R‖2Ck−1( )N−α + ‖λ̂ t0( )‖2( )

Finally,

εG ≤
e− 1+2Cf( )t0
1 + 2Cf

e 1+2Cf( )tf − e 1+2Cf( )t0( )( )
1
2

ε2T + CquadN
−α + ‖λ̂ t0( )‖2( )1

2

where,

e− 1+2Cf( )t0
1 + 2Cf

e 1+2Cf( )tf − e 1+2Cf( )t0( )( )
1
2

� CDE ≥ 0, ∀t0 ≤ tf ∈ R

This completes the proof.
The estimate (Equation 10) indicates that the

generalisation error when training PoNNs is small under
several conditions. The training error for the PoNN must
be reasonably small (e.g., εT ≪ 1). Moreover, the training
error can only be computed a posteriori, as we have no
prior control over it. The error associated with the training
points depends on the choice and the number of training
points N as well as on the training constant Cquad. The latter
also depends on the residual of the PoNN, X*, and thus,
indirectly, on the number of training points N. That is, N
needs to be large enough so that C

1
2
quadN

−α
2 ≪ 1. The constant

Cquad also depends on the architecture of the underlying
PoNN. The Cquad evaluation depends on the features of the
governing DEs, and the collocation of the training points
cannot be worked out in the setting of Theorem 1 [48]. The
constant Cpde encodes the stability of the DEs and depends on
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both the exact (unknown) solution X and the trained PoNN,
X*, that needs to be bounded. For OCPs with fixed final state,
the term λ̂(t0) can be computed for linear problems. In this
case it is related to the transition matrix. For nonlinear
problems, λ̂(t0) cannot be known. If it were known, the
main limitation of the indirect method for solving OPCs
would be removed (e.g., the sensitivity of the guess on the
costates initial value). Moreover, if this were the case, we
would solve the problem with a perfect shooting method.
However, if the domain [t0, tf] is compact, we can
guarantee that if the other terms in the εG are small
enough, then λ̂(t0) will also be small enough (e.g.,
λ̂(t0)≪ 1). Therefore, PoNN X* will generalise well the
unknown solution X (e.g., εG ≪ 1). Conversely, if the OCPs
have a free final state, in the TPBVP (Equation 4) we will have
the condition λ(tf) � λf instead of x(tf) � xf . In this case, the
condition on the costate at the final time can be considered as
an initial condition for a backward problem, and thus the
TPBVP is tackled as a first-order Initial Value
Backward Problem.

The main point of the estimate (Equation 10) is to provide
an upper bound of the generalisation error in terms of the
training and quadrature errors, regardless of the choice of the
PoNN architecture. The estimate (Equation 10) holds for any
expansion of X, including NNs (of any type). There is no
guarantee that the training error will be small if NNs are used
to approximate X. However, it can be expected that if the DE is
stable and the training points collocation scheme is accurate
(e.g., there is some control over Cpde and Cquad), the training
error will be small, leading to a small generalisation error.
Nevertheless, for some PoNN architectures, where the
training error was small, but Cpde and Cquad were not (e.g.,
for high tf and/or not enough training points N), the overall
estimate would not be small enough (e.g., εG would not be
≪ 1). In this scenario, PoNN X* would not generalise well the
unknown solution X.

RESULTS

To test our theoretical findings, two benchmark OCPs are
studied: 1) linear hypersensitive Feldbaum problem and 2)
nonlinear hypersensitive Feldbaum problem.

All the selected problems are coded in MATLAB 2022a
and run on an Intel Core i7 - 9700 CPU PC with
64 GB of RAM.

Problem 1: Linear Hypersensitive
Feldbaum Problem
The problem considered here is a linear hypersensitive OCP
taken from [49, 50], also known as the Hypersensitive Feldbaum
Problem (HFP). The problem is cast as follows:

min J � 1
2
∫1

0
x2 + u2( ) dt

subject to

_x � dx

dt
� −x + u

0≤ t≤ 1

x 0( ) � 1.5

x 1( ) � 1

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
The resulting TPBVP after the PMP application is,

_x � Hλ t, x, λ( ) � −x − λ
_λ � −Hx t, x, λ( ) � −x + λ

{ subject to:

x t0 � 0( ) � 1.5,
x tf � 1( ) � 1,

∀t ∈ t0, tf[ ], tf ≥ t0

⎧⎪⎪⎨⎪⎪⎩
The analytical solution is available and provided in [50].
For the PoNN algorithm, we will use the following

hyperparameters in all cases: Gaussian activation function,
input and bias are sampled from U(−3; 3). It should also be
noted that the computed times of execution are reported on their
own scale.

In Figure 2, the two plots on the left show the analytical,
PoNNs, and GPOPS-II solutions. On the plots on the right,
the absolute errors of PoNNs and GPOPS-II at the points
when compared with the analytical solution are shown. In the
first row for the State variable, in the second row for the
Control one. We used L � 100, which was trained on
100 randomly generated points. GROPS-II used N �
61 points.

Figure 3 shows the comparison with the results obtained by
GPOPS-II. We report convergence results when increasing the
number of neurons L fixing N � 61 and using exactly the points
given by the (adaptive) procedure of GROPS-II. We note that in
the result, the error made by the commercial software is strongly
affected by an anomalous value obtained at the final time,
see Figure 2.

In Figure 4 we report the obtained results by applying our
algorithm. It should be noted that the computation time can be
affected by the (machine precision) lower rank.

