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Flow field prediction is crucial for evaluating the performance of airfoils and aerodynamic
optimization. Computational fluid dynamics (CFD) methods usually require a considerable
amount of computational resources and time. In this study, a composite model based on
deep learning is proposed for flow field prediction. The variational autoencoder (VAE)
model is designed to extract representative features of flow fields. The VAEmodel is trained
to determine the optimal latent variable dimension and Kullback-Leibler (KL) divergence
weight. Several physical constraints based on mass conservation and pressure coefficient
are introduced to reduce the reconstruction loss and improve the model generalization
ability. A DeepONet-MLP model, which combines a deep operator network (DeepONet)
and a multilayer perceptron (MLP), is trained to achieve the nonlinear mapping from airfoil
shapes and lift coefficients to latent variables in the VAE with fewer parameters. Eventually,
a DeepONet-MLP-VAE model, which connects the decoder in VAE with DeepONet-MLP,
is applied for fast flow field prediction. The results show that the proposed model can
accurately and efficiently predict the transonic flow field, with a mean absolute error of
0.0016 and an average processing time of 0.010 s per flow field, which significantly
accelerates the CFD evaluation process.

Keywords: fast flow field prediction, supercritical airfoils, variational autoencoder, deep operator network, physical
constraints

INTRODUCTION

Flow field prediction is crucial in various engineering and scientific applications, such as
aerodynamic design [1, 2], automotive engineering [3, 4], meteorology [5], energy [6–9] and
environmental science [10]. Therefore, flow field prediction is important for improving the
efficiency and accuracy of engineering design. In the field of aerodynamics, accurate and quick
prediction of the aerodynamic performance of aircraft has become a crucial research direction.
With the continuous advancement of aircraft design, particularly owing to the increasing
demand for large civil aircraft, the study of aerodynamic characteristics has become increasingly
complex and significant. Supercritical airfoils are widely used in the design of modern civil
aircraft [11]. In transonic flow fields, the region around a supercritical airfoil exhibits several
typical physical phenomena, such as shock waves, shock/boundary layer interactions, and
boundary layer separation [12]. These phenomena significantly influence the transonic cruise
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efficiency of supercritical airfoils. Hence, effectively obtaining
the flow field around an airfoil is important for aerodynamic
optimization.

Traditional methods for flow field analysis include
experimental tests and numerical simulations. The
experimental method involves directly observing and
measuring flow parameters through wind tunnel tests [13].
Numerical simulations usually solve a system of equations via
computational fluid dynamics (CFD) to obtain the values of flow
parameters. The experimental method usually incurs high
equipment costs, and the numerical simulation method
involves large-scale computations and is time-consuming.
Neither method can be effectively applied to rapid decision-
making and real-time control in aerodynamic design.
Therefore, developing an efficient and accurate method for
flow field prediction is essential.

The rise of machine learning (ML) has provided new
approaches for flow field prediction. Researchers have
proposed various surrogate models, such as Kriging models
[14], support vector machines (SVMs) [15], and neural
networks (NNs) [16]. The internal parameters of the model
are continuously adjusted during the learning process to
achieve the optimal prediction results. Leifsson et al. [17]
utilized Kriging interpolation with CFD simulation data to
establish an auxiliary surrogate model for multi-objective
aerodynamic optimization of airfoil shapes. However,
surrogate models usually encounter difficulties when they are
applied to entire flow field predictions due to their limited depth
in capturing intricate flow phenomena.

In recent years, the advancement of deep neural networks
(DNNs) has been significantly propelled by various market
applications, such as image recognition, natural language
processing, and autonomous driving. Renganathan et al. [18]
proposed several surrogate models, such as DNN, DNN-GP, and
DNN-BO, and incorporated constraints for aerodynamic
optimization. Brahmachary et al. [19] utilized proper
orthogonal decomposition (POD) as a reduced-order model
and employed regression models based on moving least
squares and multilayer perceptrons (MLPs) to swiftly and
accurately predict the internal flow fields of engine inlets.
Raissi et al. [20] used the physics-informed neural network
(PINN) to couple the incompressible Navier-Stokes equations
with dynamic equations, enabling the prediction of lift and drag

forces in vortex-induced vibrations. Wu et al. [21] proposed the
ffsGANmodel, which is based on generative adversarial networks
(GANs), to predict the transonic flow field of supercritical airfoils.
Du et al. [22] combined a GAN, an MLP and recurrent neural
networks (RNNs) to predict the wing pressure distribution and
various force coefficients.

The maturity of DNNs has significantly extended the
representational capacity of artificial neural networks (ANNs),
enabling them to address more complex fluid dynamics
problems. Lu et al. [23] extended the universal approximation
theorem to a DNN and proposed a deep operator network
(DeepONet) with a small generalization error. Based on the
autoencoder (AE) proposed by Rumelhart et al. [24], Kingma
et al. [25] further introduced the concept of the variational
autoencoder (VAE), which uses probability to represent the
latent variable space, thereby improving the stability of the
generated results and the model generalization ability. Li et al.
[26] incorporated DeepONet into the VAE decoder and
constructed a generative model with a grid-based encoder,
which was successfully applied to the inverse design of
supercritical airfoils.

