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Introduction

According to the most recent survey by Cancer Research UK
in 2009, multiple myeloma (MM) is the 17th most common
cancer in the UK.1 In 2010, 4672 people in the UK were
diagnosed with myeloma.2 Multiple myeloma is a disease
that predominantly affects the elderly, with 71% of cases
diagnosed in people aged 65 years and over. Very few cases
are diagnosed in people younger than 40 and most cases are
diagnosed in people aged 75–79. Incidence rates increase
steadily with age and peak in those aged 85 and over, with
the disease twice as common in black people as in Caucasian
and Asian people.1

Multiple myeloma is a malignant disease of terminally
differentiated B cells (plasma cells), characterised by their
clonal expansion within the bone marrow (BM), an
overproduction of monoclonal immunoglobulin (Ig) in the
blood or urine, and destructive bone lesions.3 Patients
typically present with recurrent infection and anaemia due
to bone marrow infiltration, as well as renal failure, severe
bone pain, multiple fractures and hypercalcaemia. Diagnosis
is made by BM aspiration or biopsy. The morphology of the
plasma cells of MM patients can vary in appearance, from
small, mature differentiated cells resembling typical plasma
cells, to large, immature undifferentiated cells of 20–30 µm in
diameter.4

These malignant plasma cells are believed to rely heavily
on their interactions with the surrounding
microenvironment (i.e., osteoblasts, osteoclasts, endothelial
cells and bone marrow stromal cells) in order to proliferate,
and this interaction plays a role in the development of
resistance to drugs.5 In return, however, these interactions
can also be disruptive to the environment that supports
them.6 By mechanisms that will be discussed here, bone
resorption is enhanced in MM as a result of the increased
activation of osteoclasts and the inhibition of osteoblasts.
The uncoupling of this fine balance between bone formation
by osteoblasts and bone resorption by osteoclasts gives rise
to the widespread bone destruction – one of the most

detrimental complications of MM. Direct cell-cell contact or
the release of soluble factors from nearby BM stromal cells
(BMSC) maintains the vicious circle of bone resorption and
tumour cell survival.7 Ultimately, this close interplay
between various cells in the BM and the MM cells is critical
in the progression and development of the disease. 

Multiple myeloma remains incurable, notwithstanding
developments in treatment regimens. Research into MM has
not only helped in improving treatment and understanding
of the disease itself, but has also provided significant
knowledge about the BM microenvironment in
haematopoietic malignancy. This article will review progress
in the study of the interactions of MM cells with their local
environment and how treatment strategies aim to influence
these interactions.
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Multiple myeloma is the most common haematological
malignancy yet currently it remains incurable. For decades
the mainstay in therapy has been non-targeted approaches
including genotoxic agents and immunosuppressants.
With myeloma predominantly affecting an elderly
population, who are vulnerable to aggressive therapy,
these non-specific approaches have resulted in poor
survival. However, in recent years an explosion of
collaborative research into myeloma has identified
molecular interactions between myeloma cells and the
bone marrow microenvironment as promoting myeloma
development and associated complications such as bone
lesions due to osteolysis. At the same time, a better
understanding of the adhesion molecules, cytokines and
signalling pathways involved in myeloma has led to the
development of new targeted therapies, which are
improving the quality of life for patients and significantly
extending median patient survival. This review explores
the current understanding of molecular pathways that
promote myeloma progression and lead to bone
destruction, with particular reference to the influence of
interactions with the bone marrow microenvironment. 
It describes molecular targets for therapy with reference to
the new therapeutics and their improved efficacy. While
the outlook for myeloma patients has improved in recent
years as a result of these new approaches, drug resistance
remains a problem and future therapies will also need to
address the molecular mechanisms of resistance in order 
to improve further the outcome for patients with this
disease.
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Bone marrow microenvironment 
and multiple myeloma

The BM microenvironment (stroma) is a complex network of
extracellular matrix (mainly collagen) which includes
mesenchymal stem/stromal cells (MSC), osteoclasts,
osteoblasts, lymphoid cells, fibroblasts and vascular
endothelial cells. In 1974, Freidenstein and colleagues first
identified and isolated human MSC when they placed
whole BM in plastic culture dishes and then after four hours
poured off the non-adherent (haematopoietic) cells, leaving
a layer of adherent spindle-shaped cells capable of dividing
rapidly in culture.8 These cells are pluripotent and capable of
differentiating into a number of mesenchymal cell lineages,
including adipocytes, chondrocytes and osteoblasts.9

