
MATLAB Implementation of Physics
Informed Deep Neural Networks for
Forward and Inverse Structural
Vibration Problems
Tanmoy Chatterjee1*, Michael I. Friswell 2, Sondipon Adhikari 3 and
Hamed Haddad Khodaparast2

1School of Mechanical Engineering Sciences, University of Surrey, Guildford, United Kingdom, 2Faculty of Science and
Engineering, Swansea University, Swansea, Wales, United Kingdom, 3James Watt School of Engineering, University of Glasgow,
Glasgow, United Kingdom

In this work, we illustrate the implementation of physics informed neural networks (PINNs)
for solving forward and inverse problems in structural vibration. Physics informed deep
learning has lately proven to be a powerful tool for the solution and data-driven discovery of
physical systems governed by differential equations. In spite of the popularity of PINNs,
their application in structural vibrations is limited. This motivates the extension of the
application of PINNs in yet another new domain and leverages from the available
knowledge in the form of governing physical laws. On investigating the performance of
conventional PINNs in vibrations, it is mostly found that it suffers from a very recently
pointed out similar scaling or regularization issue, leading to inaccurate predictions. It is
thereby demonstrated that a simple strategy of modifying the loss function helps to combat
the situation and enhance the approximation accuracy significantly without adding any
extra computational cost. In addition to the above two contributing factors of this work, the
implementation of the conventional and modified PINNs is performed in the MATLAB
environment owing to its recently developed rich deep learning library. Since all the
developments of PINNs till date is Python based, this is expected to diversify the field
and reach out to greater scientific audience who are more proficient in MATLAB but are
interested to explore the prospect of deep learning in computational science and
engineering. As a bonus, complete executable codes of all four representative (both
forward and inverse) problems in structural vibrations have been provided along with their
line-by-line lucid explanation and well-interpreted results for better understanding.

Keywords: PINNs, PDE, MATLAB, automatic differentiation, vibrations

INTRODUCTION

Deep learning (DL) has recently emerged as an incredibly successful tool for solving ordinary
differential equations (ODEs) and partial differential equations (PDEs). One of the major reasons for
the popularity of DL as an alternative ODE/PDE solver whichmay be attributed to the exploitation of
the recent developments in automatic differentiation (AD) [1] and high-performance computing
open-source softwares such as TensorFlow [2], PyTorch [3] and Keras [4]. This led to the
development of a simple, general and potent class of forward ODE/PDE solvers and also novel

*Correspondence
Tanmoy Chatterjee,

t.chatterjee@surrey.ac.uk

Received: 26 April 2024
Accepted: 25 July 2024

Published: 13 August 2024

Citation:
Chatterjee T, Friswell MI, Adhikari S

and Khodaparast HH (2024) MATLAB
Implementation of Physics Informed

DeepNeural Networks for Forward and
Inverse Structural Vibration Problems.

Aerosp. Res. Commun. 2:13194.
doi: 10.3389/arc.2024.13194

Zhejiang University Press | Published by Frontiers August 2024 | Volume 2 | Article 131941

AEROSPACE RESEARCH COMMUNICATIONS
ORIGINAL RESEARCH

published: 13 August 2024
doi: 10.3389/arc.2024.13194

http://crossmark.crossref.org/dialog/?doi=10.3389/arc.2024.13194&domain=pdf&date_stamp=2024-08-13
http://creativecommons.org/licenses/by/4.0/
mailto:t.chatterjee@surrey.ac.uk
mailto:t.chatterjee@surrey.ac.uk
https://doi.org/10.3389/arc.2024.13194
https://doi.org/10.3389/arc.2024.13194

data-driven methods for model inversion and identification,
referred to as physics-informed machine learning or more
specifically, physics-informed neural networks (PINNs) [5, 6].
Although PINNs have been applied to diverse range of
problems in disciplines [7–9], not limited to fluid
mechanics, computational biology, optics, geophysics,
quantum mechanics, its application in structural vibrations
has been observed to be limited and is gaining attention
recently [10–15].

The architecture of PINNs can be customized to comply with
any symmetries, invariance, or conservation principles
originating from the governing physical laws modelled by
time-dependant and nonlinear ODEs and PDEs. This feature
make PINNs an ideal platform to incorporate this domain of
knowledge in the form of soft constraints so that this prior
information can act as a regularization mechanism to
effectively explore and exploit the space of feasible solutions.
Due to the above features and generalized framework of PINNs,
they are expected to be as suitable in structural vibration
problems as in any other applications of computational
physics. Therefore, in this paper, we investigate the
performance of conventional PINNs for solving forward and
inverse problems in structural vibrations. Then, it is shown that
with the modification of the loss function, the scaling or
regularization issue which is an inherent drawback of first
generation PINNs referred to as “gradient pathology” [16],
significant improvement in approximation accuracy can be
achieved. One important thing about the above strategy is that
it does not require any additional training points to be generated
and hence does not contribute to the computational cost.
Moreover, since all of the implementation of PINNs is
performed in Python, this work explores MATLAB
environment for the first time. This is possible due to the new
development of the DL library and AD built-in routines in
MATLAB. The solution and identification of four
representative structural vibration problems have been carried
out using PINNs. We also provide complete executable MATLAB
codes for all the examples and their line-by-line explanation for
easy reproduction. This is expected to serve a large section of
engineering community interested in the application of DL in
structural mechanics or other fields and are more proficient and
comfortable in MATLAB. Special emphasis has also been
provided to present a generalized code so that all the recent
improvements in PINNs architecture and its variants (otherwise
coded in Python) can be easily reproduced using our present
implementation.

FORMULATION OF PHYSICS-INFORMED
NEURAL NETWORKS

One of the major challenges PINNs circumvent is the
overdependence of data-centric deep neural networks
(DNN) on training data. This is especially useful as
sufficient information in the form of data is often
not available for physical systems. The basic concept of
PINNs is to evaluate hyperparameters of the DNN by

making use of the governing physics and encoding this
prior information within the architecture in the form of
the ODE/PDE. As a result of the soft constraining, it
ensures the conservation of the physical laws modelled by
the governing equation, initial and boundary conditions and
available measurements.

Considering the PDE for the solution u(t, x) parameterized by
system parameters ξ defined in the domain Ω

F t, x;
∂u

∂t
,
∂u

∂x1
, . . . ,

∂u

∂xd
;
∂2u

∂t2
,
∂2u

∂x2
1

, . . . ,
∂2u

∂x1∂xd
;/ ; ξ() � 0

x � x1, . . . , xd() ∈ Ω ⊂ Rd, t ∈ 0, T[]
(1)

with the following initial (I) and boundary conditions (B),
respectively, as,

I u, t � 0, x() � 0, x ∈ Ω
B u, t, x() � 0, t ∈ 0, T[], x ∈ ∂Ω (2)

here t and x represent the time and spatial coordinates,
respectively and ∂Ω is the boundary of Ω. For solving the
PDE via PINNs, the solution u(t, x) is approximated
by constructing a neural network N u(t, x; θ) to yield
û(t, x; θ) such that u(t, x) ≈ û(t, x; θ), where θ denotes a
concise representation of all the trainable parameters. The
trainable parameters (denoted as θ for tractability)
consist of weight matrices and bias vectors. These matrices
and vector components of a neural network are randomly
initialized and are optimized by minimising the loss
function during the training process. Hereafter, the training
strategy of PINNs to be followed has been illustrated
point-wise.

