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Introduction

Bladder cancer is one of the main problems in urology in
terms of diagnosis and treatment.1,2 Morphological,
biological and biochemical characteristics differ between
normal and cancerous bladder cells,3,4 and tissue exhibits
altered composition of glycolipid and nuclear matrix, which
have recently been described as potentially useful markers
of disease.5,6

Apart from being sources of energy, fatty acids are known
to affect various aspects of cellular processes, including
membrane fluidity and signalling, which makes the
evaluation of their status even more important.7,8 Fatty acid
synthesis and metabolic conversion to other fatty acids is
catalysed by intracellular lipogenic enzymes such as fatty
acid synthase, desaturases and elongases.9 These processes
provide essential precursors for structural cell components
and bioactive metabolites such as prostaglandins. 

It is recognised that cancerous cells have abnormal fatty
acid metabolism,10 which may contribute to the pathogenesis
of organ dysfunction and certain aspects of tumour
behaviour such as growth and metastasis. Therefore, the
proportions of specific fatty acids in bladder tissue may also
be related to bladder disorders, especially bladder cancer.

An in vitro study in 1992 showed that fatty acid
composition of human urothelial cancer cells differs from
the normal urothelium and other malignant cell lines.11

Although altered lipid metabolism in bladder cancer tissue
has been reported in recent years,12,13 characterisation of
urothelial cancer tissue in terms of fatty acid content has not
been undertaken. 

The aim of the present study is to investigate regional
differences between bladder cancer and adjacent normal-
appearing tissue fat composition in patients with urothelial
carcinoma undergoing surgical resection.

Materials and methods

Patients and specimens
This study included 31 patients (24 men, seven women)
newly diagnosed with non-invasive solitary urothelial
carcinoma, classified as high-grade (Ta, TNM staging), and

scheduled for transurethral resection (TUR) at the
University Hospital. No patient had previously undergone
radiation, surgery or cytotoxic chemotherapy. Patients aged
over 75 years, those on nutritional supplementation, or
suffering hypercholesterolaemia or diabetes were excluded.
The study was approved by the Ethics Committee of Tabriz
University Hospital, and all patients gave written informed
consent.

Small samples of tumour and adjacent normal-appearing
tissue (1–1.5 cm beyond the tumour and the resection
borders) from the urinary bladder were obtained at the time
of surgery. All specimens were assessed histologically by a
single pathologist to confirm status, homogeneity and
integrity of the tissue. Fat from the tissue samples was
extracted in hexane and stored at –70˚C in glass vials for 
≤3 months until analysis. 

Laboratory analysis
The fat extract in hexane was evaporated under a stream of
nitrogen to near dryness and the lipids were esterified with
methanol during catalysis with acetyl chloride.14 Fatty acid
methyl esters were extracted and analysed for fatty acid
composition, as described previously.15
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Statistical analysis
The level of significance between two sample means was
calculated by paired t-test for continuous variables. P<0.05
was considered statistically significant. All analyses were
carried out using SPSS for Windows (version 11.0, SPSS,
Chicago, IL).

Results

Clinical details of the study subjects are shown in Table 1.
Table 2 shows the level of fatty acids in the bladder cancer
and adjacent normal-appearing tissue measured by a gas
liquid chromatography method. Palmitic acid (16:0) was the
major fatty acid both in tumour and normal tissues, followed
by oleic acid (18:1n-9) and stearic acid (18:0). In the bladder
cancer tissue samples, the levels of 18:0 (P=0.01) and 18:1n-
9 (P=0.03) were higher. Among the polyunsaturated fatty
acids (PUFA) assayed, a statistically significant reduction of
arachidonic acid (20:4n-6; 1.7 fold, relative to mean value of
the adjacent normal bladder tissue) was observed in the
tumour tissue. Overall, there was no significant difference in
the total saturated, monounsaturated and n-3
polyunsaturated fatty acid levels between normal-appearing
bladder and bladder cancer tissue. In contrast, bladder
cancer tissue showed a significant reduction in total n-6
PUFA (–15.1%, P<0.001; Fig. 1).