Mesenchymal stem cells are relatively easy to isolate from
BM and can be expanded in vitro using routine cell culture
techniques.10 Under normal conditions, these cells adhere to
tissue culture plastic in 24–48 hours. In an undifferentiated
state, their morphology resembles that of a fibroblast
showing a small cell body with long, thin projections
emanating from its centre (Fig. 1). 

As there is no single specific marker for MSCs it is their
immunophenotypic profile and characteristic morphology
that identifies them, along with their extensive capacity for
self-renewal while retaining the ability to differentiate along
a number of mesenchymal lineages.11

As part of the minimal criteria proposed by the
Mesenchymal and Tissue Stem Cell Committee of the
International Society for Cellular Therapy to define human
MSCs,12 cells must be positive for CD105, CD73 and CD90,
and negative for haematopoietic markers such as CD45,
CD34, CD14 or CD11b, CD79a or CD19, and HLA-DR.
Mesenchymal stem cells have been shown to express a
number of cell adhesion molecules; for example, activated
leucocyte adhesion molecule (ALCAM, currently referred to
as CD166), vascular adhesion molecule 1 (VCAM-1/CD106),
intercellular adhesion molecule 1 (ICAM-1/CD54), integrins
and other adhesion molecules,13,14 along with the cytokine
receptors interleukin (IL)–1R, IL-3R, IL-6R, and tumour
necrosis factor (TNF)–R.15

Although this review will focus on bone marrow MSC
(BMMSC), it is important to note that MSCs are not exclusive
to the BM and they can be isolated from virtually all post-
natal and extra-embryonic tissues, including amniotic
membrane, placenta, umbilical cord and umbilical cord
blood.16 However, MSCs are a rare population in these
tissues, and even in the BM, where they are most abundant,
their frequency may be as low as 0.001– 0.1% of the total
population of marrow nucleated cells.17 Mesenchymal stem
cells are essential in forming the stroma of the bone marrow,
which provides support, and the ability to grow and
differentiate to primitive haematopoietic cells within the
bone marrow.18 This support is achieved both by direct cell-
cell interactions and/or by release or production of cytokines
such as IL-6 and granulocyte colony stimulating factor 
(G-CSF),19,20 and may also play an important role in the
pathogenesis of MM as these support mechanisms are
harnessed by MM cells.21

In MM, the interaction with cells of the microenvironment
determine the survival, migration and proliferation of
malignant plasma cells as well as their response to therapy;
thus, this stromal environment is essential in supporting
tumour progression.22 Actively growing neoplastic cells
recruit MSCs through the release of various chemical signals,
thus supporting and enabling them to differentiate into a
growing cancer.21 Over the past decade, molecular biological
analysis of MM has improved the understanding of how
MM develops and has started to reveal the processes that
underpin disease progression. The key factors identified as
having crucial roles in MM progression are the adhesion
molecules expressed by MM cells and BMMSCs and the
effects of cytokines produced by BMMSC and/or MM cells.

Adhesion molecules
The pathogenesis of MM is complex and involves various
cytokines and adhesion molecules that provide positive and
negative interactions between MM cells and BMMSCs, 
as well as other cells of the microenvironment (Fig. 2).
Following such interactions, proliferative anti-apoptotic
signalling pathways are activated in the MM cell,23 which
stimulate osteoclastogenesis7 and angiogenesis.24

Fig. 1. Representative images of confluent MSC in culture (left) and a U266 multiple myeloma cell line and MSC in co-culture
(original magnification x40).
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Multiple myeloma cells express the adhesion molecules
lymphocyte function-associated antigen-1 (LFA-1/CD18),25

very late antigen 4 (VLA-4/CD49d)26 and neural cell adhesion
molecule (NCAM/ CD56).27 These molecules bind to their
cognate receptor/adhesion molecule on the surface of the
MSCs as CD54 is a ligand for CD18 and CD106 is a ligand for
CD49d, and thus play an important role in the MM cell and
marrow stromal cell interactions in vivo and in vitro.28