• A set of collocation points inside the domain (DF) is
generated using a suitable experimental design scheme.
Another set of points is to be generated individually on
the boundary (DB) and corresponding to the initial
conditions (DI).

• The loss function that penalizes the PDE residual (LF) is
formulated based on the generated interior
collocation points as,

LF θ;DF() � 1
|DF | ∑

x∈DF

F t, x;
∂û

∂t
,
∂û

∂x1
, . . . ,

∂û

∂xd
;
∂2û

∂t2
,
∂2û

∂x2
1

, . . . ,
∂2û

∂x1∂xd
; . . . ; ξ()

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
2

(3)
Note that the derivatives ∂û

∂t ,
∂û
∂xi
, ∂

2û
∂t2 ,

∂2û
∂xi∂xj

in Eq. 3 are computed
using AD.

• The loss functions that ensure the satisfaction of the
boundary (LB) and initial conditions (LI), respectively
are defined as,

LB θ;DB() � 1
|DB| ∑

x∈DB

B û(, t, x| |2 (4)

Zhejiang University Press | Published by Frontiers August 2024 | Volume 2 | Article 131942

Chatterjee et al. Aerospace Research Communications PINNs for Vibrations in MATLAB

LI θ;DI() � 1
|DI | ∑

x∈DI

I û(, t � 0, x| |2 (5)

• The composite loss function (L) is defined as the sum of the
above individual loss terms, namely, the loss of the PDE
residual (LF), boundary (LB) and initial conditions (LI).

L � LF + LB + LI (6)

• The final goal is to compute the parameters (θ) by
minimizing the loss function (L) in Eq. 6 as shown
below and construct a DNN representation.

~θ � arg min
θ

L θ() (7)

Usually, L(θ) is minimized using the stochastic gradient
descent method. Once the PINNs model is constructed, it
can be used to predict the system response û at unknown input
(~t, ~x).

Despite immense success, the plain vanilla version of PINNs
(as discussed above) has been often criticized for not performing
well even for simple problems. This is due to the regularization of
the composite loss term as defined in Eq. 6. In particular, the
individual loss functions LF , LB and LI are of widely varying
scales leading to gradient imbalances between the loss terms and
eventually resulting in an inaccurate representation of the PDE
solution. This issue has been recently analyzed in detail [16].
Since manual tuning to vary the importance of each term can be
tedious, numerous studies on multi-objective optimization have
been undertaken which allow adaptive/automatic scaling of each
term in the loss function, including the popular weighted sum
approach. A scaling approach was proposed by Wang et al. [16]
for PINNs based on balancing the distribution of gradients of
each term in the loss function. Although their approach proved to
be effective, it entails extra computational effort.

Alternatively, we employ a different approach to address the
scaling issue and at the same time requires no extra
computational effort. To avoid multiple terms in the
composite loss function, the DNN output û is modified to
ûmod so that the PDE residual, initial and/or, boundary
conditions are satisfied simultaneously (ûmod � g(û, t, x)). The
determination of mapping function g involves simple
manipulation of the expression of DNN approximated
solution which has been illustrated later in the numerical
examples section. In presence of the modified neural network
output ûmod, the new loss function (Lnew) can be expressed as,

Lnew θ;DF() � 1
|DF | ∑

x∈DF

F t, x;
∂ûmod

∂t
,
∂ûmod

∂x1
, . . . ,

∂ûmod

∂xd
;
∂2ûmod

∂t2
,
∂2ûmod

∂x2
1

, . . . ,
∂2ûmod

∂x1∂xd
; . . . ; ξ()

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
2

(8)
Note that the new loss function only involves the PDE residual

of the modified output ûmod in the domain DF and still satisfies
the associated boundary and/or, initial conditions by avoiding

their corresponding loss terms. This is only possible due to the
modified DNN output. Likewise, the derivatives
∂ûmod
∂t , ∂ûmod

∂xi
, ∂

2ûmod
∂t2 , ∂

2ûmod
∂xi∂xj

in Eq. 8 are computed using AD.
Next, a flow diagram of the PINNs architecture is presented in

Figure 1 for further clarity. This depicts the encoding of the
PDE physics in the form of soft constraints within the DNN as
illustrated by the physics informed training block in the right
side of the diagram. For generality, the flow diagram consists of
both training strategies adopted for conventional (vanilla) and
modified PINNs. Later, with the help of numerical examples, it
is illustrated that the modified PINNs alleviates the scaling
issue and leads to better approximation without generating any
extra sampling points. As the physics will change from
problem to problem depending on the ICs and BCs, the
mapping function g will have to be determined separately
for every problem. Once determined, it can be implemented
with minimal effort and has been demonstrated in the next
section. It is worth noting that no computations are performed
on the actual system (i.e., any response/output data is not
required) during the entire training phase of PINNs for
capturing the forward solution and hence, is a simulation
free ODE/PDE solver.

One useful feature of PINNs is that the same framework can be
employed for solving inverse problems with a slight modification
of the loss function. The necessary modification is discussed next.
If the parameter ξ in Eq. 1 is not known, and instead DM set of
measurements of response u* is available, then an additional loss
term minimizing the discrepancy between the measurements and
the neural network output can be defined as,

LM θ, ξ;DM() � 1
|DM| ∑

x∈DM

û x() − u* x()| |2 (9)

This term LM determines the unknown parameters along
with the solution. Thus, the combined loss term (L) is
expressed as,

L � LF + LB + LI + LM (10)
Lastly, the parameters (θ, ξ) are computed by minimizing the

loss function (L) in Eq. 10 as shown below.

~θ, ~ξ � arg min
θ,ξ

L θ, ξ() (11)

MATLAB IMPLEMENTATION OF PINNS

In this section, the implementation of PINNs in MATLAB has
been presented following its theoretical formulation discussed in
the previous section. A step-wise explanatory approach has been
adopted for better understanding of the readers and care has been
taken to maintain the code as generalized as possible so that
others can easily edit only the necessary portions of the code for
their purpose. The complete code has been divided into several
sub-parts and each of these are explained in detail separately for
the solution of forward and inverse problems.

Zhejiang University Press | Published by Frontiers August 2024 | Volume 2 | Article 131943

Chatterjee et al. Aerospace Research Communications PINNs for Vibrations in MATLAB

Input Data Generation
The first part is the input data generation. For the conventional
PINNs, points have to be generated 1) in the interior of domain to
satisfy the PDE residual, 2) on the boundary of domain to satisfy
the boundary conditions, and 3) additional points to satisfy the
initial conditions. However, in the modified approach, since the
output is adapted so as to satisfy all of the conditions
simultaneously, only the interior points are required to be
generated. The part of the code generating the interior data
points by Latin hypercube sampling has been illustrated in the
following snippet.