In the field of computer vision (CV), Sohn et al. [27]
introduced convolutional neural networks (CNNs) to
enhance the image generation capabilities of VAEs. He et al.
[28] proposed the deep residual network (ResNet), which
addresses the problems of vanishing gradients and exploding
gradients during the training of DNNs, as well as network
degradation. With the rapid development of CV, the
application of surrogate models in flow field prediction and
aerodynamic optimization has gained increasing attention from
researchers. Deng et al. [29] utilized convolutional autoencoders
(CAEs) as flow field feature extractors and MLPs to analyze the
mapping relationship between variables, achieving aerodynamic
optimization. Sekar et al. [30] utilized CNN to extract geometric
parameters from wing shapes and then employed an MLP
model to predict the incompressible laminar flow field
around the wing based on the extracted geometric
parameters, Reynolds number, and angle of attack. Wang
et al. [31] acquired the optimal dimensions of the neural
network via principal component analysis (PCA) and
developed a generative model based on VAE. The model
successfully predicted the 2D pressure and velocity profiles
around supercritical airfoils. Dubois et al. [32] used linear
variational autoencoders (LVAEs) and VAEs to reconstruct
and predict unsteady flow fields, specifically targeting 2D
vortex shedding, 2D spatial mixing layers and 3D vortex
shedding. Li et al. [33] proposed the physically interpretable
variational autoencoder (PIVAE) model by incorporating
physical features into the latent variables. The model
successfully reconstructed the Mach number distribution
along the wall of a supercritical airfoil and was applied to the
inverse design of supercritical airfoils. Yang et al. [34] proposed
the prior variational autoencoder (PVAE) model, which uses the
cruise flow field as a prior reference for the off-design condition
prediction. Physical constraints such as mass conservation and
aerodynamic coefficients reduce prediction errors and enhance
the model generalization ability. Chen et al. [35] proposed the

FIGURE 1 | OAT15A fitted by 14 CST parameters.
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FlowDNN model with mass conservation and the
incompressible Navier-Stokes equations as physical
constraints for rapid prediction of 2D incompressible flow
fields around airfoils. Duru et al. [36] proposed a model
based on CNN for predicting airfoil flow fields at high angles
of attack. Tan et al. [37] proposed an MLP-VAE hybrid model
with good generalization ability. The model can accurately
predict flow fields for inlet geometries outside the training
dataset. Liu et al. [38] proposed a composite model that
combines an ANN and a VAE, which can effectively and
accurately reconstruct and predict 3D real-time flow fields.

Despite the widespread success of DNN and CV technologies
in providing high-fidelity predictive results for various flow fields,
most models were trained only from the data-fitting perspective,
which does not consider the impact of physical information.
There have been few attempts to accurately predict complex

transonic flow fields, which include shock waves and flow
separation. Unlike traditional neural networks that learn
mappings from vectors to vectors, DeepONet specializes in
learning mappings from entire functions (or continuous data)
to other functions, which makes it applicable to a wide range of
problems in physics, engineering, and applied mathematics.
However, the use of DeepONet in current surrogate models
for predicting airfoil flow fields is relatively infrequent. In this
study, a composite model based on deep learning approach is
employed to predict the transonic flow fields of supercritical
airfoils. Physical constraints based on mass conservation and
local physical constraints of pressure coefficient are introduced
into the model training process. The impact of these physical
constraints on reconstruction loss is studied in this paper. In
addition, a DeepONet-MLP combined model is developed.
Compared with the simple MLP structure, the DeepONet-
MLP model can achieve the nonlinear mapping from airfoil
shapes and lift coefficients to latent variables with fewer
parameters.

The details of this paper are organized as follows: Introduction
introduces the research background. Data Preparation briefly
introduces the dataset and the class shape transformation (CST)
method. Machine Learning Framework and Training
Implementation presents the structure of the models and the
specific forms of the physical constraints. The optimal parameters
for the designed networks and the impact of physical constraints
are also given. In Flow Field Prediction Results, the predictive
results of the proposed network are presented. Conclusion
summarizes the study and provides an outlook on
future research.

DATA PREPARATION

Airfoil Geometry Description
The CST method [39, 40] can ensure the smoothness of an airfoil
shape with relatively few parameters. It is defined by a class
function C and a shape function S, as shown in Equation 1.

FIGURE 2 | Supercritical airfoils (left) and pressure coefficient (right) curves in the dataset.

FIGURE 3 | Structured C-type grid of OAT15A.

Zhejiang University Press | Published by Frontiers December 2024 | Volume 2 | Article 139013

Liu et al. Aerospace Research Communications Fast Flow Field Prediction Model



ζ ψ( ) � CN1
N2

ψ( ) · S ψ( ) + ψ · ζT (1)
where ζ � y/c, ψ � x/c, ζT � ΔyTE/c, ΔyTE is the trailing edge
thickness and c is the chord length.

The class functionC is defined as Equation 2. The values ofN1

andN2 are set to 0.5 and 1, respectively, for a supercritical airfoil.

CN1
N2

ψ( ) � ψN1 1 − ψ( )N2 (2)
The shape function S is defined by Bernstein polynomials Si,

as shown in Equation 3, whereAi represents the undetermined
CST parameters and n refers to the order of the Bernstein
polynomials.

FIGURE 4 | Pressure coefficient distributions of the OAT15A airfoil atMa = 0.73, Re = 3.0 × 106, and AOA = 2.5 deg (left) andMa = 0.73, Re = 3.0 × 106, and AOA =
3.0 deg (right).

FIGURE 5 | Transforming a CFD result into a matrix shape.

FIGURE 6 | Sketch of the dataset splitting and training process.
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S ψ( ) � ∑
n

i�1
AiSi ψ( ) (3)

The Bernstein polynomials are defined by Equation 4.Ki is the
binomial coefficient, as shown in Equation 5.