Adhesion of the MM cells to MSCs activates many pathways,
resulting in up-regulation of cell cycle regulating proteins
and anti-apoptotic proteins in the MM cell.5 These pathways,
which include the PI-3K/Akt/mTOR/p70S6K cascade, the
IKK-α/NF-κB pathway, Ras/Raf/MAPK and JAK/STAT3
pathways, can also be activated by numerous cytokines
secreted both by MM cells and MSCs.29–31

Using a murine model, Michigami et al.7 found that cell-
cell interactions between MM cells and marrow stromal 
cells that are mediated through VCAM-1 increased the
production of osteoclastogenic activity by the MM 
cells.

Many of the adhesion molecules expressed by the MM cell
activate the nuclear factor-κB (NF-κB) signalling pathway,
which plays a key role in the survival and proliferation of the
MM cell.32 NF-κB signalling protects the cell from apoptosis
by activating anti-apoptotic genes of the Bcl-2 family such 
as Bcl-XL and A1.33 In addition, NF-κB can also promote cell
growth and differentiation by activating cyclin-D1
expression.34 NF-κB activation also induces drug resistance
in MM cells and up-regulates the expression of adhesion
molecules involved in the resistance of MM cells to drugs.
The expression of CD49d has been found to be elevated 
in the melphalan-resistant MM cells that were selected
through chronic exposure to the drug.26 The NF-κB pathway
has also been shown to stimulate angiogenesis by 
inducing vascular endothelial growth factor (VEGF)
expression.35

Cytokines and signalling pathways
Cytokines and growth factors produced either by MM cells
or by stromal cells as a result of intercellular interactions
have been implicated in the increase in osteoclast formation
and activity. The expanding list of these growth factors
includes IL-1β,36 IL-3,37 IL-6,38 TNFα and TNFβ,39,40 VEGF41 and
macrophage inflammatory protein-1α (MIP1-α).42 The role of
the cytokine IL-6 has been well documented in MM as it has
an essential role in MM progression by regulating the
growth and survival of tumour cells.43,44 It is produced by
osteoblasts, monocytes, macrophages and MSCs and binds
to its cognate receptor IL-6R. IL6 is a pleiotropic cytokine
released as a result of pro- and anti–inflammatory stimuli.45

Following binding to the gp130-associated receptor IL-6R,
the intracellular tyrosine kinase Janus Kinase (JAK) is
activated, which phosphorylates and activates the signal
transducers and activators of the transcription 3 (STAT3)
pathway.46 Once STAT3 is activated, it translocates to the
nucleus where it initiates transcription of IL-6 responsive
genes. One such gene is BCL2L1 that encodes the protein
Bcl–XL, which suppresses apoptotic death of haematopoietic
cells.47 This protein works by inhibiting the release of pro-
apoptotic molecules from mitochondria.48

Catlett–Falcone and colleagues47 demonstrated that
activated STAT3 contributes to the progression of MM by
experimentally preventing apoptosis in MM cells by

blocking the JAK/STAT pathway and thus inhibiting Bcl-XL
expression. The phosphoinositol 3 kinase (PI3K)-protein
kinase B (PkB/Akt) pathway is also activated by IL-6 and
when activated provides an anti-apoptotic mechanism as
well as increasing cell proliferation.49 This pathway regulates
the apoptotic machinery of the plasma cell by
phosphorylating and inactivating pro-apoptotic proteins that
control the release of cytochrome C from mitochondria.49

The release of cytochrome C is crucial for the cell to
undergo apoptosis as it is required for the activation of
caspases in the cytosol.50 Cell proliferation is increased
following activation of this pathway, by inhibiting the anti-
proliferative effects of pro-apoptotic proteins as well as
enhancing protein synthesis within the cell.51 Similarly, IL-6
activates Ras and promotes its translocation to the plasma
membrane where it activates Raf, mitogen-activated protein
kinase kinase (MEKK) and MAPK, leading to increased
proliferation of MM cells.52