Initialization of Network Parameters
Next, the fully connected deep neural net architecture is
constructed according to the user-defined number of layers
“numLayers” and number of neurons per layer
“numNeurons.” The trainable parameters (weights and
biases) for every layer is initialized and stored in the fields of
a structure array called “parameters.” The instance of
initializing the weights and biases of the first fully connected
layer has been captured by the following snippet. Here, the
network weights are initialized by the He initialization [17]
implemented by the function “initializeHe.” The He

initializer samples the weights out of a normal distribution
with zero mean and variance � 2

Ni
, where Ni is the number of

input channels. This function “initializeHe” takes in two
input arguments, one is the size of trainable parameters “sz”and
the other is “Ni” and returns the sampled weights as a
“dlarray” object. Note that “dlarray” is a built-in deep
learning array in MATLAB employed for customizing the
training process of DNNs. It enables numerous numerical
operations including the computation of derivatives through
AD. The network biases have been initialized by the zeros
initialization implemented by the function
“initializeZeros.” As it is evident that the initialization
schemes can be easily customized, other initializers like Glorot or
Xavier, Gaussian, orthogonal and others can be readily employed
depending on the model type and choice of the user. In fact, a
wide variety of initialization schemes of trainable parameters for
various type of DNNs can be found in the MATLAB
documentation.1

FIGURE 1 | A schematic flow diagram of physics informed neural networks (PINNs). In the figure, the abbreviations FC-DNN, PDE, AD, BCs and ICs represent fully
connected deep neural network, partial differential equation, automatic differentiation, boundary conditions and initial conditions, respectively. All of the symbols used
here to express the mathematical quantities are explained in Formulation of Physics-Informed Neural Networks section.

1https://uk.mathworks.com/help/deeplearning/ug/initialize-learnable-parameters-
for-custom-training-loop.html#mw_f7c2db63-96b5-4a81-813e-ee621c9658ce

Zhejiang University Press | Published by Frontiers August 2024 | Volume 2 | Article 131944

Chatterjee et al. Aerospace Research Communications PINNs for Vibrations in MATLAB

https://uk.mathworks.com/help/deeplearning/ug/initialize-learnable-parameters-for-custom-training-loop.html%20\l%20mw_f7c2db63-96b5-4a81-813e-ee621c9658ce
https://uk.mathworks.com/help/deeplearning/ug/initialize-learnable-parameters-for-custom-training-loop.html%20\l%20mw_f7c2db63-96b5-4a81-813e-ee621c9658ce

Neural Network Training
At this stage, the network is to be trained with user-specified value of
parameters like, number of epochs, initial learning, decay rate along
with several other tuning options. It is worth noting that multiple
facilities to allocate hardware resources are available inMATLAB for
training the network in an optimal computational cost. This include
using CPU, GPU, multi GPU, parallel (local or remote) and cloud
computing. The steps performed during the model training within
the nested loops of epoch and iteration in mini-batches have been
illustrated in the following snippet. To recall, an epoch is the full pass
of the training algorithm over the entire training set and an iteration
is one step of the gradient descent algorithm towardsminimizing the
loss function using a mini-batch. As it can be observed from the
snippet that three operations are involved during themodel training.
These are 1) evaluating the model gradients and loss using
“dlfeval”2 by calling the function “modelGradients”
(which is explained in the next snippet), 2) updating the learning
rate with every iteration and epoch and 3) finally updating the
network parameters during the backpropagation using adaptive
moment estimation (ADAM) [18]. In addition to ADAM, other
stochastic gradient descent algorithms like, stochastic gradient
descent with momentum (SGDM) and root mean square
propagation (RMSProp) can be readily implemented via their
built-in MATLAB routines.

Encoding the Physics in the Loss Function
The next snippet presents the function “modelGradients.”
This sub-routine is the distinctive feature of PINNs where
the physics of the problem is encoded in the loss functions.
As mentioned previously, in conventional PINNs, the
system response is assumed to be a DNN such that
U=modelU(parameters,dlX,dlY,dlT). A difference to
the expression of U can be observed in this snippet where the
DNN output is modified based on the ICs and BCs. As obvious,
this modification will change from problem to problem. In this
case, the expression is shown for illustration and is related to Eq.
33 of Example 4 defined in the next section. As the name
“dlgradient” suggests, it is used to compute the derivatives
via AD. After evaluating the gradients, the loss term enforcing the
PDE residual is computed.

As the modified DNN output ensures the satisfaction of ICs and
BCs, only the loss term corresponding to PDE residual is necessary.
Instead, if conventional PINNs was used, separate loss terms
originating from the ICs and BCs would have to be added to the
residual loss. Finally, the gradients of the combined loss w.r.t. the

network parameters are computed and passed as the function
output. These gradients are further used during backpropagation.

As obvious, there will be another loss term involved while solving
an inverse problem which minimizes the discrepancy between the
model prediction and the measured data. The parameter to be
identified is updated as another additional hyperparameter of the
DNN along with the network weights and biases. This can be easily
implemented by adding the following line: c_update =
parameters.(“fc” + numLayers).opt_param; and
evaluating the PDE residual as f1 = c_update*(Uxx + Uyy)
- Utt in Example 4. In doing so, note thatc in line 22 of the snippet
will be replaced by c_update.

Fully Connect Operations
The “modelU” function has been illustrated in the next snippet.
Here, the fully connected deep neural network (FC-DNN) model
is constructed as per the dimensionality of input and network
parameters. In particular, the fully connect operations are
performed via “fullyconnect.” This function uses the
weighted sum to connect all the inputs to each output feature
using the “weights,” and adds a “bias.” Sinusoidal activation
function has been used here. The sub-routine returns the
weighted output features as a dlarray “dlU” having the
same underlying data type as the input “dlXYT.”

Once the PINNs model is trained, it can be used to predict on
the test dataset. It is worth noting that the deep learning library of

2Functions passed to ‘dlfeval’are allowed to contain calls to ‘dlgradient’, which
compute gradients by using automatic differentiation.

Zhejiang University Press | Published by Frontiers August 2024 | Volume 2 | Article 131945

Chatterjee et al. Aerospace Research Communications PINNs for Vibrations in MATLAB

MATLAB is rich and consists of a diverse range of built-in
functions, providing the users adequate choice and modelling
freedom. In the next section, the performance of conventional
and modified PINNs is accessed for solving four representative
structural vibration problems, involving solution of ODE
including multi-DOF systems, and PDE. In doing so, both
forward and inverse problems have been addressed.
Complete executable MATLAB codes of PINNs
implementation for all the example problems can be found in
the Supplementary Material.