The ratio of 18:0 to 16:0 was calculated as an elongase
activity index. The 18:1 to 18:0 and 20:4n-6 to 18:2n-6 ratios
were calculated as indices of ∆9- and ∆6-desaturase activity,
respectively. The ratio of 18:0 to 16:0 was significantly higher
(P=0.04) in the bladder cancer tissue than in the control
tissue. In addition, the ratio of 20:4n-6 to 18:2n-6 was
significantly decreased (P<0.001) in the bladder cancer
tissue. No significant difference was observed in the ratio of
18:1 to 18:0 between normal-appearing control tissue and
the tumour tissue.

Discussion

In view of the potential importance of metabolic
remodelling in cancer biology, this study tested the
hypothesis that the fat composition of bladder cancer tissue
and adjacent normal bladder would be different in a sample
taken during TUR. The results showed that bladder cancer
tissue contained a greater proportion of stearic acid, as a
saturated fatty acid (SFA), and less n-6 PUFA than normal-
appearing bladder. The difference in fatty acid composition
between the two sites confirms the theory that metabolic
activities such as rate of mobilisation and perhaps also rate of
endogenous synthesis of fatty acids may differ between
these tissues.

Fatty acid composition of cellular lipids can modulate
several metabolic processes (e.g., glucose metabolism and
membrane permeability) that take place in cancer cells.
However, altered lipid synthesis in cancer cells makes a
major contribution to modulation of the production of
biologically active lipids required for cell growth.16 Abnormal
monoglyceride lipase activity and phosphatidylcholine
metabolism have been reported in various human cancer
cells lines, with consequent increased production of
bioactive lipids and alterations in growth factor-mediated
cell signalling pathways.17,18
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Age (years) 65.6±8.0 (49–75)

Gender (% women) 23

Body mass index (kg/m2) 26.1±3.6 (18–35)

Smokers (%) 41.9

Values expressed as means±SD or percentage; 
range in parentheses.

Table 1. Clinical characteristics of the 31 patients
with urothelial carcinoma.

Fatty acid Normal-appearing bladder Urothelial carcinoma P

14:0 (myristic acid) 1.7±0.7 1.8±0.4 0.30

16:0 (palmitic acid) 31.4±4.2 31.5±3.8 0.96

16:1n-7 (palmitoleic acid) 2.3±0.8 2.2±0.8 0.33

18:0 (stearic acid) 15.6±1.6 17.0±2.4 0.01

18:1n-9 (oleic acid) 26.5±3.0 28.2±4.3 0.03

18:2n-6 (linoleic acid) 13.9±3.2 13.1±3.7 0.18

18:3n-9 (linolenic acid) 0.76±0.51 0.63±0.38 0.15

CLA (conjugated linoleic acid) 0.40±0.32 0.30±0.27 0.16

20:3n-6 (dihomo-γ-linolenic acid) 1.4±0.4 1.3±0.6 0.22

20:4n-6 (arachidonic acid) 2.7±0.9 1.0±0.8 <0.001

20:5n-3 (eicosapentaenoic acid) 0.61±0.45 0.59±0.49 0.85

22:6n-3 (docosahexaenoic acid) 0.53±0.43 0.40±0.26 0.15

18:0/16:0 0.51±0.10 0.55±0.13 0.04

18:1n-9/18:0 1.7±0.3 1.7±0.4 0.96

20:4n-6/18:2n-6 0.21±0.10 0.08±0.06 <0.001

Values expressed as mean±SD.
P<0.05 (paired t-test) regarded as significant.

Table 2. Fatty acid composition of normal-appearing and urothelial carcinoma tissue.



The levels of stearic acid and oleic acid were increased in
the bladder tumour tissue, suggesting that the loss of the
regulation of these fatty acids may contribute significantly to
the bladder tumour development. Indeed, increased levels
of stearic acid and oleic acid have been found in colorectal
cancer19,20 and breast cancer.21 The critical roles of stearic acid
and oleic acid in tumour formation and growth are
confirmed by the fact that these fatty acids are required for
cell cycle progression,22,23 intracellular trafficking17 and
invasion.21,24 The role of oleic acid and stearic acid as
precursors of arachidonic acid and its metabolites remains
controversial, with both inhibitory and promoting effects on
cancer cells being reported.24–26 It has been proposed that
these fatty acids metabolise differently, resulting in different
cellular responses in various types of cancer.24

