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High-speed aircraft experiences severe aerodynamic heating at high Mach numbers,
requiring accurate prediction of aerothermal heating effects before designing thermal
protection systems. With the rise of artificial intelligence and the potential of neural
networks, data-driven methods for aerothermal heating prediction have gained
significant attention. This study focuses on numerical simulations of aerothermal
heating phenomena and explores machine learning applications in heat prediction.
First, a two-dimensional cylinder case was simulated using the finite volume method
with chemical non-equilibrium flow to understand flow characteristics and heat
distribution. Subsequently, Two aerothermal heating datasets were established: the
first varies Mach number from 7.0 to 11.9 under fixed freestream conditions, while the
second combines Mach numbers (8.5–9.5) with varying temperatures (890 K, 901 K,
910 K) and pressures (460 Pa, 470 Pa, 476 Pa). And the influence of incoming flow
conditions on shock waves, temperature fields, wall heat flux was analyzed. Finally,
machine learning methods were applied to predict aerothermal heating properties. A
multilayer perceptron (MLP) prediction model was established to predict wall heat flux, the
reverse line from the stagnation point along the flow direction pressure and temperature, as
well as the temperature and pressure fields. Additionally, a convolutional neural network
(CNN) model was developed to accurately predict the temperature and pressure fields.
While the MLP model demonstrates strong predictive accuracy for physical quantities
along the cylinder surface and the reverse line from the stagnation point along the flow
direction, the CNN model exhibits superior performance in predicting the entire flow field.
Compared to the numerical simulation methods used, the established model can quickly
predict the aerothermal environment of a two-dimensional cylinder, helping to shorten the
design cycle of thermal protection systems.

Keywords: aerothermal heating, heat flux, numerical simulation, multilayer perceptron, convolutional
neural network

INTRODUCTION

When an aircraft flies at high speeds, the friction between the surface of the fuselage and the
airflow causes intense heat generation. The air is subjected to stagnation and compression, leading
to a rapid increase in temperature. The high-temperature gas transfers heat to the lower-
temperature aircraft surface, resulting in aerothermal heating. Aerothermal heating can
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compromise the structural stability. However, factors such as
viscous interference, high-temperature gas effects, scale effects,
and shock wave-boundary layer interactions in high-speed
flows significantly increase the difficulty of predicting
aerothermal heating [1].

Current aerothermal environment prediction methods can
generally be classified into three categories: experimental
methods, engineering calculation methods, and numerical
methods [2–4].

Aerothermal experimental methods can generally be divided into
ground-based and flight testing methods. Ground-based tests
primarily use wind tunnels, where aerothermal data measurement
can be achieved through contact-based point measurement methods
and non-contact measurement methods. In contrast, flight test data
can only be obtained through contact-based point measurement
methods [5]. Contact-based point measurement uses sensors,
offering high precision but limited data. Non-contact measurement
is typically performed using optical methods to directly obtain the
aerothermal distribution, though the accuracy is generally lower.

Aerothermal engineering algorithms are primarily derived
through the boundary layer equation self-similarity theory, or by
analyzing and fitting experimental data to obtain semi-empirical
formulas [6]. For example, for axisymmetric objects, the Kemp-
Riddell formula [7] and the Fay-Riddell formula [8] can be used to
solve for stagnation point aerothermal heating. The Lees formula [9]
and the modified Lees formula [10] are used to calculate the laminar
flow regions excluding the stagnation point. The turbulent viscous-
inviscid interaction (TVI) model [11] can be applied to calculate the
turbulent regions excluding the stagnation point.

Compared to aerothermal testing and engineering algorithms,
aerothermal numerical simulation, specifically Computational Fluid
Dynamics (CFD), is currently more widely applied. Compared to
wind tunnel testing, CFD can simulate the entire flight envelope of an
aircraft [12]. Compared to engineering estimation methods, CFD
offers higher precision. Furthermore, CFD eliminates the need to
scale the aircraft size, which is crucial for predicting the aerothermal
loads on the aircraft [13]. Although numerical methods can be
applied to most problems, the results are influenced by numerous
factors. When using CFD for aerothermal calculations, even with the
same governing equations, different numerical schemes can lead to
varying results. Some numerical schemes may even produce
incorrect results, such as the “Carbuncle” phenomenon [14].
Chen [15] pointed out that common numerical schemes cannot
completely avoid this phenomenon. Different wall catalytic
conditions have a significant impact on heat flux calculations
[16]. However, due to the complexity of the catalytic reaction
mechanism and the difficulty of measurement in experiments,
most calculations simplify these conditions, which sometimes
leads to considerable errors. Scott [17] compared non-equilibrium
computational methods with spacecraft flight test data and found
that neglecting the catalytic conditions on the wall led to excessive
thermal protection design. In addition, aerothermal prediction
problems typically require large grid quantities [18], and the slow
convergence of calculations, such as wall heat flux [19], significantly
increases the computational time.