NUMERICAL EXAMPLES

Forced Vibration of an Undamped Spring-
Mass System
The forced vibration of the spring-mass system can be
expressed by

€u + ω2
nu � f0 sinωt (12)

where u, ü, ωn, fn, ω and t represent displacement, acceleration,
natural frequency, forcing amplitude, forcing frequency and time,
respectively. The initial conditions are u(t = 0) = 0 and ü (t = 0) =
0, where ü represents the velocity. The analytical solution to the
above system is given by

u t() � f0

ω2
n − ω2

sinωt − r sinωnt() (13)

where, r = ω/ωn is the frequency ratio.
As mentioned previously, in the realm of the PINNs

framework, solution space (of the ODE, for this case) can be
approximated by DNN such that û � N u(t, θ), where the
residual of ODE is evaluated with the help of AD. Essentially,
this is an optimization problem which can be expressed as,

arg min
θ∈Rd

L θ() ≔ ∂2û

∂t2
+ ω2

nû − f0 sinωt

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣2 + û t � 0()| || |2

+ ∂û

∂t
t � 0()

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣2 (14)

where, ‖◦‖ denotes ℓ2-norm. For the numerical illustration, it is
assumed that ω � 3, r � 1.5 and f0 � 1. The displacement u is
approximated using a fully-connected neural network with
4 hidden layers and 20 neurons per layer. Sinusoidal activation
function has been used due to the known periodic nature of the
data [19]. 20,000 collocation points have been generated for time
data t ∈ [0 4π] with the help of Latin hypercube sampling. The
neural network is run for 1,000 epochs and the mini-batch size is
1,000. The initial learning rate is assumed to be 0.01 and the
popular ADAM optimizer is employed. For testing the PINNs
framework, 5,000 points were uniformly generated for time
t ∈ [0 4π]. The solution û obtained using the PINNs
framework has been compared with the actual (analytical)
solution u in Figure 2A.

It can be observed from Figure 2A that the conventional
PINNs framework is not capable of capturing the time response

variation satisfactorily. As discussed in the previous sections, the
reason is related to the regularization of the loss term in Eq. 14
and has been recently addressed in [16]. Although their approach
proved to be effective, it entails extra computational effort.

Therefore, an alternative approach has been employed in this
work to address the scaling issue which requires no additional
computational cost compared to that of conventional PINNs. For
avoiding multiple terms in the loss function, a simple scheme for
modifying the neural network output has been adopted so that
the initial and/or, boundary conditions are satisfied. To
automatically satisfy the initial conditions in the above
problem, the output of the neural network û is modified as,

ûmod � tû (15)
Since the modified neural network output is ûmod, the new loss

function can be expressed as,

arg min
θ∈Rd

Lnew θ() ≔ ∂2ûmod

∂t2
+ ω2

nûmod − f0 sinωt

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣2 (16)

Following this approach, significant improvement in
approximation of the displacement response has been achieved
as shown in Figure 2B. Next, the implementation of PINNs has
been illustrated for an inverse setting. For doing so, the same
problem as defined by Eq. 12 is re-formulated such that the
displacement time history is given in the form of measurements
and the natural frequency ωn has to be identified. The
optimization problem can be expressed as,

arg min
θ∈Rd, ω∈R

L θ,ω() ≔ ∂2û

∂t2
+ ω2

nû − f0 sinωt

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣2 + û − u*| || |2 (17)

where, u* represents the measured displacement data.
15,000 collocation points have been generated for time data
t ∈ [0 4π] with the help of Latin hypercube sampling.
2,500 displacement data points were used for artificially
simulating the measurement data and 5% uniform random
noise was added. The architecture and the parameters of the
neural network is the same as the previous case. The results have
been presented in the form of convergence of the identified
parameter ω in Figure 2C. The converged value of ω � 3.0
demonstrates exact match with the actual value. It is worth
mentioning that the PINNs framework is inherently adapted
to also provide the solution to the ODE along with the identified
parameter in the inverse setup. This demonstrates that the PINNs
framework can be easily adapted for solving forward and inverse
problems in structural vibration.

Forced Vibration of a Damped Spring-
Mass System
The second example concerns a forced vibration of a damped
spring-mass system and can be expressed by

€u + 2ζωn _u + ω2
nu � f0 sinωt (18)

where u, _u, ü, ωn, ζ, f0, ω and t represent displacement, velocity,
acceleration, natural frequency, damping ratio, forcing

Zhejiang University Press | Published by Frontiers August 2024 | Volume 2 | Article 131946

Chatterjee et al. Aerospace Research Communications PINNs for Vibrations in MATLAB

amplitude, forcing frequency and time, respectively. The
initial conditions are u(t = 0) = 0 and _u(t = 0) = 0.
The analytical solution to the above system can be found
in [20].

As mentioned previously, in the realm of the PINNs
framework, solution space (of the ODE, for this case)
can be approximated by DNN such that û � N u(t, θ),
where the residual of ODE is evaluated with the help of
AD. Essentially, this is an optimization problem which can
be expressed as,

arg min
θ∈Rd

L θ() ≔ ∂2û

∂t2
+ 2ζωn

∂û

∂t
+ ω2

nû − f0 sinωt

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣2

+ û t � 0()| || |2 + ∂û

∂t
t � 0()

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣2 (19)

where, ‖◦‖ denotes ℓ2-norm. For the numerical illustration, it is
assumed that ω � 3, ζ � 0.025, r � 1.5 and f0 � 1. The
displacement u is approximated using a fully-connected neural
network with 4 hidden layers and 20 neurons per layer. Sinusoidal
activation function has been used due to the known periodic
nature of the data [19]. The neural network is run for
1,000 epochs and the mini-batch size is 1,000. The initial
learning rate is assumed to be 0.01 and the popular ADAM
optimizer is employed. The solution û obtained using the PINNs
framework has been compared with the actual (analytical)
solution u in Figure 3A. 20,000 collocation points have been
generated for time data t ∈ [0 8π] with the help of Latin
hypercube sampling to obtain the results in Figures 3A, B.
For testing the PINNs framework, 5,000 points were uniformly
generated for time t ∈ [0 8π] to obtain the results in
Figures 3A, B.

It can be observed from Figure 3A that the conventional
PINNs framework is not capable of capturing the time

response variation satisfactorily. As discussed in the
previous sections, the reason is related to the regularization
of the loss term in Eq. 14. Therefore, to automatically satisfy
the initial conditions, modified output of the neural network
ûmod is the same as Eq. 15 as the initial conditions are identical
to that of the first example. Therefore, the new loss function
can be expressed as,

arg min
θ∈Rd

Lnew θ() ≔ ∂2ûmod

∂t2
+ 2ζωn

∂ûmod

∂t
+ ω2

nûmod − f0 sinωt

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣2

(20)
Following this approach, significant improvement in

approximation of the displacement response has been
achieved as shown in Figure 3B. The displacement response
is presented over extended time in Figure 3C so as to
investigate the performance of PINNs on the steady state
response after the transients have died out. For generating
the result in Figure 3C, 60,000 collocation points have been
generated for the time data t ∈ [0 50] for training the network.
For testing the PINNs framework, 40,000 points were
uniformly generated for time t ∈ [0 50]. The approximation
by PINNs is found to be excellent in terms of capturing the
response trends.