Si ψ( ) � Kiψ
i 1 − ψ( )n−i (4)

Ki � n!

i! n − i( )! (5)

In this study, 6th-order Bernstein polynomials serve as shape
functions for the upper and lower surfaces of the airfoil, which has
totally 14 parameters to describe the geometric shape of the
supercritical airfoil. Figure 1 shows the effectiveness of the CST
method in fitting OAT15A. The CST method can efficiently and
accurately reconstruct complex airfoil shapes with relatively few
parameters. As noted in the legend, ‘real’ represents the real shape
of the airfoil and is depicted with a red solid line; ‘fit’ represents
the airfoil shape fitted by the CST method and is depicted with a
blue dashed line. The maximum error of fitting the OAT15A
airfoil is 4.10 × 10−9 c.

Transonic Flow Field Dataset of
Supercritical Airfoils
The dataset used in this study is a publicly available dataset [34] of
supercritical airfoils. The operating conditions of the airfoils are
defined by the free streamMach numberMa, the Reynolds number
Re, and the lift coefficient CL. In this study, the Mach number and
Reynolds number are fixed to 0.76 and 5.0 × 106, respectively, which
are typical flow conditions of supercritical airfoil design.

The maximum relative thickness (t/c)max of all airfoils in the
dataset is 0.095, which is the case for a wide-body aircraft. An
output space sampling (OSS) method [41] was used to sample
within the geometric parameter space. A total of
1,498 supercritical airfoil samples are included in the dataset.
The geometric shapes of the airfoils and their corresponding
pressure coefficient curves are shown in Figure 2.

CFD Method
A structured C-type grid of the airfoil is automatically generated
by an in-house code. The detailed grid generation method is
presented in Ref. [42]. The grid structure, which is shown in
Figure 3, has 381 points in the circumferential direction and
81 points in the wall-normal direction, with 301 grid points on
the airfoil surface. The far-field boundary is located 80 c from the
airfoil. The thickness of the first layer of the grid is 2.7 × 10−6 c to
satisfy the requirements of Δy+<1.

The flow fields are calculated via the Reynolds-Averaged
Navier-Stokes solver CFL3D [43]. The shear stress transport
(SST) model is employed for turbulence modeling. The MUSCL
scheme, Roe’s scheme, and Gauss-Seidel method are applied for
flow variable reconstruction, spatial discretization, and time
advancement, respectively. The pressure coefficient Cp

distributions of the OAT15A airfoil are computed with
different grid sizes and compared with the experimental
results [44], as shown in Figure 4. The total number of grid
points for the coarse, medium and fine meshes are 15,333,
30,861, and 61,133, respectively. The grid convergence is
achieved in the present case. In the following study, the
medium grid is applied to dataset generation and machine
learning study.

11 lift coefficients from 0.60 to 1.00 are calculated via CFD for
each airfoil in the dataset. All the cases are computed via a fixed
lift coefficient CFD method, where the angle of attack is
automatically adjusted during CFD iterations to achieve the
desired lift coefficient.

In this study, four primary flow variables (pressure p,
temperature T, velocity components u and v) are selected to
define a single flow field for a 2D airfoil. The grid dimension for
numerical computation is 381 × 81. Since the flow field near the
airfoil is more critical than the far-field and wake regions, a part of
the flow field near the airfoil is extracted from the CFD result for
machine learning study, which has 331 × 75 grid points. Each grid
point (i, j) can be considered as a pixel of the flow field. Therefore,
the flow field plot is reshaped into a matrix of 4 × 331 ×
75 floating-point numbers by being unfolded along the

FIGURE 7 | Sketch of the DeepONet-MLP-VAE model framework.
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circumferential direction (i direction) and the wall-normal
direction (j direction), as shown in Figure 5.

The dataset contains 1,498 samples of supercritical airfoils. Each
sample corresponds to 11 lift coefficients, resulting in a total of
16,478 flow fields. The dataset is divided into three parts: the training
set, the validation set and the test set, as shown in Figure 6. 81% of
the flow fields are used as the training set. The hyperparameters are
adjusted based on the performance on the validation set, which
contains 9% of the samples. Finally, 10% of the dataset is used as the
test set to evaluate the model’s final predictive performance.

Normalization is essential because each flow variable has its
own range of values and may differ significantly from other
variables. Normalizing the input data maps feature ranges to a
similar scale, which helps accelerate the convergence speed when
training the model. However, normalizing using all training data

might fail due to the presence of outliers. Therefore, the flow field
is nondimensionalized by the freestream pressure p∞, dim,
temperature T∞, dim, velocity components u∞, dim and v∞, dim, as
shown in Equation 6.

p � pdim

p∞, dim
, T � Tdim

T∞, dim
, u � udim

a∞, dim
, v � vdim

a∞, dim
, a∞, dim � γRT∞, dim

(6)

MACHINE LEARNING FRAMEWORK AND
TRAINING IMPLEMENTATION

In this study, a DeepONet-MLP-VAE composite model is
proposed to realize fast reconstruction and prediction of flow

FIGURE 8 | The detailed structure of VAE.
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fields. A diagrammatic sketch of the model and its training
process is shown in Figure 7. The VAE model is trained to
extract features of the flow fields and to realize 2D physical field
reconstruction. The DeepONet-MLP is employed to achieve the
mapping from the airfoil shapes and lift coefficients to the

extracted features. First, the VAE model is trained to
determine the optimal latent variable dimension and Kullback-
Leibler (KL) divergence weight. Physical constraints based on
mass conservation and local constraints of pressure coefficient are
introduced in the loss function. Second, a structure combining

FIGURE 9 | Mass flow calculation of a single cell in the 2D flow field.