IL-6 also promotes osteolysis (bone resorption) as it
induces the production of the receptor activator of nuclear
factor kappa-B ligand (RANKL), found on the surface of
BMMSCs and osteoblasts.29 RANKL interacts with its cognate
receptor RANK on the surface of mature osteoclasts, causing
their activation, and inhibits differentiation of osteoclast
progenitors. In health, this is a tightly regulated mechanism
whereby osteoprotegerin (OPG), a decoy receptor, is
secreted by osteoblasts and competes with RANK for
binding to RANKL, thereby reducing osteoclastogenesis.53

Osteoprotegerin is a secreted factor that inhibits osteoclast
development both in vitro and in vivo.53

Experiments using transgenic mice have highlighted the
importance of the OPG/RANKL/RANK system in normal
bone remodelling. Mice with a disrupted RANKL gene and
those that over-expressed OPG had decreased osteoclast
formation and developed an excessive accumulation of
bone; a condition known as osteopetrosis.54 Mice deficient in
OPG were shown to develop osteoporosis caused by
enhanced osteoclast formation and function.55,56 

In MM, malignant plasma cells stimulate
osteoclastogenesis by increasing RANKL and reducing the
levels of OPG.57 The mechanisms through which OPG levels
are decreased have yet to be clearly defined, but a study by
Standal et al.58 has shown that OPG is bound, internalised
and degraded by the MM cells through CD138 (Syndecan-1,
a transmembrane protein that controls cell growth and
differentiation). Further to this, MM cells may also exhibit an
anti-apoptotic effect on osteoclasts by secreting large
amounts of M-CSF.59 As a result, when RANKL binds to
RANK in patients with MM there is a dramatic increase in
bone resorption. Abe and colleagues60 identified that MM
growth and survival is augmented by the cell-cell contact of
MM cells and osteoclasts, and that this mechanism is
partially dependent on IL-6 and osteopontin (protein found
in osteoblasts). Furthermore, IL-3 has been reported to play
a role in bone destruction in MM both by stimulating
osteoclasts and indirectly inhibiting osteoblast formation in
vitro.61

Myeloma cells also produce large amounts of MIP-1α,
which is produced by freshly isolated cells from patients
who have extensive bone disease, and this induces 
osteoclast formation independently of RANKL.62 MIP-1α also
enhances the osteoclast-inducing activity of RANKL and 
IL-6.63 Terpos and colleagues64 noted that the serum levels of
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MIP1-α in patients with MM correlated with the extent of
bone disease, bone resorption markers and RANKL level.
They also noted that the three-year probability of survival
with MM decreased with increasing levels of MIP1-α.64 It has
also been shown that MIP1-α induces the activation of the
AKT/PKB and MAPK pathway and thus may also directly
affect cell signalling pathways that affect growth, survival
and migration of MM cells.42

Restoring the balance between RANKL and OPG not only
stops myeloma-induced bone resorption, but also inhibits
growth and survival of MM cells (see section on treatment).
Each of these cytokines, as well as the interactions resulting
from the adhesion of MM cells to BMMSCs, results in a
vicious cycle of increased bone resorption and increased
tumour growth.

Functionality of bone marrow 
in multiple myeloma

Bone remodelling
In addition to increased osteoclast activity and bone
resorption, there is reduced bone formation due to the
inhibition of osteoblasts.65 Gilbert and colleagues66

demonstrated an inhibition of osteoblast differentiation by
TNFα in vitro. Osteoblasts are derived from MSC progenitors
and are stimulated to differentiate during periods of active
bone formation. The pathway by which osteoblast
progenitors differentiate into mature osteoblasts is known as
the canonical Wnt pathway. Briefly, Wnts are cysteine-rich
secreted glycoproteins that bind to the Frizzled receptor and
low-density lipoprotein receptor-related protein (LRP-5/6)
and induce the canonical Wnt pathway. The canonical
pathway affects cellular functions by regulating β-catenin
levels and thus its nuclear transport and regulation of target
genes elicit various effects including induction of
differentiation and proliferation of osteoblasts.67