Next, the implementation of PINNs has been illustrated for an
inverse setting. For doing so, the same problem as defined by Eq.
18 is re-formulated such that the displacement time history is
given in the form of measurements and both natural frequency ωn

and damping ratio ζ have to be identified simultaneously. The
optimization problem can be expressed as,

arg min
θ∈Rd, ω∈R

L θ,ω() ≔ ∂2û

∂t2
+ 2ζωn

∂û

∂t
+ ω2

nû − f0 sinωt

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣2

+ û − u*| || |2 (21)

FIGURE 2 | Results of the forced spring-mass system (A) Forward solution without modifying the neural network output. (B) Forward solution after modifying the
neural network output. (C) Inverse solution in the form of convergence of the identified parameter ω.

Zhejiang University Press | Published by Frontiers August 2024 | Volume 2 | Article 131947

Chatterjee et al. Aerospace Research Communications PINNs for Vibrations in MATLAB

where, u* represents the measured displacement data.
10,000 collocation points have been generated for time
data t ∈ [0 4π] with the help of Latin hypercube
sampling. 1,000 displacement data points were used for
artificially simulating the measurement data and 1% uniform
random noise was added. The architecture and the parameters
of the neural network is the same as the previous case.

The results have been presented in the form of convergence of
the identified parameters (natural frequency and damping ratio)

in Figure 4. The converged value of ωn � 2.9985 and ζ � 0.0097
demonstrate close match with the actual values of 3 and 0.01,
respectively. This demonstrates that the PINNs framework can be
easily adapted for solving forward and inverse problems in
structural vibration.

Free Vibration of a 2-DOF Discrete System
A 2-DOF lumpedmass system as shown in Figure 5 is considered
in this example [20]. This example has been included to illustrate

FIGURE 3 | Results of the damped forced spring-mass system (A) Forward solution without modifying the neural network output. (B) Forward solution after
modifying the neural network output. (C) Forward solution over extended time after modifying the neural network output to observe the steady state response (after the
transients have died out).

FIGURE 4 | Identification results for the damped forced spring-mass system (A) Convergence of the identified natural frequency. (B) Convergence of the identified
damping ratio.

Zhejiang University Press | Published by Frontiers August 2024 | Volume 2 | Article 131948

Chatterjee et al. Aerospace Research Communications PINNs for Vibrations in MATLAB

the application of PINNs in a multi-output setting for the inference
and identification ofmulti degree of freedom systems. The governing
ODE and the initial conditions are as follows,

m1 0
0 m2

[] €q1
€q2

{ } + c1 + c2 −c2
−c2 c2 + c3

[] _q1
_q2

{ }
+ k1 + k2 −k2

−k2 k2 + k3
[] q1

q2
{ } � f1

f2
{ }

(22)

with initial conditions q(0) and _q(0). In Eq. 22, qi, _qi, €qi represent
the displacement, velocity, acceleration of the ith DOF,
respectively, mi and fi represent the mass of the ith DOF and
force acting at the ith DOF, respectively, cj and kj are the damping
and stiffness coefficient of the jth connecting element,
respectively. For this 2-DOF system, i � 1, 2 and j � 1, 2, 3.
Since the free vibration problem has been undertaken, the
right hand side of Eq. 22 is zero. Two cases of the free
vibration problem have been considered, undamped and
damped. For each of these cases, both forward and inverse
formulations have been presented. The analytical solution to
the above governing ODE considering undamped and damped
cases, respectively, can be determined as,

q t() � ∑n
i�1

diui cos ωit − ϕi() (23)

q t() � ∑n
i�1

diuie
−ζ iωit cos ωdit − ϕi() (24)

where, constants di and ϕi have to be determined from the
given initial conditions. n represents the number of DOFs,
therefore n � 2 for the above system. ωi and ui are the ith

undamped natural frequency and mode shape vector,
respectively, obtained from the modal analysis. In Eq. 24, ζ i
and ωdi represent the ith damping ratio and damped natural
frequency, respectively.

As opposed to the previous examples, in general, the response
associated with each DOF has to be represented by an output
node of (multi-output) FC-DNN. Since the above example is a
2-DOF system, the response of the two DOFs are represented by

two output nodes of an FC-DNN in the realm of PINNs

architecture such that q̂ � q̂1
q̂2

{ } � N q(t, θ). The optimization

problem can be expressed as,

arg min
θ∈Rd

L θ() ≔ M€̂q + C _̂q + Kq̂
∣∣∣∣∣ ∣∣∣∣∣∣∣∣∣∣ ∣∣∣∣∣2 + q̂ t � 0() − q0

∣∣∣∣ ∣∣∣∣∣∣∣∣ ∣∣∣∣2
+ _̂q t � 0()
∣∣∣∣∣ ∣∣∣∣∣∣∣∣∣∣ ∣∣∣∣∣2 (25)

where, the gradients arising in Eq. 25 can be computed by AD.
The following parameter values are adopted, m1 � 9, m2 � 1,
k1 � 24, k2 � 3, k3 � 0, c1 � 1, c2 � 0.125, c3 � 0. An FC-DNN
with 4 hidden layers and 20 neurons per layer is used. Sinusoidal
activation function has been used due to the known periodic
nature of the data. The neural network is run for 1,000 epochs and
the mini-batch size is 1,000. The initial learning rate is assumed to
be 0.01 and the popular ADAM optimizer is employed.
Collocation points have been generated for time data
t ∈ [0 8π] with the help of Latin hypercube sampling to obtain
the results in Figures 6–8. For testing the conventional PINNs
framework, 10,000 points were uniformly generated for time
t ∈ [0 8π] to obtain the results in Figure 6. The undamped
and damped time response obtained using conventional
PINNs framework have been compared with the actual
(analytical) solution in Figure 6.

It can be observed from Figure 6 that the conventional PINNs
framework is capable of capturing the undamped and damped
time response variation satisfactorily for two different ICs. The IC

q0 � q01
q02

{ } � 1
3

{ }, _q0 � 0 is adopted so that the system vibrates

with the first natural frequency only as shown in Figures 6A, C,

whereas the IC q0 � q01
q02

{ } � 1
0

{ }, _q0 � 0 is a more general one

resulting in a multi-frequency response as shown in Figures
6B, D. It is worth mentioning that the beat phenomenon exists
in the free response of the above 2-DOF system due to close
proximity of the two natural frequencies (ω1 �

�
2

√
and ω2 � 2).

FIGURE 5 | A schematic representation of the 2-DOF lumped mass system.