FIGURE 10 | Sketch of different VAE models. (A) Baseline; (B) VAE with mass conservation; (C) VAE with mass conservation and pressure coefficient.
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DeepONet and MLP is designed for the nonlinear mapping from
geometric CST parameters and lift coefficients to latent variables
of the VAE. Finally, the composite model DeepONet-MLP-VAE
is obtained by connecting the DeepONet-MLP with the decoder
of the VAE, which can predict the transonic flow fields of
supercritical airfoils from geometry parameters and lift
coefficients.

Feature Extraction Model
Flow Field Reconstruction Based on VAE Model
Unsupervised learning is a paradigm of machine learning
characterized by the absence of explicit labels or target outputs
in the training data. Unlike supervised learning, which relies on
predefined target values, unsupervised learning focuses on
discovering patterns, structures, or regularities within the data

itself. It aims to learn the underlying structure of the data without
requiring prelabeled targets. The autoencoder (AE) is an
unsupervised learning neural network model comprising two
main components: an encoder and a decoder. The encoder
compresses the input data into a latent space representation,
while the decoder reconstructs the original data from this
compressed form. This process enables the AE to perform
various tasks, such as data compression, denoising, and feature
learning, by learning a compact and meaningful representation of
the input data. The model learns to capture the essential features
of the input by minimizing the reconstruction loss between the
original input and its reconstruction.

The encoding mapping is denoted as fEC, and the decoding
mapping is denoted as fDC. The principle of the AE is
represented by Equations 7, 8, where q is the input, z is the
latent variable and q̂ is the output. The training process involves
fitting fEC and fDC to minimize the difference between q and q̂.

fEC q( ) � z (7)
fDC z( ) � q̂ (8)

The variational principle [45] has been introduced based on
AE, which is referred to as VAE. Compared with traditional AE,
VAE is easier to implement and offers a more stable training
process. The encoder’s output of VAE connects to two fully
connected layers to derive the mean value μ and standard
deviation σ. The latent variables are sampled from a normal
distribution defined by μ and σ. The primary advantage of VAE is
the ability to control the distribution of latent variables.

In this study, the input of the VAE consists of six-channel flow
field data. These channels include the C-type grid coordinates x
and y, pressure p, temperature T, and velocity components u and
v. Each channel is represented as a two-dimensional floating-
point matrix of size 331 × 75. The output of the VAE comprises
four channels: pressure p, temperature T, velocity components u
and v, with dimensions identical to those of the input. The
detailed structure of the VAE is shown in Figure 8, where
“Conv” represents convolutional layers, “kernel” indicates the
size of the convolutional kernel, “stride” denotes the stride of the

FIGURE 11 | Reconstruction loss versus KL divergence weight for
different latent variable dimensions.

FIGURE 12 | Reconstruction loss convergence of the VAE training with different latent variable dimensions for the optimal KL divergence weight.
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convolution, “BN” represents the batch normalization layer,
“Act1” refers to the LeakyReLU activation function [46] and
“Act2” refers to the ReLU activation function. The goal of the
encoder is to compress the input flow field data. The output is

produced through two fully connected layers that separately yield
the mean value μ and standard deviation σ. The latent variable z is
obtained by sampling from the normal distribution defined by
these mean values and standard deviations. The dimension of the

FIGURE 13 | Reconstruction loss convergence of the VAE training with different mass conservation constraint weights.

FIGURE 14 | Reconstruction loss convergence of the VAE training with different pressure coefficient constraint weights.

TABLE 1 | The impact of physical constraints on reconstruction loss.

VAE model Reconstruction loss Reconstruction loss reduction

Baseline (without physical constraints) 8.11 × 10−6 --
Mass conservation 7.52 × 10−6 7.25%
Mass conservation + Pressure coefficient 6.69 × 10−6 10.25%

TABLE 2 | The impact of physical constraints on the distribution of relative error.

Relative error Baseline (without physical constraints) Mass conservation Mass conservation + Pressure coefficient

<5% 93,902 (94.56%) 94,113 (94.78%) 95,769 (96.44%)
5%–15% 3,101 (3.12%) 2,815 (2.83%) 1,856 (1.87%)
15%–50% 1,448 (1.46%) 1,533 (1.54%) 842 (0.85%)
>50% 849 (0.85%) 839 (0.84%) 833 (0.84%)
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latent space z determines the number of features that effectively
represent the physical problem. The decoder takes the latent
variable as input and maps it back to the original data space,
generating a reconstruction that closely resembles the input data.

The encoder first converts 6 × 331 × 75 dimensional data to
12 × 166 × 38 dimensional data via a convolutional layer, a batch
normalization layer and the LeakyReLU activation function.
Considering the complex flow structures, the encoder and
decoder are set up using a convolutional neural network based
on ResNet [28]. The configuration ensures effective deep feature
extraction without introducing redundant parameters or
increasing computational complexity, thus accelerating the
convergence speed of the deep network. The encoder includes
five groups of ResNet modules, each comprising two residual
blocks, as shown in the blue modules of the encoder in Figure 8.
The feature map size is halved to achieve downsampling by
adjusting the stride and padding parameters in the
convolution layers. Finally, the mean value and standard
deviation are obtained through fully connected layers, and the
latent variable z is sampled from the normal distribution.

The decoder is used for data reconstruction and contains five
groups of ResNet modules, each with two residual blocks.
“Upsample” represents upsampling, consisting of a bilinear
interpolation layer (Interpolate) and convolution blocks that
expand the feature map to specified dimensions. The
remaining residual block definitions are similar to those in the
encoder, as shown by the blue modules in the decoder part of
Figure 8. Finally, the 12 × 166 × 38 dimensional feature map is
converted to 4 × 331 × 75 dimensional reconstructed flow field
image via a “Upsample”module, a batch normalization layer and
the LeakyReLU activation function.