In recent years, with the rise of artificial intelligence and
the demonstrated potential of neural networks across various

fields, data-driven flow field modeling and numerical simulations
have gained increasing attention and achieved significant progress
[20]. Liu et al. [6] employed 60 sets of 2D cylindrical computational
samples under different inflow conditions with fluid-thermal-
structural coupling, and developed a rapid prediction model for
multiphysics fields using Proper Orthogonal Decomposition (POD)
combined with Radial Basis Function (RBF) algorithms. Ding et al.
[21] developed an Artificial Neural Network (ANN)-based
aerothermal heating prediction model with 57 sets of Direct
Simulation Monte Carlo (DSMC) simulation data. Ren et al. [22]
established a physics-informed Deep Neural Network (DNN)
framework for aerothermal heating prediction with only 6 RANS
solutions and flight data. Among the numerous machine learning
methods, Multilayer Perceptron (MLP) [23], a key technology in
machine learning, is capable of handling complex nonlinear
relationships and exhibits strong generalization ability, drawing
significant attention from researchers. Convolutional Neural
Networks (CNN) [24], a major technology in deep learning, are
especially effective at capturing local features and efficiently
processing high-dimensional multidimensional data, particularly
when there is temporal or spatial correlation in the data. In the
aerospace field, scholars have used MLP model to predict
aerodynamic characteristics of wings [25] and temperature fields
[26], and CNNmodel to predict flow fields [27], aerothermal heating
[28], and wall heat flux [29], achieving promising prediction results.

For aerothermal environment prediction, the flow around a
cylinder is one of the most fundamental problems. Novello et al.
[30] established a dataset through the two-dimensional cylinder
flow problem and used deep learning methods to accelerate
aerothermal numerical simulations. However, their work
primarily focuses on accelerating the numerical simulation of
chemical reactions. Gkimisis et al. [31] used artificial neural
networks to predict the flow around a two-dimensional
cylinder, but the neural network they employed was too
simple, requiring a massive amount of training data. In this
work, a multilayer perceptron (MLP) model was established to
predict physical quantities both locally (along the cylinder surface
and the reverse line from the stagnation point along the flow
direction) and globally across the entire flow field, while a
convolutional neural network (CNN) model was developed to
predict physical quantities across the entire flow field. The
freestream Mach number, temperature, and pressure were used
as input features, comparing to other methods [31] requiring
datasets with thousands of flow fields, our prediction approach
achieves promising accuracy using only around one hundred flow
fields for aerothermal environment prediction.

In summary, this study aims to predict the aerothermal
environment of a two-dimensional cylinder under different
freestream Mach numbers, temperatures, and pressures. A
finite volume method, considering chemical non-equilibrium
flow, was used to numerically simulate the two-dimensional
cylinder verification case. Two aerothermal heating datasets
were established: the first varies Mach number from 7.0 to
11.9 under fixed freestream conditions, while the second
combines Mach numbers (8.5–9.5) with varying temperatures
(890 K, 901 K, 910 K) and pressures (460 Pa, 470 Pa, 476 Pa). Two
machine learning methods, MLP and CNN, were employed to
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develop rapid aerodynamic heat prediction models. The
predictive capabilities of MLP and CNN models were compared.
While the MLP model demonstrates strong predictive accuracy
for physical quantities along the cylinder surface and the reverse
line from the stagnation point along the flow direction, the
CNN model exhibits superior performance in predicting the
entire flow field than the MLP modeland the performance of
CNN was further evaluated with different input data.