In the absence of Wnt signals, a dedicated complex of
proteins, including the tumour suppressor gene product
adenomatous polyposis coli (APC), axin and glycogen
synthase kinase-3β (GSK-3β) controls phosphorylation of
specific serine and threonine residues in the N-terminal
region of β-catenin. This GSK3β-mediated phosphorylation
marks β-catenin for ubiquitination and degradation by the
proteasome. Signalling by Wnt factors blocks GSK-3β activity,
resulting in the accumulation of non-phosphorylated 
β-catenin, which will translocate to the nucleus and is
responsible for the regulation of target genes such as
CCND1.68

The CCND1 gene is a member of the cyclin-D family
involved in a complex pathway that closely regulates
physiological cell cycle progression from the G1 to S phase.69

Over-expression of this gene has been documented in MM
patients.70

Edwards and colleagues,71 using an in vivo murine model,
demonstrated that increasing Wnt signalling in the bone
marrow microenvironment can prevent the development of
osteolytic bone lesions by increasing osteoblast number and
decreasing osteoclast number. Mice treated with lithium
chloride (LiCl), an inhibitor of the enzyme GSK-3β, showed
increased β-catenin expression in osteoblasts, suggesting
that LiCl prevents the development of osteolytic lesions by
increasing Wnt signalling in osteoblasts. Extracellular Wnt

antagonists that inhibit the Wnt/β-catenin signalling
pathway and consequently inhibit osteoblastogenesis have
been implicated in MM.

Tian et al.72 analysed the bone marrow of patients with
newly diagnosed MM and identified an increase in
Dickkopf-1 (Dkk1) in the serum of these patients, and
suggested that Dkk1 may inhibit differentiation of BMSC
into osteoblasts. It was also noted that the severity of the
bone lesion correlated with increased Dkk1 levels in these
patients. Finding that a soluble factor produced by MM cells
suppresses osteoblast differentiation is significant, although
it does not entirely explain why myeloma bone lesions do
not heal, even in patients in complete remission. It may be
that a long-lasting change in the marrow microenvironment
inhibits the ability of osteoblast precursors to differentiate,
even in the absence of MM cells.

Further to the findings of Tian and colleagues, Kaiser et al.73

reported a correlation between Dkk1 serum concentrations
and the amount of lytic bone disease. As the Dkk1/Wnt
pathway is involved in cancer and bone pathophysiology,
and the interaction of the cancer and bone marrow
microenvironment is crucial to the progression of MM, Dkk1
may represent a potential target for treatment.

In relation to factors inhibiting the differentiation of
osteoblasts, Silvestris et al.74 showed that osteoblasts from
myeloma patients are functionally exhausted and undergo
apoptosis promptly in the presence of MM cells from
patients with severe bone disease. 

A transcription factor called Runx2 has been shown to be
key in driving MSCs to differentiate into osteoblasts, and
inhibition of Runx2 has been shown to be a major
contributor to osteoblast suppression in MM. Giuliani et al.75

observed decreased osteoblast differentiation when MM
cells and osteoblasts were in cell-cell contact, compared with
no cellular contact, which suggests that the cellular contact
and the release of soluble factors contribute to the block of
osteoblastogenesis in vitro. They found that in the presence
of a blocking anti-CD49d antibody in the co-culture of
osteoblast progenitors and MM cells, there was a reduced
inhibitory effect on Runx2, suggesting that the
CD49d/CD106 interaction could be responsible for blocking
osteoblastogenesis by myeloma cells.

Treatment strategies for multiple myeloma

The earliest recorded case of MM is likely to be that of Sarah
Newbury in 1844. She suffered from severe back pain and
fatigue four years before her death.76 She went on to develop
fractures of both femurs, clavicles, right humerus, right
radius and right ulna. At the time, the best available
treatment was infusions of orange peel, rhubarb pills and
opiates, but these failed to save her. She died on 20 April
1844, five days after being admitted to hospital.76

Over a century and a half has passed since then, and
cancer research and treatment has improved significantly,
with patients living 10–15 years and having a normally
quality of life. However, despite recent advances in
treatment, MM remains an incurable disease, largely due to
the emergence of drug resistance. As mentioned above, the
BM microenvironment promotes the survival and growth of
malignant plasma cells, leading to the development of
treatment strategies that inhibit certain interactions of the



MM cell and BM microenvironment. Together, adhesion
molecules and cytokines mediate MM pathogenesis by
stimulating the expansion of MM cell populations that, as a
result, contribute to bone destruction. Over recent years, the
treatment of MM has undergone significant development
and the introduction of new therapies has resulted in
improved survival (Fig. 3). 