The input is denoted as q, and the output is denoted as q̂. The
difference between q and q̂ is defined by a loss function during the
training of the VAE. In this study, the mean square error (MSE) is
adopted as the reconstruction loss lossrecon, as shown in
Equation 9.

lossrecon � MSE �
∑
n

i�1
qi − q̂i( )2

n
(9)

MSE increases the significance of errors through squaring,
which makes it more effective in leading the direction of the

gradient descent algorithm. From the network training
perspective, MSE forces parameter optimization to prioritize
the elimination of large errors.

In the VAE, the probability distribution of the latent variable is
assumed to follow a standard Gaussian distribution,
i.e., z ~ N(0, I). KL divergence is often used to measure the
difference between two probability distributions. Therefore, the
formula for calculating KL divergence in this study is shown in
Equation 10.

lossKLD � 1
2
∑
n

i�1
exp σ i − σ i + 1( ) + μi

2( ) (10)

where n represents the dimension of the latent variable, and μi
and σ i represent the mean value and standard deviation of each
latent variable.

Loss � lossrecon + λ1lossKLD (11)
Therefore, the loss function of the VAE is composed of two

parts, as shown in Equation 11. λ1 is the weight of the KL
divergence, which is an adjustable parameter.

VAE Model Considering Physical Constraints
Physics-based information can help constrain the learning
process of models, making them more consistent with the
physical laws of the real world. In some cases, data may be
scarce or expensive, whereas physical laws are universally
applicable. By incorporating physics-based information,
models can be trained with limited data, thereby reducing the
dependence on large datasets. Deep learning models are often
considered as “black boxes,” which makes interpreting their
decision-making process challenging. Physics-based
information can serve as prior knowledge to improve
prediction accuracy. Particularly in scenarios with high data
noise or incomplete data, physics-based information acts as a
form of regularization to reduce model errors. Overfitting risks
can be mitigated by incorporating physical laws or constraints,
which can enhance model generalization and robustness.

The fundamental physical laws, such as the conservation of
mass, Newton’s second law, and the conservation of energy, are
universally valid throughout the entire flow field. Since the
calculation of momentum and energy involves information

FIGURE 15 | Sketch of the DeepONet-MLP model framework.
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about the turbulence quantities that the VAE model does not
predict, only the mass conservation error is considered in this
study. For each reconstructed flow field, the mass flow rate is
calculated for each grid cell, and the corresponding term is added to
the loss function of the VAE to minimize the mass flow imbalance.

This term penalizes deviations in mass conservation, guiding the
model toward physically realistic flow distributions. The values of
the flow variables are stored at the cell vertices, and the flow
variables are interpolated from the vertices to the cell edges to
compute the mass flow rate, as shown in Figure 9.

FIGURE 16 | Different structures of the data mapping model (A) DeepONet-MLP; (B) MLP (6 hidden layers); (C) MLP (7 hidden layers).
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Since the predicted flow field is a steady-state flow, the mass
flow imbalance for each grid cell should be zero. Therefore, the
mass conservation loss term is defined as shown in Equation 12,
where φ represents the net mass flow and ij denotes the grid
coordinates.

lossmass � φm,ij � ∑
4

k�1
ρk vk · nk( )lk (12)

Owing to the performance of the airfoil being primarily
determined by elements near the airfoil, the flow field near the
airfoil is more critical than other parts of the flow field. The
pressure coefficient is an important indicator for assessing the
aerodynamic performance of an airfoil. Therefore, the VAE can
be guided to focus more on the flow near the wall by
incorporating the pressure coefficient prediction loss term into
the loss function, potentially leading to better predictions of the
flow field for new airfoil shapes.

The predicted value of the pressure coefficient derived from
the reconstructed flow field is denoted as Ĉp, and the pressure
coefficient obtained from CFD calculations is denoted as Cp. The
loss term for the pressure coefficient is defined as Equation 13.

lossCp � Ĉp − Cp

∣∣∣∣
∣∣∣∣ (13)

Therefore, the final form of the loss function incorporating
physical constraints is shown in Equation 14, which builds on
Equation 11 by adding mass conservation and pressure
coefficient. λ2 is the weight of the mass conservation
constraint, and λ3 is the weight of the pressure coefficient
constraint, which are adjustable parameters. Properly setting
the weights helps the model achieve a balanced performance
between data fitting and adherence to physical laws. Specifically,
excessive weight can lead to over-emphasis on the physical
constraints, which may reduce data fitting accuracy.
Conversely, too little weight may weaken the effect of these

constraints. The detailed tuning process and the optimal
weights are presented in the next section.

Loss � lossrecon + λ1lossKLD + λ2lossmass + λ3lossCp (14)

Training Process of VAE Model
The VAE model is implemented by PyTorch [47]. A cross-
validation method is employed, which means that all the
models are trained four times, and the model with the best
performance on the validation set is selected. In this section,
three different VAE models are trained, as shown in Figure 10.
The first model (Figure 10A) is the baseline, where the loss
function only includes the reconstruction loss and KL divergence.
The second model (Figure 10B) incorporates the mass
conservation constraint. The third model (Figure 10C)
considers both mass conservation and pressure coefficient
constraints. A comparison of these three models is provided at
the end of this section.

Training is conducted by the Adam optimizer, with an initial
learning rate of 0.0001 and a batch size of 16. The learning rate is
scheduled to be one-tenth of its previous value if the training set
error does not decrease after two training epochs.