NUMERICAL SIMULATION METHODS AND
MACHINE LEARNING MODELS

Numerical Simulation Methods
For high-speed flow problems, the variation in air density cannot
be ignored, so a multi-species compressible Navier-Stokes
equation set [32] should be used, expressed in differential
form as shown in Equation 1:

R U( ) � ∂U

∂t
+ ∇ · �F

C
U( ) − ∇ · �F

V
U,∇U( ) −Q � 0 (1)

R(U) is the residual function, representing the remaining part of
the equation, which should approach zero to satisfy the equation. U
is the conservative variables of the flow field, which is shown in
Equation 2:

U � ρ1, . . . , ρn, ρ �u, ρe, ρe
v−e{ }u (2)

ρ1, . . . , ρn represent the densities of different fluid components,
ρ �u is the momentum, e is the energy, and t is time. ∇ is the Nabla
operator, representing the gradient of a vector, which is used to
describe the spatial rate of change of variables. �F

C
is the

convective fluxs, which includes the momentum and energy of
the fluid. �u is the velocity vector, including the three components
u, v, w of the fluid in the Cartesian coordinate system.

The convective fluxes �F
C
, viscous fluxes �F

V
, and source terms

Q are shown in Equation 3 [33]:
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(3)

and p is the static pressure, e and ev−e are, respectively, the total
energy per unit mass and the vibrational–electronic energy per
unit mass for the mixture, h is the total enthalpy per unit mass, �Js
is the species mass diffusion flux, �τ is the viscous stress tensor, �q is
the conduction heat flux, index s denotes the s-th chemical
species, and ns is the total number of species.

The calculation uses the open-source software SU2 [34], the
thermodynamic state of the continuous flow is modeled using the
rigid rotor harmonic oscillator (RRHO) two-temperature model.
Through the independence of energy levels, the total energy per
unit volume is shown in Equation 4:

ρe � ∑
s

ρs etrs + erots + evibs + eels + es° + 1
2
�u⊤ �u( ) (4)

Where ρ is the fluid density, e is the total energy per unit
volume, ρs is the density of the s-th species, etrs is the
translational energy of the s-th species, erots is the rotational
energy of the s-th species, evibs is the vibrational energy of the
s-th species, eels is the electronic energy of the s-th species, and
�u is the fluid velocity vector. The vibrational–electronic energy
is shown in Equation 5:

ρev−e � ∑
s

ρs evibs + eels( ) (5)

Generally, a gas mixture consists of polyatomic molecules,
monatomic species, and free electrons. The expressions for
translational, rotational, vibrational, and electronic energies
are given below. First, for electrons, etrs , e

rot
s , and evibs are all

zero. For monatomic species, erots and evibs are zero. For all other
cases, the expressions for each energy component are shown in
Equation 6.

etrs � 3
2

R

Ms
T (6a)

erots � ξ

2
R

Ms
T (6b)

evibs � R

Ms

θvibs
exp θvibs /Tve( ) − 1

(6c)

eels �
R

Ms

∑∞
i�1gi,sθ

el
i,s exp −θeli,s/Tve( )

∑∞
i�0gi,sexp −θeli,s/Tve( ) for polyatomic andmonatomic species,

3
2

R

Ms
Tve for electrons.

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(6d)

Where R is the gas constant, T is the gas temperature,Ms is the
molar mass of the s-th species, ξ is the number of rotational axes
(which should be an integer), θvibs is the characteristic vibrational
temperature of the species, θeli,s is the characteristic electronic
temperature of the corresponding species, and gi is the
degeneracy of the i-th state.

Multilayer Perceptron
In this work, a multilayer perceptron (MLP) [35] model is used
for prediction. The multilayer perceptron is an artificial neural
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network structure composed of multiple layers of neurons.
Structurally, the MLP consists of an input layer, hidden layers,
and an output layer. The input layer receives the input data, with
each data point corresponding to one neuron. There can bemultiple
hidden layers, and each neuron in a hidden layer receives the output
from the neurons in the previous layer, then performs a nonlinear
transformation through weighted summation and an activation
function. The output layer provides the prediction result, with each
neuron receiving the output from the final hidden layer and
applying an activation function to it. The number of neurons in
the output layer corresponds to the number of output values or
categories in the prediction result.

