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permits the easy selection of S. aureus, reduces laboratory
costs and improves patient care.

Therefore, it would appear that the best clinical and
laboratory strategy for S. aureus screening from nasal swabs
is a combination of direct plating on chromogenic agar, read
at 24 h, with an enrichment stage that is followed by plating
on chromogenic agar. In this study, 63.5% of S. aureus isolates
were detected at 24 h, with the remaining 36.5% identified 
at 48 h. Pre-enrichment of swabs in brain-heart infusion
broth, followed by plating on SAID agar, will be used as the
strategy of choice for screening the remaining 1046 nasal
swabs for S. aureus for the larger study designed to
determine the carriage rate of MSSA and MRSA and the
associated risk factors. 

The positivity rate for carriage of S. aureus in this study of
204 nasal swabs was 41.7%, which is higher than the rate
quoted by CDC; however, the number of swabs examined
was small and the true positivity rate will only be
determined following completion of the main study.

The authors are grateful to Hazel Robbins (CWIUH) for her help in
recruiting volunteer patients for this study. They would also like to
thank the microbiology staff of the CWIUH for their support.
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patients with cystic fibrosis (CF) has important
consequences for the persistence of commensal flora of the
treated patient. In order to survive, such commensal
organisms must evolve resistance mechanisms in response
to the chronic use of these antibiotic agents. What is not
known at present is which resistant mechanisms commensal
organisms use, and are these mechanisms potentially
transferable to hitherto sensitive pathogens? Therefore,
antibiotic resistance in the commensal flora of CF patients
may be an important reservoir of genetic material for
exacerbating antibiotic resistance in CF pathogens, and this
area requires urgent investigation.

Cystic fibrosis patients present a special patient population,
in terms of their prolonged use of several antibiotic agents
simultaneously throughout life. This will include
employment of antibiotics for use in antistaphylococcal
prophylaxis during early childhood (<10 years) to prevent
the acquisition of Staphylococcus aureus, as well as in
therapeutic maintenance and intravenous intervention
during acute pulmonary exacerbations, mainly for
multiresistant and pan-resistant Gram-negative organisms,
particularly Pseudomonas aeruginosa. Additionally, long-term
use of azithromycin (500 mg od/three times per week) is now
a common treatment regimen in CF adults, where this agent
acts in an immunomodulatory fashion.

In a recently published survey of adherence to European
Consensus Guidelines for CF, it was shown that several
antipseudomonal antibiotics are used in European centres,
depending on the stage of pseudomonal infection (i.e., first
detection, intermittent or chronic infection).1 These included
nebulised tobramycin, nebulised colistin, nebulised colistin
plus oral ciprofloxacin, oral ciprofloxacin, gentamicin,
ceftazidime and others.1 With co-infection with other CF
pathogens, such as Burkholderia cenocepacia, the non-
tuberculous mycobacteria (particularly Mycobacterium
abscessus), methicillin-resistant S. aureus (MRSA) and other
resistant non-fermenting Gram-negative rods, the CF
patient is unrivalled in medical microbiology in terms of the
complexity of their antibiotic management, the number of
antibiotics employed and the long-term use of such agents.

Prolonged use of multiple antibiotics, often used
simultaneously in dual or triple therapy, presents an
enormous challenge to the commensal flora of the patient
and adds great pressure on organisms to adapt in order to
survive in their anatomical niche. Previously, Gustafsson
and colleagues demonstrated that high antibiotic use
selected for commensal organisms with highly increased
resistance and a slight increase in mutation frequency.2

Failure to adapt ultimately will result in their eradication
from the body. Therefore, it is in the commensal organism’s
interest to adapt to a dynamic flux of antibiotic agents, either
through development of de novo resistance or genetically by
acquiring resistance determinants from other organisms that
transiently colonise the respiratory tract in a non-pathogenic
manner, as well as from true bacterial pathogens that may
have either short-term or long-term persistence in this niche.
Equally, with their need to maintain resistance to long-term
use of antibiotics, does this affect their bacterial fitness?

We now know considerably more about the microbial
diversity of the populations of organisms colonising the 
CF lung, through employment of non-cultural techniques,
but more so by molecular techniques, including T-RFLP. The
seminal work in this field by Rogers et al.3,4 has demonstrated

the presence of many genera, which are not routinely
reported from conventional microbiology analyses, either
due to an inability of the diagnostic laboratory to detect such
organisms, or, alternatively, not reporting the presence of
these organisms as they are not believed to be true
pathogens and hence are of little or no clinical concern. The
work of Rogers et al.3,4 therefore gives us a further insight
into the structure of the commensal population within the
CF sputum and an appreciation of what genera and species
exist in this niche.

Other niches of interest in the CF patient include the skin,
the mouth and, most importantly, the gastrointestinal tract,
where commensal organisms may have an altered and
higher level of resistance than similar commensal flora in a
non-CF population not exposed to long-term antibiotic use.
The development of multiple, elaborate and simultaneous
resistance mechanisms confers an ecological advantage on
the commensal flora, whereby it now possess a genetic
mechanism to ensure its survival in its own ecological 
niche, thus maintaining a hostile flora to challenging and
potentially colonising pathogens (e.g., Pseudomonas aeruginosa
and B. cenocepacia). 