The physical constraints are not considered in the baselinemodel,
whichmeans that in the loss function ofEquation 14, both λ2 and λ3
are 0. The dimension of the latent variables significantly impacts the
generative capabilities of the VAE, but a higher dimension does not
necessarily equal better performance. A balance between the
generative effect and model complexity is needed. A high
dimension might cause the model to overfit the training data,
resulting in insufficient diversity in the generated samples.

KL divergence plays a crucial role in VAE, measuring the
difference between the latent variable distribution and the prior
distribution. In this study, the weight of KL divergence is controlled
by the hyperparameter λ1 in the loss function of Equation 14, which
balances the reconstruction loss and KL divergence during training.
As the KL divergence weight increases, the model pays more
attention to the prior distribution of the latent variable space,
generating more diverse samples. The weight also affects the
quality of the generated samples. Increasing the weight can
generate more realistic samples. If the weight is too high, the
training might be unstable, and the sample quality might be
reduced. The KL divergence weight also influences the structure
of the latent space, with lower weights causing more concentrated
distributions and higher weights leading to more uniform or sparse
distributions.

In this study, the airfoil geometry is controlled by 14 CST
parameters, and the flight condition is controlled by a lift
coefficient. Hence, the input is a 15-dimensional vector.
Therefore, latent variable dimensions of 8, 10, 12, 14, and
16 are selected for training and testing, with KL divergence
weights set in the range from 1 × 10−10 to 1 × 10−6. Figure 11
shows the losses of different hyperparameters. For the same latent
dimension, the reconstruction loss lossrecon reaches the minimum
when the KL divergence weight λ1 is 1 × 10−8. Furthermore, when
the latent dimension is 12, the model demonstrates the best
reconstruction performance. Figure 12 details the convergence of

FIGURE 17 | Loss convergence curves of DeepONet-MLP and
MLP training.
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reconstruction loss at different latent variable dimensions when
the KL divergence weight is 1 × 10−8. Intuitively, a larger latent
dimension in the VAE model enhances the feature extraction
capability, which can benefit flow field reconstruction. However,
Figure 12 shows that larger latent dimensions also increase
training difficulty, thereby reducing the reconstruction
capability. Hence, selecting an appropriate latent dimension is
crucial for optimal VAE model performance. In the following
study, the VAE latent variable dimension is 12, and the KL
divergence weight is 1 × 10−8. The total number of trainable
parameters in the VAE model is 10,890,428.

Themass conservation constraint applies to the entire flow field.
It is activated in the second model to further improve the model
prediction ability, whereas the pressure coefficient constraint is not
applied. Since the weights and biases in the model are randomly
initialized before training begins, there is a significant difference
between the reconstructed flow field and the real flow field in the
early stages of training. The physical constraint loss term is large

andmeaningless at this stage. Enabling the physical constraints too
early can cause the model to get trapped in false local optima.
Experiments also show that enabling these loss terms at the
beginning of training causes the gradients to diverge during
backpropagation. Therefore, the mass conservation physical
constraint is enabled after 100 training epochs to allow the
model to first develop a foundational data-fitting ability. The
mass conservation constraint weight λ2 ranges from 1 × 10−7 to
1 × 10−2, increasing tenfold each time.

Figure 13 details the reconstruction loss convergence for
different mass conservation constraint weights. The larger the
mass conservation physical constraint weight is, the more the
model focuses on adhering to mass conservation. However, if
the weight is too large, the reconstruction ability of the model
may decrease. Therefore, the specific value of the weight must
be chosen appropriately. The reconstruction loss is minimized
when the mass conservation constraint weight is 1 × 10−5, as
shown in Figure 13.

FIGURE 18 | Sketch of different DeepONet-MLP-VAE models.

TABLE 3 | Loss and parameters of DeepONet-MLP and MLP.

Model
Epoch

100 200 300 400 500 Parameters

DeepONet-MLP 1.37 × 10−2 7.66 × 10−4 5.00 × 10−4 3.48 × 10−4 3.36 × 10−4 1,053,772
MLP(6 × 512) 1.35 × 10−2 3.65 × 10−3 2.87 × 10−3 1.18 × 10−3 7.33 × 10−4 1,064,972
MLP(7 × 512) 1.03 × 10−2 2.27 × 10−3 7.22 × 10−4 3.52 × 10−4 3.36 × 10−4 1,327,628
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The pressure coefficient constraint aims to further focus the
model on the near-wall flow field. Introducing both types of
physical constraints simultaneously may cause confusion
during the learning process, as the model might struggle to
prioritize between the mass conservation and pressure
coefficient constraints. These constraints influence different
regions of the flow field, and introducing them at different
stages helps to ensure that the model first learns the broad
principle of mass conservation across the entire flow field. This
approach facilitates better learning and avoids potential
conflicts in the model’s training process. Therefore, the
pressure coefficient constraint is activated after 150 training
epochs in the third model. The pressure coefficient physical
constraint weight ranges from 1 × 10−8 to 1 × 10−4, increasing
tenfold each time. Figure 14 details the reconstruction loss
convergence for different pressure coefficient constraint
weights. Like the mass conservation constraint, the pressure
coefficient constraint weight must be chosen appropriately to

achieve good reconstruction performance. Figure 14 shows
that the reconstruction loss is minimized when the pressure
coefficient physical constraint weight is 1 × 10−6.

Table 1 shows the impact of different stages of physical
constraints on the VAE model’s performance. After adding the
mass conservation constraint, the reconstruction loss of the VAE
model decreases by 7.25%. With the additional inclusion of the
pressure coefficient constraint, the reconstruction loss further
decreases by 10.25%.