In the hidden layers and output layer, each neuron typically
applies an activation function to introduce non-linearity. In
this work, the activation function used is the ReLU function
[36]. The ReLU function maps negative values to 0 and keeps
positive values unchanged. ReLU function is one of the most
commonly used activation functions and is sufficient for the
vast majority of machine learning models. Its mathematical
form is shown in Equation 7

ReLU x( ) � max 0, x( ) (7)
When training the multilayer perceptron model, it is necessary to
define a loss function to measure the difference between the
model’s predictions and the true labels. In this work, the loss
function used is the Mean Squared Error (MSE). MSE is used to
calculate the average of the squared differences between the
predicted values and the true values. Its mathematical
expression is shown in Equation 8

MSE � 1
N

∑N
i�1

yi − ŷi( )2 (8)

where yi is the true label, ŷi is the model’s predicted value, andN
is the number of samples.

Convolutional Neural Networks
Convolutional Neural Networks (CNN) [37] can combine
multiple convolutional layer and sampling layers to process
input signals and achieve mapping to output targets in the fully
connected layers. In a CNN, each feature map is a plane
composed of multiple neurons, and input features are
extracted using convolutional filters. Each convolutional layer
contains multiple feature maps. The sampling layers perform
subsampling based on the principle of local correlation, thereby
reducing the amount of data while preserving valuable
information.

The composite process of the convolutional and sampling
layers in a CNN can be summarized as follows: For example, the
first convolutional layer after the input layer has 8 feature maps,
each of which is a 128 × 128 array of neurons. Each neuron
extracts local features from the input layer using convolutional
filters. In the sampling layer, each neuron is connected to a 2 × 2
neighborhood in the corresponding feature map of the previous
layer. As a result, the sampling layer has 8 feature maps, each
sized 64 × 64. The next convolutional layer then applies
convolution to the sampling layer, and the subsequent

sampling layer continues to subsample the previous
convolutional layer. Ultimately, the input is mapped to a
multidimensional feature vector, which is then processed by
the fully connected layer and the output layer to complete the
recognition task.

In this work, the activation function used in the convolutional
neural network is the ReLU function, and the loss function used is
the Mean Squared Error (MSE).

The MLP excels at handling nonlinear relationships and is
well-suited for predicting physical quantities on curves and
reconstructing entire flow fields. In contrast, CNN efficiently
process multidimensional information and appear more
effective for reconstructing complete flow fields. While some
researchers have compared these two approaches [38, 39] in
domains like image processing, this study adopts both MLP and
CNN methods to predict aerothermal heating and conducts a
comparative analysis of their performance in flow field
prediction.

NUMERICAL SIMULATION OF THE
AEROTHERMAL HEATING
Convergence and Grid Independence
Verification of the Solution
In grid studies related to aerothermal heating, most
researchers focus on the grid Reynolds number [40], which is
shown in Equation 9

Recell � ρ∞V∞Δn
μ∞

(9)

That is, the grid Reynolds number is defined using Δn as
the characteristic length scale, where Δn is typically taken as
the height of the first layer of the grid in the boundary layer.
The grid Reynolds number is used to reflect the density of the
grid near the wall. For heat flux calculations, the finer the grid
near the wall, the closer the calculated results are to the
true values.

In this work, a two-dimensional cylinder with a radius of
0.045m is selected as a case study, and experimental data from the
Göttingen (HEG) high-enthalpy shock tunnel [41] is used to
validate the accuracy of the numerical algorithm. The
thermochemical nonequilibrium relaxation process occurring
within the shock layer, which affects the density distribution
of air components, is typically used to validate the physical and
chemical models implemented in CFD codes. The two-
dimensional cylinder is chosen as a common computational
example for hypersonic flows due to the availability of
extensive related data, which facilitates the validation of
computational results. Additionally, the relatively low
complexity of the two-dimensional cylinder flow field makes
the computation more convenient, aiding in the subsequent
establishment of datasets.

The mesh consists of 29,651 cells, and the Reynolds number
is 10,643. The air model used is a five-species gas model with
chemically non-equilibrium flow, neglecting high-temperature
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ionization effects and wall catalysis effects. The wall
temperature is set to 300 K, and the numerical scheme
employed is the AUSM+ format. The computational mesh is
shown in the Figure 2, and the computational conditions are
listed in Table 1.

The convergence of pressure and heat flux with respect to the
number of iterations and grid density is shown in Figure 1.
According to the graph, the pressure initially increases gradually
and then stabilizes, reaching near stability around
500,000 iterations, with a relatively fast convergence rate. The
heat flux starts with a large value, then decreases rapidly. After
about 400,000 iterations, the rate of decrease slows down, and it
essentially converges around 750,000 iterations.