Zhejiang University Press | Published by Frontiers August 2024 | Volume 2 | Article 131949

Chatterjee et al. Aerospace Research Communications PINNs for Vibrations in MATLAB

Next, PINNs has been implemented in an inverse setup for
identification of system parameters both for the undamped
and damped cases. For doing so, the same problem as defined
by Eq. 22 is re-formulated such that the displacement time history
data is available in the form of measurements and stiffness

parameters (k1 and k2) for the undamped case and stiffness
and damping parameters (k1, k2, c1 and c2) for the damped case,
have to be identified simultaneously. The optimization problem
for the undamped and damped case, respectively, can be
expressed as,

FIGURE 6 | Results of free vibration of the 2-DOF lumped mass system. (A) Undamped response for IC q0 � [q01 q02]T � [1 3]T , _q0 � 0. The predicted
responses have been obtained using 60,000 collocation points. (B)Undamped response for IC q0 � [q01 q02]T � [1 0]T , _q0 � 0. The predicted responses have been
obtained using 100,000 collocation points. (C) Damped response for IC q0 � [q01 q02]T � [1 3]T , _q0 � 0. The predicted responses have been obtained using
40,000 collocation points. (D) Damped response for IC q0 � [q01 q02]T � [1 0]T , _q0 � 0. The predicted responses have been obtained using
120,000 collocation points.

Zhejiang University Press | Published by Frontiers August 2024 | Volume 2 | Article 1319410

Chatterjee et al. Aerospace Research Communications PINNs for Vibrations in MATLAB

arg min
θ∈Rd, k1 ,k2∈R

L θ, k1, k2() ≔ M€̂q + Kq̂
∣∣∣∣∣ ∣∣∣∣∣∣∣∣∣∣ ∣∣∣∣∣2 + q̂ − q*

∣∣∣∣ ∣∣∣∣∣∣∣∣ ∣∣∣∣2 (26)

arg min
θ∈Rd, k1 ,k2 ,c1 ,c2∈R

L θ, k1, k2, c1, c2() ≔ M€̂q + C _̂q + Kq̂
∣∣∣∣∣ ∣∣∣∣∣∣∣∣∣∣ ∣∣∣∣∣2

+ q̂ − q*
∣∣∣∣ ∣∣∣∣∣∣∣∣ ∣∣∣∣2 (27)

where, q* represents the measured displacement data.
Collocation points have been generated for time data
t ∈ [0 8π] with the help of Latin hypercube sampling.
2,000 displacement data points were used for artificially
simulating the measurement data and 1% uniform random
noise was added. The architecture and the parameters of the
neural network is the same as the forward formulation. The
results have been presented in the form of convergence of
identified system parameters in Figures 7, 8 for the undamped
and damped case, respectively.

The converged values of k1 � 24.0031 and k2 � 2.9995 have
been obtained from Figure 7 for the undamped case. The
converged values of k1 � 24.0064, k2 � 2.9995, c1 � 1.0030 and
c2 � 0.1248 have been obtained from Figure 8 for the damped
case. The converged values of identified system parameters
demonstrate close match with the actual values k1 � 24,
k2 � 3, c1 � 1 and c2 � 0.125. This demonstrates that the
PINNs framework can be easily adapted for solving forward
and inverse problems in multi-DOF systems. In addition to
the adopted strategy to employ a single two-output FC-DNN
to solve a 2-DOF system, two individual single output FC-DNNs
were investigated. However, the latter failed to map the time
response accurately due to the inability of two independent
networks to adequately capture the dependencies of the
coupled differential equations and hence, minimize the loss.

Free Vibration of a Rectangular Membrane
A rectangular membrane with unit dimensions excited by an
initial displacement u � sin πx sin πy has been considered in this
example. The governing partial differential equation (PDE),
initial and boundary conditions can be expressed as

c∇2u � c
∂2u

∂x2
+ ∂2u

∂y2
() � ∂2u

∂t2
∀ x, y ∈ 0, 1[], t> 0 (28)

u � 0 ∀ x, y ∈ Γu (29)
u � sin πx sin πy ∀ t � 0, x, y ∈ 0, 1[] (30)
∂u

∂t
� 0 ∀ t � 0, x, y ∈ 0, 1[] (31)

where, u is the displacement and c is the velocity of wave
propagation. In Eqs 28–31, x, y represent the spatial
coordinates, t represents time and Γu denotes the spatial
domain. The analytical solution to the governing PDE is
u(x, y, t) � sin πx sin πy cos

�
2

√
πt.

Using the PINNs framework, solution of the PDE is
approximated by a DNN such that û � N u(x, y, t, θ), where
residual of the PDE is evaluated with the help of AD. The
optimization problem can be expressed as,

arg min
θ∈Rd

L θ() ≔ c
∂2û

∂x2
+ ∂2û

∂y2
() − ∂2û

∂t2

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
2

+ û x, y ∈ Γu()∣∣∣∣ ∣∣∣∣∣∣∣∣ ∣∣∣∣2

+ û t � 0() − sin πx sin πy
∣∣∣∣ ∣∣∣∣∣∣∣∣ ∣∣∣∣2 + ∂û

∂t
t � 0()

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣2

(32)
The displacement u is approximated using a fully-

connected neural network with 4 hidden layers and

FIGURE 7 | Identification results for the undamped 2-DOF system (A) Convergence of the identified stiffness parameter k1. (B) Convergence of the identified
stiffness parameter k2. For obtaining these results, 45,000 collocation points and 2,000 data points with 1% random uniform noise were used to train the PINNs model.

Zhejiang University Press | Published by Frontiers August 2024 | Volume 2 | Article 1319411

Chatterjee et al. Aerospace Research Communications PINNs for Vibrations in MATLAB

20 neurons per layer. Sinusoidal activation function has been
used. 5,000 collocation points are generated for the spatial
x, y ∈ [0 1] and temporal data t ∈ [0 1/(2 �

2
√)] with the help

of Latin hypercube sampling. The neural network is run for
1,000 epochs and the mini-batch size is 1,000. The initial
learning rate is assumed to be 0.01 and the popular ADAM
optimizer is employed. For testing the PINNs framework,
1,000 points were uniformly generated for x, y and t. The
solution in space obtained using the PINNs framework û

(Figure 9B) has been compared with the actual (analytical)
solution u (Figure 9A) for four different time instants t �
0.1, 0.15, 0.2 and 0.25.

It can be observed from Figure 9B that the conventional
PINNs framework is not capable of capturing the time
response variation satisfactorily. The reason is once again
related to the regularization of the loss term in Eq. 32. The
different terms related to the residual, initial and boundary
conditions in the loss function are not satisfied

FIGURE 8 | Identification results for the damped 2-DOF system (A)Convergence of the identified stiffness parameter k1, (B)Convergence of the identified stiffness
parameter k2, (C) Convergence of the identified damping parameter c1, (D) Convergence of the identified damping parameter c2. For obtaining these results,
70,000 collocation points and 2000 data points with 1% random uniform noise were used to train the PINNs model.

Zhejiang University Press | Published by Frontiers August 2024 | Volume 2 | Article 1319412

Chatterjee et al. Aerospace Research Communications PINNs for Vibrations in MATLAB

simultaneously. Specifically, the fact that the condition u � 0
at the boundary of the domain not being satisfied in the
predicted response by conventional PINNs can be
visualized from Figure 9B.