The VAE model predicts four flow variables. The dimension
of each variable is 331 × 75. Therefore, there are a total of
99,300 prediction points. A sample in the test set close to the
mean absolute error (MAE) is selected as a typical flow field.
Table 2 shows the relative error statistics of a typical flow field
within different error ranges. The physical constraints
effectively reduce the relative error of the prediction points,
which makes them more concentrated within the 5% error
range. Therefore, appropriately incorporating physical

FIGURE 19 | Typical sample prediction points over the test set.
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constraints helps the model adjust its learning direction, further
improving its generalization ability.

Data Mapping Model
MLP can learn complex nonlinear relationships, which is suitable
for various problems. DeepONet is a neural network architecture
that is designed to learn and represent operators, which map
functions to other functions. The architecture typically consists of
two components: a branch network and a trunk network. The
branch network processes the input function, while the trunk
network processes the spatial or temporal coordinates. The
outputs of these networks are then combined to produce the
final output function. DeepONet can be applied to various
problems, such as solving partial differential equations (PDEs),
learning dynamical systems, and other tasks. It is highly flexible
and can be adapted to different types of operators. In this section,

DeepONet-MLP is trained and compared with the traditional
MLP to demonstrate its advantages in data mapping.

After training the VAE, DeepONet-MLP is used to learn the
mapping relationship between airfoil geometric CST parameters
and lift coefficients to latent variables. The DeepONet-MLP
framework is shown in Figure 15. The input of the network
consists of 14 dimensions that describe the geometric CST
parameters for the airfoil and 1 dimension for the lift
coefficient, while the output is the latent variable of the VAE.

Figure 16 shows the detailed structure of different data
mapping models. DeepONet-MLP has 2 parts. DeepONet
comprises two subnetworks: CST net and CL net. CST net
consists of 3 hidden layers, each containing 256 neurons. CL

net consists of 4 hidden layers, each with 128 neurons. Layers are
connected by fully connected layers and LeakyReLU activation
functions. The output of CST net is a 64-dimensional vector b and

FIGURE 20 | Flow field contour plots of the typical sample over the test set.
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r, while the output of CL net is a 64-dimensional vector w. The
final output y of DeepONet is computed via the formula given in
Equation 15.

hi � wi · ri + bi (15)
where i = 1, . . . , 64. The final 64-dimensional vector h is the
output of DeepONet.

In the MLP section, similar to DeepONet, layers are connected
by fully connected layers and LeakyReLU activation functions.
The MLP consists of 4 hidden layers, each containing

512 neurons. The output from DeepONet serves as the input
for the MLP, which is then mapped to the 12-dimensional latent
variable in the VAE. The DeepONet-MLP model has a total of
1,053,772 parameters.

Two simple MLPs are trained as references of the DeepONet-
MLP model. Figure 16B shows the MLP model with 6 hidden
layers, each containing 512 neurons. The model has a total of
1,064,972 parameters, which is similar to the DeepONet-MLP
parameters. The CST parameters represent the geometric
information of the airfoil, while CL represents the lift

FIGURE 21 | Absolute error contour plots of the typical sample over the test set.
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coefficient of the airfoil. Another MLP model with 7 hidden
layers, each containing 512 neurons, has 1,327,628 parameters
(Figure 16C). These 2 MLP models, with the same input and
output as DeepONet-MLP, are also trained for comparison.

The loss function uses MSE, as shown in Equation 16, where n
represents the dimension of the latent variable, ẑ denotes the
latent variable obtained from the MLP, and z is the true value of
the latent variable in the VAE.

Loss � 1
n
∑
n

i�1
ẑi − zi( )2 (16)

The learning rate is scheduled to be one-tenth of its previous
value if the training set error does not decrease after ten training
epochs. The remainder of training settings are the same as those
used for the VAE.

The training process is set for 500 epochs. Figure 17 shows the
loss convergence curves of different models. Owing to the learning
rate settings, all three models experience sudden decreases in loss
during the training process. As shown in Table 3, with similar total
trainable parameters, the DeepONet-MLP model converges to a
smaller error than the MLP model with 6 hidden layers. The
DeepONet-MLP model has fewer parameters and converges
faster than the MLP model with 7 hidden layers with the same loss.

The MLP model processes each input parameter equally,
without distinguishing between different types of inputs.
However, the CST parameters are 14-dimensional, while the
lift coefficient is only 1-dimensional. The disparity in
dimensionality can confuse the MLP model, which lacks a
mechanism to differentiate these inputs based on their
physical significance. Consequently, the model might engage
in inefficient learning.

Unlike a standard MLP, which treats all input parameters
equally, the DeepONet model processes the CST parameters and
lift coefficients by different fully connected layers. This tailored

processing allows each type of input to be handled according to its
characteristics, ensuring that the physical significance of each
parameter is preserved and utilized effectively in the modeling
process. After the inputs are individually processed, they are
passed through an MLP that integrates the information to
produce the final output. As a result, DeepONet-MLP is better
at capturing the complex relationships between these inputs and
the resulting predictions, leading to potentially higher accuracy in
modeling tasks.

The distinct handling of inputs in DeepONet-MLP improves
not only the model’s generalization ability but also its
interpretability, as the influence of each type of input on the
output can be more clearly understood. This makes DeepONet-
MLP particularly advantageous in applications where
understanding the contributions of different factors is crucial,
such as in aerodynamic modeling.