Most treatment now aims to prolong survival. While few
patients achieve a complete response (CR) with
conventional chemotherapy regimens, rates have improved
with the use of high-dose therapy (HDT) followed by
autologous stem cell transplantation (auto-SCT) and the
introduction of new therapies, such as thalidomide,
lenalidomide and bortezomib. High-dose therapy supported
by auto-SCT is now recommended for newly diagnosed MM
patients under the age of 65 years77 but is not indicated for
older patients. Therefore, determining whether or not they
would be candidates for stem cell transplant is one of the
first steps in choosing an initial therapy for symptomatic
MM patients.

For decades the standard treatment for patients consisted

of the oral alkylating agent melphalan in combination with
prednisone (MP).78 With this regimen, the overall response
rate is 50–60% and patient median survival is two to three
years.79 Although the introduction of melphalan and its
combination with prednisone was important in the
management of MM, patient survival remained
unsatisfactory. The combination of vincristine, adriamycin
and dexamethasone (VAD) later became a common initial
therapy in preparing patients for auto-SCT. 

Dexamethasone (Dex) was later found to achieve most of
the plasma cell reduction with VAD and that survival times
with VAD or Dex were similar.80 Dex induces growth arrest
and apoptosis in MM cells via activation of related adhesion
focal tyrosine kinase (RAFTK).81 Increased rates of survival
were found in younger patients who received an auto-SCT
and as a result it became the standard of care, while MP
remained the treatment in older and less-fit patients.

In order to prevent recurrent MM and induce complete
remission, combination therapy is usually used alongside
auto SCT.82 Maintenance treatment with active anti-myeloma
agents post-transplant may successfully eliminate minimal

BRITISH JOURNAL OF BIOMEDICAL SCIENCE 2013  70 (3)

Multiple myeloma and its microenvironment114

MSC

MM

IL-6
CD54

CD106

CD19

CD49d

CD56

IL-6R
C

ytokine-R

NF B
signal ing

increased expression of adhesion 
molecules/cytokines

RANKL
VEG

F

VEGF
IL-3, IL-6,
TNF ,

IL-1
M-CSF

Angiogenesis

NF B
signalling 

Drug Resistance

Proliferation
Survival

JAK

STAT3

Anti-apoptosis

Survival

C
ytokine-R

RAS

RAF/MEK/MAPK

Proliferation

M
APK

AKT/

PKB

Growth
Migration

Survival

MIP-1

l

Fig. 2. Cell-cell interactions in MM. The diagram shows the MM cell and BMMSC in the bone marrow, and the pathways and 
signalling molecules involved in the pathophysiology of MM.
VEGF: vascular endothelial growth factor; IL1β: interleukin-1β; IL-3: interleukin 3; IL-6: interleukin 6; IL-6R: interleukin 6 receptor; JAK: Janus
kinase; STAT: signal transduction and activators of transcription; Ras: rat sarcoma; RAF/MEK/MAPK: mitogen-activated protein kinases; MIP1-α:
macrophage inflammatory protein 1α; TNFα/β: tumour necrosis factor α/β; OPG: osteoprotegerin; RANKL: receptor activator of nuclear factor-
κB ligand; NF-κB: nuclear factor κ-light-chain-enhancer of activated B cells.



Multiple myeloma and its microenvironment 115

BRITISH JOURNAL OF BIOMEDICAL SCIENCE 2013  70 (3)

residual disease, delay disease recurrence and potentially
extend survival. 