The reference length of the two-dimensional cylinder in this
work is 0.045m. Regarding the effect of grid density on the
pressure calculation results, starting with a 100 × 75 grid (Grid
I),with a first-layer grid height of 2 × 10−7m, the number of grid

nodes was increased to 150 × 113 (Grid II), with a first-layer grid
height of 1.5 × 10−7m, 200 × 150 (Grid III), with a first-layer grid
height of 1 × 10−7m, and 300 × 225 (Grid IV), with a first-layer
grid height of 6.7 × 10−8m.with corresponding grid Reynolds
numbers. From the graph, it can be observed that for the heat
flux calculation, the grid density should be greater than
200 × 150, and the corresponding grid Reynolds number
should be less than 0.02365, for the pressure calculation, the
computational results for these four grid types show good
agreement and are all acceptable, the differences at theta of
90°, the discrepancy observed at θ � 90° arises from subtle
influences of the outlet boundary conditions on the
simulation results.

In conclusion, when the grid has 200 × 150 nodes, the grid
Reynolds number is smaller than 0.02365, and the number of
iterations exceeds 750,000 steps, the calculation results can be
considered converged.

FIGURE 2 | Computational grid (A) and comparison of pressure (B) and heatflux calculation (C) results with papers and experiments.

FIGURE 1 | Convergence of pressure and heat flux with respect to the number of iterations and grid density.

TABLE 1 | HEG test free flow conditions and air composition.

U∞(m/s) p∞(Pa) ρ∞(kg/m3) T∞(K) M∞ Y[N2]∞ Y[02]∞ Y[N0]∞ Y[N]∞ Y[0]∞
5956 476 1.57e-3 901 8.98 0.75431 0.00713 0.01026 6.5e-7 0.22831
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Case Study Validation
The computational results are compared with experimental and
numerical results from other researchers [42], as shown in
Figure 2. For the pressure calculations, the results align well
with both experimental data and simulation data from the
literature [42]. For the heat flux calculations, the predicted
values are slightly lower than the experimental data,
particularly in the stagnation region. This under-prediction is
due to the lack of catalytic effects. Knight et al. [41] suggest that
accurate prediction of surface heat flux requires consideration of
catalytic effects. Compared to other non-catalytic results from
Nompelis [43] and Maier [42], Nompelis employed a modified
Steger–Warming flux splitting scheme, while Maier employed the
AUSM+ format, the results in this work lie between the two and
show a better match with experimental data, especially near the
stagnation point. This confirms the correctness of the numerical
simulation method used in this work.

MACHINE LEARNING PREDICTION
RESULTS AND DISCUSSION
Establishment of the Aerodynamic
Heating Datasets
For the aerodynamic heating prediction problem, during
numerical calculations, as shown in Table 1, the temperature,
pressure, velocity, density, and gas composition of the
free-stream flow are the key factors affecting the calculation
results. For the standard atmosphere, the temperature, pressure,
density, and air composition are closely related to altitude, while
the variation in density and air composition is minimal within
small altitude ranges. In this work, the aerodynamic heating
datasets were first established by varying the Mach number as a
single variable, followed by changes in the incoming flow
temperature and pressure, combined with the Mach number.
Three variables are used to construct the aerodynamic heating
datasets. Two aerothermal heating datasets were constructed in
total. Apart from the changing variables, other parameters used
for constructing the datasets are consistent with those in Tables
1. The mesh used consists of 150 nodes in the streamwise
direction and 200 nodes along the wall direction, with the
first layer of the boundary layer set to a height of 10−7m. The
dataset for the single Mach number variation spans from Mach
7.0 to Mach 11.9, with a step size of 0.1, resulting in a total of
50 computation results. The dataset constructed using three
variables includes Mach numbers ranging from 8.5 to 9.5, with
pressures of 460 Pa, 470 Pa, and 476 Pa, and temperatures of
890 K, 901 K, and 910 K, resulting in a total of
99 computation results.