To ensure the satisfaction of residual, initial and
boundary conditions and improve upon the
approximation accuracy, the neural network output has
been modified as,

ûmod � t2 x x − 1()y y − 1()û + sin πx sin πy (33)

Since the modified neural network output is ûmod, the new
optimization problem can be expressed as,

arg min
θ∈Rd

Lnew θ() ≔ c
∂2ûmod

∂x2
+ ∂2ûmod

∂y2
() − ∂2ûmod

∂t2

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
2

(34)

Following this modified PINNs approach, significant
improvement in the spatial distribution of the displacement
response has been achieved as shown in Figure 9C. Next, the
implementation of PINNs has been illustrated in solving another
inverse problem. For doing so, the same problem as defined by Eqs

FIGURE 9 | Results of free vibration of the rectangular membrane (A) True forward spatial solution, (B) Predicted forward spatial solution by conventional PINNs,
(C) Predicted forward spatial solution by modified PINNs, (D) Inverse solution in the form of convergence of the identified parameter c.

Zhejiang University Press | Published by Frontiers August 2024 | Volume 2 | Article 1319413

Chatterjee et al. Aerospace Research Communications PINNs for Vibrations in MATLAB

28–31 is re-formulated such that the displacement time history
is given in the form of measurements and the wave velocity c
has to be identified. The optimization problem can be
expressed as,

arg min
θ∈Rd, c∈R

L θ, c() ≔ c
∂2û

∂x2
+ ∂2û

∂y2
() − ∂2û

∂t2

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
2

+ û − u*| || |2 (35)

where, u* represents the measured displacement data.
25,000 collocation points have been generated for spatial
coordinates x, y ∈ [0 1] and time t ∈ [0 1/(2 �

2
√)] with the

help of Latin hypercube sampling. 5,000 displacement data
points were used for artificially simulating the measurement
data and 2% uniform random noise was added. The
architecture and the parameters of the neural network is the
same as for the forward problem. The results have been
presented in the form of convergence of the identified
parameter c at the end of 10,000 epochs in Figure 9D. The
converged value of c � 0.9902 demonstrates good match with
the actual value c � 1.0. It is worth noting that the PINNs
framework is inherently adapted to also provide the solution to
the PDE along with the identified parameter in the inverse
setup. This demonstrates that the PINNs framework can be
easily adapted for solving forward and inverse problems in
structural vibration.

SUMMARY AND CONCLUSION

This work presents the MATLAB implementation of
PINNs for solving forward and inverse problems in
structural vibrations. The contribution of the study lies in
the following:

1. It is one of the very few applications of PINNs in structural
vibrations till date and thus aims to fill-up the gap. This also
makes the work timely in nature.

2. It demonstrates a critical drawback of the first generation
PINNs while solving vibration problems, which leads to
inaccurate predictions.

3. It mostly addresses the above drawback with the help of
a simple modification in the PINNs framework
without adding any extra computational cost. This
results in significant improvement in the
approximation accuracy.

4. The implementation of conventional and modified PINNs
is performed in MATLAB. As per the authors’ knowledge,
this is the first published PINNs code for structural
vibrations carried out in MATLAB, which is expected to
benefit a wide scientific audience interested in the
application of deep learning in computational science
and engineering.

5. Complete executable MATLAB codes of all the examples
undertaken have been provided along with their line-by-
line explanation so that the interested readers can readily
implement these codes.

Four representative problems in structural vibrations,
involving ODE and PDE have been solved including multi-
DOF systems. Both forward and inverse problems have been
addressed while solving each of the problems. The results in
three examples involving single DOF systems clearly state that
the conventional PINNs is incapable of approximating the
response due to a regularization issue. The modified PINNs
approach addresses the above issue and captures the solution
of the ODE/PDE adequately. For the 2-DOF system, the
conventional PINNs performs satisfactorily for the inference
and identification formulations. It is recommended to employ
n-output layer neural network to solve n-DOF system instead
of employing n number of individual neural networks which
fails to capture the dependencies of the coupled differential
equations (physics).

Making the codes public is a humble and timely attempt
for expanding the scientific contribution of deep learning in
MATLAB, owing to its recently developed rich deep learning
library. The research model can be based similar to that of
authors adding their Python codes in public repositories like,
GitHub. Since the topic is hot, it is expected to quickly
populate with the latest developments and improvements,
bringing the best to the research community. The authors can
envision a huge prospect of their modest research of a
recently developed and widely popular method in a new
application field and its implementation in a new and
more user-friendly software.

Our investigation of the proposed PINNs approach on
complex structural dynamic problems, such as beams, plates,
and nonlinear oscillators (e.g., cubic stiffness and Van der Pol
oscillator), showed opportunities for improvement. To better
capture the forward solution and identify unknown parameters
in inverse problems, modifications to the proposed approach in
this paper are needed. Based on our observation, the need for
further systematic investigation has been identified. This aligns
with the recent findings in [21]. Future work should focus on
automated weight tuning of fully connected neural networks (e.g.,
[16]), explore physics-informed neural ODEs [11] and symplectic
geometry [22].

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article/Supplementary Material, further inquiries can be
directed to the corresponding author.

AUTHOR CONTRIBUTIONS

TC came up with the idea of the work, carried out the
analysis and wrote the manuscript. MF, SA, and HK
participated in weekly brainstorming sessions, reviewed the
results and manuscript. MF secured funding for the work. All
authors contributed to the article and approved the
submitted version.

Zhejiang University Press | Published by Frontiers August 2024 | Volume 2 | Article 1319414

Chatterjee et al. Aerospace Research Communications PINNs for Vibrations in MATLAB

FUNDING

The authors declare that financial support was received
for the research, authorship, and/or publication of this
article. TC gratefully acknowledges the support of the
University of Surrey through the award of a faculty
start-up grant. All authors gratefully acknowledge the
support of the Engineering and Physical Sciences Research
Council through the award of a Programme Grant “Digital
Twins for Improved Dynamic Design,” grant number
EP/R006768.

CONFLICT OF INTEREST

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that
could be construed as a potential conflict of interest.

SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at:
https://www.frontierspartnerships.org/articles/10.3389/arc.2024.
13194/full#supplementary-material

REFERENCES

1. Baydin AG, Pearlmutter BA, Radul AA, Siskind JM. Automatic Differentiation
in Machine Learning: A Survey. J Machine Learn Res (2017) 18(1):5595–637.

2. Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, et al. TensorFlow:
Large-Scale Machine Learning on Heterogeneous Distributed Systems.
Software (2016). arXiv preprint: 1603.04467. arxiv.org/abs/1603.04467.
Available from: http://tensorflow.org/.

3. Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, et al. Pytorch: An
Imperative Style, High-Performance Deep Learning Library. In: Advances in
Neural Information Processing Systems 32: Annual Conference on Neural
Information Processing Systems 2019; December 8–14, 2019; Vancouver, BC.
NeurIPS (2019). p. 8024–35.