Thalidomide, the first in the class of immunomodulatory
drugs, has a broad spectrum of activity in MM. Its oral route
of administration and minimal myelosuppressive effect
makes it an attractive agent for maintenance therapy
following autologous transplant. Thalidomide is a synthetic
glutamic acid derivative first synthesised in 1953. Initially, it
was used as a sleeping aid and an antiemetic in pregnant
women. It was later withdrawn from use when it was
reported that the drug produced severe, life-threatening
birth defects. Thalidomide has since been found to
significantly improve the management of MM as it possesses
unique immunomodulatory, anti-inflammatory and anti-
angiogenic properties.83

Angiogenesis is the formation of new blood vessels and is
a fundamental process of normal development.84 In cancer,
angiogenesis is essential for tumour growth and metastasis,
and increased angiogenesis has been documented in MM.84

Thalidomide’s ability to inhibit angiogenesis was first
discovered in 1994, when it was demonstrated that
thalidomide inhibited neovascularisation induced by basic
fibroblast growth factor (bFGF) in the rabbit cornea
micropocket assay.85 In a mouse model, thalidomide

inhibited angiogenesis induced by bFGF and VEGF.86

Thalidomide may also inhibit adhesion of MM cells to
marrow endothelial cells, as it can decrease the density of
TNFα-induced CD54, CD106, and CD62E and CD62L on the
endothelial cells of human umbilical vein.87

In order to improve the therapeutic index of thalidomide
it may be combined with other active agents against MM.
Thalidomide combined with dexamethasone was shown to
induce a high response frequency, rapid onset of remission
and low incidence of serious, irreversible toxicity compared
to thalidomide alone in patients with previously untreated
MM.88 Thalidomide and dexamethasone also produced
higher response rates compared to dexamethasone alone.89

Although thalidomide was shown to be useful in MM,
modifications to its structure led to the formation of a new,
less-toxic immunomodulating drug (IMD) called
lenalidomide.90 Like thalidomide, lenalidomide has anti-
angiogenic properties and is a powerful inhibitor of TNFα;
it also inhibits the adhesion of BMSCs and the release of
growth and survival factors.91 Palumbo et al.92 conducted a
double-blind trial comparing melphalan-prednisone-
lenalidomide followed by lenolidomide maintenance 
(MPR-R), melphalan-prednisone-lenalidomide (MPR) and
melphalan prednisone (MP) followed by placebo. Median
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progression-free survival was significantly longer with MPR-
R (31 months) than with MPR (14 months) or MP (13
months), with the greatest benefit observed in patients in
the 65–75 age group.92

The introduction of the bisphosphonates has also
improved the management of MM bone disease.93

Bisphosphonates are pyrophosphate analogues that inhibit
bone resorption by increasing osteoclast apoptosis.94 They
thereby have a direct effect on the BM microenvironment
and are of particular clinical relevance in patients who have
symptomatic bone loss. Bisphosphonates such as zoledronic
acid (ZOL) has been of particular importance in MM due to
its bone-protective effects.95 In addition, ZOL down-
regulates the expression of BMSC adhesion molecules (i.e.,
CD54, CD106, CD49d and CD40) that are involved in the
cell-cell contact with MM cells.96 As a result, IL-6 production
is decreased, thereby reducing MM proliferation.

A new and clinically effective therapeutic agent known as
denosumab has recently been developed for targeting
osteoclasts. Denosumab is a fully human monoclonal
antibody to RANKL that mimics the effects of OPG, thereby
binding to and neutralising RANKL, leading to inhibition of
osteoclast function.97 A recent study by Henry et al.98

compared denosumab to ZOL in preventing or delaying 
first on-study skeleton-related events in myeloma patients
and patients with advanced cancer metastasising to bone
and found that it was comparable to ZOL. Like other
monoclonal antibodies, denosumab does not depend on
renal clearance and can be administered by subcutaneous
injection, providing many potential benefits with reduced
side effects compared to those of ZOL. It should be noted,
however, that as both agents target osteoclasts, osteonecrosis
of the jaw is a potentially serious side effect of both
therapies.99,100