Neural Network Model Parameter Settings
Based on the datasets generated above, the study first uses MLP
model to investigate single-parameter input and multi-
parameter inputs. Then, MLP and CNN models were used
for full-field prediction with single-parameter input. During
the solving process, the pressure calculation converges more
easily and is less affected by various factors. The network

structure of the MLP models are shown in Tables 2, 3 and
Figure 3. In Tables 2, 3, the 200 neurons in the output layer
represent 200 discrete nodes distributed along the cylindrical
wall surface. In Figure 3, the 30,000 neurons in the output
layer correspond to 30,000 nodes spanning the entire
computational flow field.

The schematic diagram of the CNN model is shown in
Figure 4 and the network structure for CNN model predicting
the full-field parameters is shown in Table 4. Pooling layers
enhance computational efficiency and feature robustness through
dimensionality reduction (their absence causes computational
redundancy and sensitivity to minor input variations), while
unpooling layers restore lost spatial details (missing them
leads to blurry reconstructions or localization inaccuracies).
The inputs consist of three channels, which represent the
incoming Mach number and the x and y coordinates of the
grid nodes. The output consists of two channels: pressure and
temperature.

Prediction Results
Using MLP model with Mach number as input to predict wall
heat flux, the comparison between the predicted values and the
true values when the Mach number is 7 is shown in Figure 5. The
wall heat flux is predicted using Mach number, temperature, and
pressure as inputs. When the Mach number is 8.5, the
temperature is 901K, and the pressure is 476Pa, the
comparison between the predicted value and the true value is
shown in Figure 6. The “HeatFlux” is the wall heat flux, the X
represents the distance from a point on the axis of symmetry of
the semicircle to the center (with the direction opposite to the
flow direction considered positive), and the raw data represents
the simulation results. Due to the sharp discontinuity in shock
position and the degraded predictive accuracy near the shock
wave, significant oscillations are generated at the shock location.
Using MLP with the Mach number as input to predict the
temperature and pressure of the full field, the comparison
between the predicted values and the true values when the

TABLE 3 | MLP network structure with free-stream Mach number, pressure and
temperature as inputs.

Serial No. Network Type Activation Function Number of Neurons

1 Input Layer ReLU 3
2 Hidden Layer ReLU 16
3 Hidden Layer ReLU 64
4 Hidden Layer ReLU 128
5 Output Layer - 200

TABLE 2 | MLP network structure with free-stream Mach number as input.

Serial No. Network Type Activation Function Number of Neurons

1 Input Layer ReLU 1
2 Hidden Layer ReLU 16
3 Hidden Layer ReLU 64
4 Hidden Layer ReLU 128
5 Output Layer - 200
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Mach number is 7 is shown in Figure 7. Using CNN with the
Mach number as input to predict the temperature and pressure of
the full field, the comparison between the predicted values and the
true values when the Mach number is 7 is shown in Figure 8. In
Figures 7, 8, from left to right, the first column is the true values,
the second column is the predicted values, and the third column is
the relative difference between the predicted and true

valuessimulation results. The relative difference is shown in
Equation 10

Relative Error � yi − ŷi

yi

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣ (10)

UsingMLPmodel withMach number as input, wall heat flux,
the reverse line from the stagnation point along the flow

FIGURE 3 | Schematic diagram of the Multilayer Perceptron (MLP) model with prediction of the entire flow field.

FIGURE 4 | Schematic diagram of the Convolutional Neural Network (CNN) model.
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direction temperature, and pressure are predicted, with an
average relative error of 0.89%. Next, MLP mdoel is used
with incoming Mach number, temperature, and pressure as
inputs to predict wall heat flux, the reverse line from the
stagnation point along the flow direction temperature, and
pressure, achieving an average relative error of 0.73%. MLP
model performs well in predicting physical quantities along the
curve. Then, MLP model is used with Mach number as input to
predict the temperature and pressure in the entire flow field.
Computing aerothermal heating data for a single flow condition
(e.g., freestream Mach 7, temperature 901 K, pressure 476 Pa)
requires approximately 437.5 core-hours using CFD methods.
In contrast, training the MLP model for full-field temperature/

pressure prediction takes 2.22 h (2 s × 4000 epochs), while the
CNN model requires a comparable 2.22 h (4 s × 2000 epochs).
Once trained, both MLP and CNN models achieve rapid
prediction of a single flow condition in a mere 0.15 s. The
average relative error for pressure prediction is 7.6%, and for
temperature prediction, it is 1.5%. Using CNNmodel with Mach
number and flow field node coordinates as input, the average
relative error for pressure prediction is 4.43%, and for
temperature prediction, it is 3.34%. The comparisons of
prediction errors between CNN and MLP models for
temperature and pressure field predictions within the Mach
number range of 7.7–8.6 are shown in Table 5. Both MLP and
CNN models exhibit less accurate predictions for pressure fields

FIGURE 5 | Prediction results of heat flux, pressure, and temperature based on MLP when freestream Mach number is 7.