4. Chollet F. Deep Learning With Python. 1st edn. United States: Manning
Publications Co. (2017).

5. Lagaris I, Likas A, Fotiadis D. Artificial Neural Networks for Solving Ordinary
and Partial Differential Equations. IEEE Trans Neural Networks (1998) 9(5):
987–1000. doi:10.1109/72.712178

6. Raissi M, Perdikaris P, Karniadakis G. Physics-Informed Neural Networks: A
Deep Learning Framework for Solving Forward and Inverse Problems
Involving Non-Linear Partial Differential Equations. J Comput Phys (2019)
378:686–707. doi:10.1016/j.jcp.2018.10.045

7. Karniadakis GE, Kevrekidis IG, Lu L, Perdikaris P, Wang S, Yang L. Physics-
Informed Machine Learning. Nat Rev Phys (2021) 3(6):422–40. doi:10.1038/
s42254-021-00314-5

8. Xu Y, Kohtz S, Boakye J, Gardoni P,Wang P. Physics-InformedMachine Learning
for Reliability and Systems Safety Applications: State of the Art and Challenges.
Reliability Eng Syst Saf (2023) 230:108900. doi:10.1016/j.ress.2022.108900

9. Li H, Zhang Z, Li T, Si X. A Review on Physics-Informed Data-Driven
Remaining Useful Life Prediction: Challenges and Opportunities. Mech Syst
Signal Process (2024) 209:111120. doi:10.1016/j.ymssp.2024.111120

10. Zhang R, Liu Y, Sun H. Physics-Guided Convolutional Neural Network
(Phycnn) for Data-Driven Seismic Response Modeling. Eng Structures
(2020) 215:110704. doi:10.1016/j.engstruct.2020.110704

11. Lai Z, Mylonas C, Nagarajaiah S, Chatzi E. Structural Identification With
Physics-Informed Neural Ordinary Differential Equations. J Sound Vibration
(2021) 508:116196. doi:10.1016/j.jsv.2021.116196

12. Yucesan YA, Viana FA, Manin L, Mahfoud J. Adjusting a Torsional Vibration
Damper Model With Physics-Informed Neural Networks. Mech Syst Signal
Process (2021) 154:107552. doi:10.1016/j.ymssp.2020.107552

13. Hu Y, GuoW, Long Y, Li S, Xu Z. Physics-Informed Deep Neural Networks for
Simulating S-Shaped Steel Dampers. Comput and Structures (2022) 267:
106798. doi:10.1016/j.compstruc.2022.106798

14. Deng W, Nguyen KT, Medjaher K, Gogu C, Morio J. Rotor Dynamics
Informed Deep Learning for Detection, Identification, and Localization of
Shaft Crack and Unbalance Defects. Adv Eng Inform (2023) 58:102128. doi:10.
1016/j.aei.2023.102128

15. Zhang M, Guo T, Zhang G, Liu Z, XuW. Physics-Informed Deep Learning for
Structural Vibration Identification and Its Application on a Benchmark
Structure. Philos Trans R Soc A (2024) 382(2264):20220400. doi:10.1098/
rsta.2022.0400

16. Wang S, Teng Y, Perdikaris P. Understanding and Mitigating
Gradient Flow Pathologies in Physics-Informed Neural Networks.
SIAM J Scientific Comput (2021) 43(5):3055–81. doi:10.1137/
20m1318043

17. He K, Zhang X, Ren S, Sun J. Delving Deep Into Rectifiers: Surpassing Human-
Level Performance on Imagenet Classification. arXiv (2015) 1026–34. CoRR
abs/1502.01852. doi:10.1109/ICCV.2015.123

18. Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. In:
3rd International Conference on Learning Representations, ICLR 2015;
May 7–9, 2015; San Diego, CA (2015). Conference Track Proceedings.

19. Haghighat E, Bekar AC, Madenci E, Juanes R. Deep Learning for Solution
and Inversion of Structural Mechanics and Vibrations (2021). arXiv:
2105.09477.

20. Inman D. Engineering Vibrations. 3rd edn. Upper Saddle River, New Jersey:
Pearson Education, Inc. (2008).

21. Baty H, Baty L. Solving Differential Equations Using Physics Informed Deep
Learning: A Hand-On Tutorial With Benchmark Tests (2023). Available from:
https://hal.science/hal-04002928v2,hal-04002928v2 (Accessed April 18, 2023).

22. Zhong Y, Dey B, Chakraborty A. Symplectic Ode-Net: Learning
Hamiltonian Dynamics With Control. In: Proc. of the 8th International
Conference on Learning Representations (ICLR 2020); April 26–30,
2020; Ethiopia.

Copyright © 2024 Chatterjee, Friswell, Adhikari and Khodaparast. This is an open-
access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply
with these terms.

Zhejiang University Press | Published by Frontiers August 2024 | Volume 2 | Article 1319415

Chatterjee et al. Aerospace Research Communications PINNs for Vibrations in MATLAB

https://www.frontierspartnerships.org/articles/10.3389/arc.2024.13194/full#supplementary-material
https://www.frontierspartnerships.org/articles/10.3389/arc.2024.13194/full#supplementary-material
http://arxiv.org/abs/1603.04467
http://tensorflow.org/
https://doi.org/10.1109/72.712178
https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/10.1038/s42254-021-00314-5
https://doi.org/10.1038/s42254-021-00314-5
https://doi.org/10.1016/j.ress.2022.108900
https://doi.org/10.1016/j.ymssp.2024.111120
https://doi.org/10.1016/j.engstruct.2020.110704
https://doi.org/10.1016/j.jsv.2021.116196
https://doi.org/10.1016/j.ymssp.2020.107552
https://doi.org/10.1016/j.compstruc.2022.106798
https://doi.org/10.1016/j.aei.2023.102128
https://doi.org/10.1016/j.aei.2023.102128
https://doi.org/10.1098/rsta.2022.0400
https://doi.org/10.1098/rsta.2022.0400
https://doi.org/10.1137/20m1318043
https://doi.org/10.1137/20m1318043
https://doi.org/10.1109/ICCV.2015.123
https://hal.science/hal-04002928v2,hal-04002928v2
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

	MATLAB Implementation of Physics Informed Deep Neural Networks for Forward and Inverse Structural Vibration Problems
	Introduction
	Formulation of Physics-Informed Neural Networks
	MATLAB Implementation of PINNs
	Input Data Generation
	Initialization of Network Parameters
	Neural Network Training
	Encoding the Physics in the Loss Function
	Fully Connect Operations

	Numerical Examples
	Forced Vibration of an Undamped Spring-Mass System
	Forced Vibration of a Damped Spring-Mass System
	Free Vibration of a 2-DOF Discrete System
	Free Vibration of a Rectangular Membrane

	Summary and Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Conflict of Interest
	Supplementary Material
	References