Equally, with the ability to survive intense and prolonged
antibiotic pressure, such commensal flora are dangerously
poised to become potential pathogens if (i) there is a
downward shift in the immune status of the patient (e.g.,
following lung transplantation, (ii) where such commensals
are genetically promiscuous in acquiring virulence
determinants from co-habiting true pathogens, and (iii)
where horizontal gene transfer events occur, leading to the
acquisition of antibiotic resistance determinants by newly
colonising pathogens. For example, Kanj et al.5 previously
reported post-transplant bacteraemia infections in the 
CF population, with commensal flora in addition to the
normal CF pre-transplant Gram-negative respiratory flora.
Coagulase-negative staphylococci caused bacteraemia in
three patients on days 16, 132 and 169, respectively,
following lung transplantation. Enterococcal infection was
described in two patients on days 24 and 41, respectively,
post-transplantation, as well as another infection with
Nocardia asteroides at day 478. Hence, careful attention must
be given to the potential development of a highly resistant
commensal flora, particularly if the patient is likely to
become immunocompromised. 

The acquisition of virulence determinants is also a
significant cause for concern in antibiotic-resistant
commensal organisms, and where such commensal flora
dominate. One reason for their success is the relative
plasticity of their genomes to adapt to varying host immune
responses, as well as selective antibiotic pressure. With this
genomic plasticity and the ability to naturally transform,
commensal organisms have the ability to take up virulence
determinants, which then potentially could transform their
status from commensal organism to opportunistic pathogen
to true pathogen. A good example of this has been Escherichia
coli and the several pathogenic subtypes of E. coli, including
enteropathogenic E. coli and verocytotoxigenic E. coli
(VTEC). Within the Gram-positive organisms, Streptococcus
agalactiae recently has been shown to have recombinational
ability, leading to the replacement of a locus of several genes
or the allelic exchange of the internal part of the gene.6

Hence, this organism, which is primarily a commensal
organism colonising the gastrointestinal and genitourinary
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tracts of up to 50% of healthy adults, now has the ability to
become pathogenic to the host.

Recently, we have shown that long-term use of
azithromycin in adult CF patients has led to a macrolide-
resistant population of viridans group streptococci (VGS)
isolated from patients’ sputum, in comparison to similar
VGS populations originating from non-CF patients not
treated with azithromycin for long periods of time.7 In
addition, complete gene homology in the macrolide
resistance determinants, particularly erm(B) and mef(A) is
also shared with other closely related genera, including
Gemella, Enterococcus and Granulicatella. Presence of multiple
macrolide-resistance determinants occurring at high
frequency in VGS commensal organisms is of potential
importance to the CF patient, other CF patients and the non-
CF population. The presence of bacterial pathogens in CF
sputum generally reflects those bacterial genera commonly
associated with CF lung disease, including P. aeruginosa and
B. cenocepacia. Normally, these pathogens do not constitute
an infection risk to the healthy non-CF individual. However,
the presence of such macrolide-resistance determinants in
VGS organisms may be problematic for the healthy non-CF
individual, as these may act as a reservoir of resistance
determinants for other respiratory pathogens, particularly 
Streptococcus pneumoniae, where these commensal flora are
transmitted from the CF patient to non-CF individuals (e.g.,
between CF and non-CF siblings within a household).
Furthermore, the existence of macrolide-resistance
determinants has been described in environmental waters
(GenBank accession number: EU168331), farm animals
(GenBank accession number: EU168331) and domestic
animals, highlighting the important ecological evolution and
transmission of these genes globally.

Finally, the presence of highly resistant commensal
organisms and their genetic resistant determinants is of
potential interest to infection control in the hospital setting,
particularly in relation to CF and non-CF patients (i.e., are
CF patients an important reservoir of resistance
determinants?) For instance, given the amount of β-lactams
taken by CF patients during their lifetime, we do not known
at present whether or not their intestinal flora react by
becoming extended-spectrum β-lactamase (ESBL) producers.
Therefore, more research is required urgently to assess what
genetic mutations and resistance determinants are being
selected naturally by the commensal flora of the CF patient
and whether or not these mutations are important in terms
of their transmissibility to hitherto sensitive pathogens.
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An abnormal haemoglobin, Hb Owari (HBA2:c,364 G>A; 
or HBA1) was first described in Japan by Hrano et al. in 1986.1

It is a non-pathological α-chain variant characterised by 
a mutation at the α121 position that changes valine to
methionine (121[H4]Val>Met). It produces a neutral-to-
neutral amino acid substitution in the α-chain. The site of
amino acid substitution (α121) can be determined by the
chymotryptic digest fingerprinting of the core fraction of the
α-chain, with the oxidised counterpart of the abnormal
peptide (α118–22) easily found as an extra spot. The clinical
presentation of heterozygous Hb Owari is normal, and the
proportion of abnormal HbX is 12.7–19% of total
haemoglobin. However, the compound heterozygote with
other haemoglobinopathies had previously not been
reported. This study presents a case of a compound
heterozygote of Hb Owari with α-thalassaemia-1.

A 25-year-old Taiwanese visited the haematology out-
patient department as microcytic anaemia was noted at
regular check-up in June 2009. Peripheral blood examination
showed a microcytic hypochromic anaemia, and the red 
cells showed mild microcytosis and hypochromasia. The
haemogram was as follows: Hb 13.4 g/dL, RBC 5.81x106/µL,
MCV 72.5 fL, MCH 23.1 pg and MCHC 31.9 g/dL. White
blood cells and platelets were within the normal range.
Serum iron and ferritin levels (92 µg/dL and 95.3 ng/mL,
respectively) were within the normal range. High-
performance liquid chromatography (HPLC; Primus CLC
385, Primus, Kansas City, USA) showed an abnormal HbX
peak (36.2%) at a retention time of 4.76 min (Fig. 1).
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