FIGURE 6 | Prediction results of heat flux, pressure, and temperature based on MLP when freestream Mach number is 8.5, pressure is 476 pa, temperature
is 901 k.

TABLE 4 | CNN network structure with free-stream Mach number and the x and y coordinates of the grid nodes as inputs.

Serial No. Network Type Activation Function Number of Neurons

1 Input Layer - 200 × 150 × 3
2 Convolution ReLU 200 × 150 × 8
3 Convolution + Pooling ReLU 100 × 75 × 16
4 Convolution ReLU 100 × 75 × 32
5 Convolution ReLU 100 × 75 × 64
6 Convolution ReLU 100 × 75 × 128
7 Deconvolution ReLU 100 × 75 × 128
8 Deconvolution ReLU 100 × 75 × 64
9 Deconvolution ReLU 100 × 75 × 32
10 Deconvolution + Unpooling ReLU 200 × 150 × 16
11 Deconvolution ReLU 200 × 150 × 8
12 Output Layer - 200 × 150 × 2
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compared to temperature fields across the entire flow domain.
As shown in Figures 5, 6, the pressure undergoes abrupt
changes (nearly two orders of magnitude difference) across
the shock front, whereas the temperature gradually decreases
post-shock, eventually aligning with the wall temperature at the
boundary with less than one order of magnitude variation. This
disparity in gradient magnitudes (Pressure exhibits an order-of-
magnitude steeper gradient than temperature) leads to

significantly poorer predictive performance for pressure in
both models. For temperature field prediction, the CNN
model exhibits nearly twice the error of the MLP model.
Conversely, the MLP model demonstrates approximately
double the error of the CNN model for pressure field
predictions. As previously discussed, the challenge in
pressure prediction stems from sharp gradients at shock
positions, where the CNN’s localized feature extraction

FIGURE 7 | Prediction results of pressure (A) and temperature (B) for the entire flow field based on MLP, when freestream Mach number is 7.
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capability outperforms the MLP’s global approximation.
Critically, total error of the CNN model is lower than that of
the MLP, highlighting its balanced performance in multiphysics
flowmodeling. Overall, CNNmodel outperforms MLP model in
predicting the flow field, and CNN model achieves higher
accuracy in the post-shock and wall-adjacent regions. The
error mainly occurs at the shock location.

CONCLUSION

In this work, the objective is to predict the two-dimensional
aerodynamic thermal environment of a cylinder under different
operating conditions. The impact of varying grid densities on the
numerical simulation results is discussed, leading to the
establishment of an aerodynamic thermal dataset. The MLP

FIGURE 8 | Prediction results of pressure (A) and temperature (B) for the entire flow field based on CNN, when freestream Mach number is 7.

Zhejiang University Press | Published by Frontiers February 2025 | Volume 3 | Article 1427410

Wang et al. Aerospace Research Communications Machine Learning for Aerothermal Prediction



model is used to predict the wall heat flux, while bothMLP andCNN
models are employed to predict the temperature and pressure in the
flow field, with a comparison of their prediction performance. The
following conclusions can be drawn:

(1) The results of wall heat flux are significantly influenced by the
grid, the flow field temperature is largely influenced by wall
conditions, while the flow field pressure is easier to solve
accurately.

(2) MLP model performs well in predicting wall heat flux, while
CNN model outperforms MLP model in predicting the
temperature and pressure of the entire flow field. However,
both models show poorer prediction performance for flow
field pressure compared to flow field temperature.

(3) The CNN model provides accurate predictions for the
temperature and pressure across the entire flow field,
achieving the goal of fast and accurate aerodynamic
thermal prediction. Moreover, there is further potential for
improvement as additional input parameters are incorporated.

Our work applies the proposed method to predict the
aerothermal environment of high-speed flow around a cylinder.
The next step will be to explore cutting-edge machine learning
techniques to perform aerothermal environment predictions more
quickly and accurately, while also transferring the prediction
methods to more complex problems.
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