FLOW FIELD PREDICTION RESULTS

The DeepONet-MLP-VAE model is formed by connecting the
decoder in VAE with the DeepONet-MLP. The CST parameters
and lift coefficient serve as the inputs for the DeepONet-MLP,
which generates the corresponding latent variables. The obtained
latent variables are then used as inputs to the VAE decoder to
generate flow field data, completing the rapid intelligent
prediction of the flow field. In Machine Learning Framework
and Training Implementation, 3 different VAE models are
trained: a baseline model without physical constraints, a model
considering mass conservation constraints, and a model
considering both mass conservation and pressure coefficient
constraints. In this section, the DeepONet-MLP is connected
to these 3 VAE decoders forming composite models for
performance comparison, which are denoted as Model A,
Model B, and Model C, as shown in Figure 18. The
generalization capability of composite models is evaluated on
the test dataset, which consists of data that models have not
encountered during the training phase.

Four flow variables (pressure p, temperature T, velocity
components u and v) of the typical flow field predicted by
different composite models are shown in Figure 19. The
abscissa “CFD” represents the true value gained from CFD,
and the ordinate “Predict” represents the value predicted by
3 DeepONet-MLP-VAE models. The black line represents
y � x. The gray lines represent y � 1.05x and y � 0.95x,
which represent the 5% relative error band. The scatters closer
to y � x indicate a better prediction. The statistical data indicate
that 62.63% of Model A prediction points, 74.45% of Model B
prediction points and 96.27% of Model C prediction points fall
within the 5% relative error range. The generalization error tends
to increase sharply when the DeepONet-MLP is connected to the
decoder, forming a composite model. Therefore, the DeepONet-
MLP-VAE, which considers both mass conservation and pressure
coefficient constraints, has the best predictive performance and
generalization ability after training. The generalization ability of
the composite model is further improved when physical
constraints are incorporated into the VAE training process.

FIGURE 22 | Comparison of the predicted Cp along the surface.
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Flow field contour plots and error contour plots of the typical
sample are shown in Figures 20, 21. The accuracy of the 3 VAE
models trained in Machine Learning Framework and Training
Implementation is similar in flow field reconstruction. However,
when the DeepONet-MLP is connected to the decoder in VAE,
the accuracy of the composite model may decrease. The model
without physical constraints loses important features of the
transonic flow field. Therefore, training models solely from a
data-fitting perspective makes it difficult to capture the complex
transonic flow characteristics. Physical constraints can further
enhance the generalization ability of composite models and help
the DeepONet-MLP-VAE model better adhere to the
fundamental physical laws of the real world. In shock wave
regions, strong dissipation causes significant variations in the
flow variables. The physical constraints enable the model to better
handle the sharp gradients and extreme nonlinearity, ensuring
that the predictions remain physically consistent. The flow field

predicted by the DeepONet-MLP-VAE model considering both
physical constraints is consistent with that of CFD, and the
absolute errors are maintained within a small range.

The Cp distributions along the surface are shown in Figure 22.
The velocity profiles along the surface are shown in Figure 23.
The curves around the airfoil predicted by the model considering
both physical constraints are almost identical to the CFD results.
The pressure coefficient constraint allows the model to
concentrate more on the flow characteristics near the airfoil.
Consequently, the model not only better predicts Cp but also
achieves better accuracy in predicting velocity profiles. Overall,
the DeepONet-MLP-VAE model, which considers physical
constraints, has good generalization apability and can
accurately predict the flow field.

The test set comprises 10% of the total dataset, amounting
to 1,648 flow fields. Each flow field contains four flow variables.
In this study, both the training and testing phases are

FIGURE 23 | Comparison of the predicted velocity profiles along the surface.
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conducted via a single computing node, each of which is
configured with a 6-core CPU and one GPU. Compared
with traditional CFD methods, the DeepONet-MLP-VAE
model predicts flow fields at a much faster rate. Once
training is complete, the model takes a total of 16.65 s to
predict all the flow fields in the test set, with an average time of
approximately 0.010 s per flow field, which significantly
accelerates the flow field prediction process.

CONCLUSION

Transonic flow field prediction is crucial for supercritical
airfoils, but traditional CFD methods are extremely time-
consuming. This study proposes a composite DeepONet-
MLP-VAE model based on deep learning, which uses airfoil
geometric CST parameters and lift coefficients as inputs and
generates the pressure field, temperature field, and velocity
field of the airfoil, achieving rapid prediction of the flow field
around supercritical airfoils. The work can be summarized
as follows:

(1) By utilizing the VAEmodel, this study investigates the impact
of latent variable dimensions and the KL divergence weight
on reconstruction loss, determining the optimal parameters
for feature extraction and flow field reconstruction of
supercritical airfoils.

(2) The VAE training process incorporates physical constraints
based on mass conservation and local physical constraints
based on pressure coefficients. The appropriate
incorporation of physical constraints improves model
accuracy, reduces overfitting risk, and enhances model
generalization ability and robustness. The results show
that adding mass conservation constraints reduces
reconstruction loss by 7.25%, and further adding pressure
coefficient constraints reduces reconstruction loss by an
additional 10.25%.

(3) By combining the structures of MLP and DeepONet, a
DeepONet-MLP network with higher accuracy and fewer
parameters is designed to achieve the nonlinear mapping
from airfoil geometric CST parameters and lift coefficients to
latent variables in the VAE. The DeepONet-MLP-VAE
composite model can accurately and efficiently predict the
flow field around supercritical airfoils, including accurate
predictions in shock wave regions.

The proposed DeepONet-MLP-VAE composite model, which
incorporates multiple physical constraints during training, offers
a valuable and promising method for rapid flow field prediction
and reconstruction of transonic flow fields around supercritical

airfoils. Extending the DeepONet-MLP-VAE model to the
prediction of 3D flow fields for wings will be carried out in
subsequent research.
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