The cellular lipid composition is determined by interaction
of several processes (e.g., exogenous uptake into the cell, de
novo synthesis and metabolism). The findings presented
here show that the proportion of long chain n-3 PUFA,
which can be synthesised endogenously from α-linolenic
acid, were the same in normal and bladder cancer tissue. No
significant differences in long chain n-3 PUFA between
benign and malignant prostatic tissue has also been
reported.27 However, there are reports indicating the
inhibitory effect of n-3 PUFA on bladder cancer,28 and also
reduced amounts of n-3 PUFA in cancer cells.29

In recent years, the role of lipid metabolism in
tumourigenesis has become evident, but the effects of
various fatty acids as tumour suppressors or oncogenic
factors are poorly understood. Many studies have
demonstrated the anti-oncogenic potential of arachidonic
metabolic enzyme inhibitors in several types of tumour,30

with arachidonic acid shown to be reduced in cancer cells.29

The present study also noted a substantial decrease in
arachidonic acid in the bladder cancer tissue. Similarly,
reduced n-6 PUFA is reported in prostate cancer,27 renal
carcinoma31 and breast cancer.32

In the HepG2 cell line, arachidonic acid diminishes the
tumourigenic potential of hepatoma cells via a down-
regulation of lipogenic enzyme gene expression (e.g., fatty
acid synthase).33 Cao et al. have shown that metabolic
removal of intracellular unesterified arachidonic acid
suppresses apoptosis.34 The anti-tumourigenic activity of

arachidonic acid is also supported by an experimental study
of apoptosis using the epithelial cell line derived from pig
kidney, where over-expression of cytochrome P450
epoxygenase promotes cell survival by metabolism of
arachidonic acid.35 Taken together, the loss of arachidonic
acid, an n-6 PUFA, found in the present study, may be
required for the development of bladder cancer, as
demonstrated for other types of cancer. 

The observed individual variations are consistent with
earlier observations in cancer,36 and suggests individual
differences in fatty acid synthase, elongase and desaturase
activity. The increased ratios of 18:0 to 16:0, may suggest
increased activity of the enzyme involved in the biosynthesis
of 18:0 from 16:0 (i.e., elongase). Stearate is the preferred
substrate of ∆-9 desaturase, which is converted to oleic acid.
In contrast, decreased 20:4n-6 to 18:2n-6 ratio as an index of
∆-6 desaturase activity suggests that this enzyme is
significantly more active in normal bladder tissue than in
bladder cancer cells. The described findings are supported
by the modulation of multiple lipogenic enzymes observed
in cancer cells, including fatty acid sythase,37 desaturases25,38

and elongases.39 Taken together, deregulated fatty acid
synthesis may play an important part in the development of
bladder cancer, as with other cancers, and would be a
rational therapeutic target. 

To the authors’ knowledge, this study is the first to
examine normal bladder and bladder cancer tissue
differences in fatty acid composition. The control tissue used
may not be fully representative of normal bladder tissue, as
genetic and biological changes have been reported in
normal-appearing urothelial tissue in proximity to a
tumour.40 Analysis was limited to patients with high-grade
(Ta) urothelial carcinoma to avoid any potential bias
associated with histological and pathological variations.
However, the possible association between
clinicopathological features and fatty acid composition in
bladder carcinogenesis will need to be clarified in
appropriate studies, which could provide additional insight
into disease pathogenesis and progression. 

This study demonstrates that tissue fatty acid content of
bladder cancer differs from that of normal-appearing
bladder. In tumour, the proportions of stearic acid and oleic
acid were higher, while the proportion of arachidonic acid
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Fig. 1. Fatty acid content of normal-appearing bladder and bladder cancer tissue in the subject population: a) saturated; b) monounsaturated;
c) n-6 polyunsaturated; and d) n-3 polyunsaturated fatty acids. Results expressed as mean±SE.
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was lower than in the adjacent normal bladder. Thus, it is
concluded that the change in fatty acid composition may be
an indicator of altered lipid metabolism occurring in vivo
during human bladder tumourigenesis, and therefore
related metabolic pathways (e.g., desaturation and
elongation) may be potential targets for bladder cancer
therapy. 5

This study was supported by the Tabriz University of Medical
Sciences.
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