The numerical tests confirm the theoretical findings. The
comparison against GPOPS-II shows that PoNNs outperform
GPOPS-II both in terms of accuracy and computational time. It
should be noted that GPOPS-II was run with the default
options, i.e., we did not require machine-level accuracy. In all
cases, PoNNs achieve the machine-level accuracy with a lower
computational time than GPOPS-II. Moreover, this last only
reaches a default accuracy. Therefore, if GPOPS-II were pushed
to machine level accuracy the gap in computation time would be
higher. This assesses the superiority of PoNNs in terms of both
accuracy and computation time.

Problem 2: Nonlinear Hypersensitive
Feldbaum Problem
The problem considered here is a nonlinear version of the HFP
considered before. The problem is formulated as follows:

min J � 1
2
∫1

0
x2 + u2( ) dt
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subject to

_x � dx

dt
� −x3 + u

0≤ t≤ 1

x 0( ) � 1

x 1( ) � 1.5

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

The resulting TPBVP after the PMP application is,

_x � Hλ t, x, λ( ) � −x3 − λ
_λ � −Hx t, x, λ( ) � −x + 3 λ x2{
subject to:

x t0 � 0( ) � 1,
x tf � 1( ) � 1.5,

∀t ∈ t0, tf[ ], tf ≥ t0
⎧⎪⎪⎨⎪⎪⎩

The analytical solution is not available. Thus, to compute the
error, we estimate it over the residual on the training points. To
validate the accuracy of the target PoNN solution, we have
compared it with the one generated with GPOPS-II and also
evaluated its residuals. In all simulations, the hyperparameters
used are: Gaussian activation function, input and bias sampled
from U(−10; 10).

In Figure 5 we report state and control time evaluations on
training points. Training is performed on N � 100 randomly
sampled points with L � 100 hidden neurons for the PoNN
method, while GPOPS uses N � 86 training points.

In Figure 6 we show the residuals obtained when the
parameters are increased: at the top, the number of neurons is
increased while the number of training points (randomly
generated) is fixed at N � 100; at the bottom the number of
training points is increased while the number of neurons is fixed
at L � 100.

Even for the nonlinear case, the numerical tests confirm the
theoretical findings.

FIGURE 2 | Computed solutions and absolute errors for the linear test problem.

FIGURE 3 | Convergence of the PoNN algorithm when increasing the
number of neurons L, comparison with the result obtained by GPOPS-II. The
training points are fixed and coincide with those used by GPOPS-II N � 61.
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DISCUSSION

In this paper, we have introduced PoNNs and used them to learn
the solutions to OCPs with integral quadratic cost, which were
tackled via the indirect method.

The proposed approach can be applied to all research fields
where OCPs with integral quadratic cost must be solved. The low
computational time makes PoNNs attractive for real-time
applications.

We have derived upper bounds on the generalisation error, in
terms of the training error and number and choice of training
points, of PoNNs in learning OCP solutions. The theoretical
results are validated with numerical experiments on a benchmark
linear and a benchmark nonlinear OCPs. Furthermore, the results
are compared with those generated with the commercial software
GPOPS-II. PoNNs outperform the GPOPS-II both in terms of
accuracy and computation time. It should be noted that the
GPOPS-II was run with the default options, i.e., we did not
require machine-level accuracy. In all cases, PoNNs reach a
higher level of accuracy with a lower computation time than

FIGURE 4 |Convergence history for the application of the PoNNmethod
to the linear problem. At the top, is the case with N � 100 fixed training points,
at the bottom, the one with L � 100 fixed number of neurons.

FIGURE 5 | Visual comparison of the numerical solution. PoNN on N =
100 random training points. GPOPS uses 86 points for training.

FIGURE 6 | Convergence and stability results. On the ordinate is the
computed residual, which is taken as an estimate of the overall error.
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GPOPS-II reaches the default accuracy. Therefore, if GPOPS-II
were pushed to machine level accuracy the gap in computation
time would be higher. This assesses the superiority of PoNNs in
terms of both accuracy and computation time.

It should also be noted that PoNNs are not (at all) optimised as
GPOPS-II is. For instance for a more complex problem, where a
domain decomposition may be required to achieve better
performance, GPOPS-II will most likely achieve better results
than PoNNs. Therefore, leveraging on this paper’s results (in
particular the superiority of PoNNs on simple benchmark
problems such as those considered in this manuscript), work
is in progress to optimise PoNNs. In particular, the authors are
working on adaptive domain-decomposition techniques.

A different and complementary approach to solving OCP
comes from the application of the Bellman Principle of
Optimality (BPO). The latter provides the necessary and
sufficient conditions for optimality which yields in writing the
so-called Hamilton-Jacobi-Bellman Equation (HJB) equation.
The HJB is a nonlinear PDE that plays a crucial role in the
optimal control theory. The solution of the HJB equation is
the value function in all the time-state space. The value
function represents the optimal cost-to go for a dynamical
system with an associated cost function. Once the value
function is known, the optimal control is also known as it
is the gradient of the value function to the state variables. This
means that, if we learn the solution of the HJB equation in the
entire time-state space, we would also consequentially learn
the optimal control actions in the entire time-state space in a
closed-loop fashion. However, since it is not trivial and, in
many cases, it is most likely impossible to find an analytical
solution to the HJB equation, one has to resort to numerical
methods. The main issue in solving HJB PDEs is that the
spatial complexity of the problem increases exponentially
with respect to the number of dimensions of the system.
Thus the majority of the state-of-the-art numerical methods
to tackle PDEs struggle to solve the HJB equation. The reason
why the HJB equation should be addressed in the future is
that, unlike the PMP, which provides just a necessary
condition for the optimality and results in an open-loop
locally optimal trajectory, the HJB equation can guarantee

a necessary and sufficient condition for the optimality and
provides a closed-loop solution [51, 52].
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