A widely used agent in the treatment of MM is the
proteasome inhibitor; bortezomib (Velcade, PS-341), which
targets the 26S proteasome complex.101 The 26S proteasome
complex is the central proteolytic machinery of the highly
conserved ubiquitin proteasome system (UPS), which
controls basic cellular functions such as cell cycle
progression and cell death. In the BM microenvironment,
bortezomib inhibits the binding of MM cells to BM stromal
cells, which in turn inhibits the production of IL-6 in the
stromal cells as well as inhibiting angiogenesis.102 Bortezomib
blocks NFκB activation and thus makes the MM cell more
susceptible to apoptosis. Bortezomib increases the
susceptibility of MM cells to chemotherapeutic agents by
regulating the expression of proteins involved in cell cycle
progression (e.g., p21,p27) and apoptosis (BCL2).103,104

In 2001, Hideshema and colleagues105 demonstrated that
bortezomib acts directly on MM cells and alters cellular
interactions and cytokine secretion in the BM milieu to
inhibit tumour cell growth, induce apoptosis and overcome
resistance to conventional therapies. Furthermore,
bortezomib has also been shown to enhance osteoblast
differentiation in vitro and in vivo in MM patients.106

Bortezomib-induced osteoblast differentiation via Wnt-
independent activation of β-catenin suggests that
bortezomib might overcome Dkk1-mediated inhibitory
effects on this pathway.107 Terpos and colleagues108 showed
that bortezomib reduces Dkk1 and RANKL serum levels in
patients with MM. 

A trial by Mateos et al.109 highlighted the benefits of using

bortezomib in combination with melphalan and prednisone
(VMP) when compared to the standard MP regimen. Overall
response rate was 89% (32% CR) with VMP compared with
42% overall response rate for MP. In addition, the 16-month
event-free survival rate was significantly higher with VMP
than MP (83% versus 51%, P<0.001).109

Recently, heat shock protein 90 (Hsp90) has emerged as a
potential target for treatment of MM.110 Hsp90 are ubiquitous
and abundant stress-inducible-related proteins that act as
molecular chaperones, stabilising many ‘client’ proteins that
are involved in proliferation and apoptosis.111 Many of the
client proteins crucial to the signalling pathways previously
mentioned, such as Akt (PI3K/Akt pathway), FAK (integrin
pathway), Bcr-Abl (RAS/ERK pathway) and Apaf-1
(apoptosis), are regulated by Hsp90, and hence inhibition of
Hsp90 affects all these pathways.112–114 As a result, the
protective qualities provided by BMSC to the MM cells,
which normally aids in MM cell survival, are diminished.115

A combination of the Hsp90 inhibitor KW-2478 and
bortezomib greatly reduce tumour burden in vivo and in
vitro.116

Recent advances in the understanding of the
pathophysiology of MM have allowed the production of
new therapies against this disease, many of which target the
malignant cell and the bone marrow microenvironment.
However, resistance to chemotherapeutic drugs remains a
major problem in the treatment of MM. While patients
usually respond to initial chemotherapy, drug resistance
subsequently appears and patients succumb to refractory
myeloma.117

In order for the antitumour agent to exert its desired effect,
it must reach the plasma cell in sufficient concentration.
Reduced cellular drug accumulation may arise due to
alterations in the uptake or efflux of the drug and could be
responsible for the acquisition of resistance.118 Transporter
proteins called ATP-dependent multidrug transporters
associated with resistance are multidrug resistance protein
(MDR; P-glycoprotein, P-gp), multidrug resistance-
associated protein (MRP1), lung resistance-related protein
(LRP) and breast cancer resistance protein (BRCP), as these
proteins play a major role in removing the drug from the
cells.119,120 As well as these proteins, intrinsic cell survival
mechanisms including the over-expression of anti-apoptotic
proteins (Bcl-XL), activation of NF-κB and Akt/MAPK
signalling pathways leads to the malignant transformation
of the plasma cell and ultimately drug resistance.121 As new
therapies for MM are established that target these pathways,
the challenge now is for pharmaceutical companies to
develop drugs that either evade efflux or inhibit the function
of efflux transporters.

Conclusions

Multiple myeloma is characterised by severe bone
destruction with reduced or no new bone formation. 
Various factors have been discussed related to the
microenvironment or plasma cell that lead to this bone
destructive process and disease progression. Our
understanding of MM has come a long way since the 
first reported case in 1844. The introduction of melphalan
led the way and remains a treatment option for some
patients. 
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Continued investigation into the disease biology and
tumour microenvironment has led to the development of
new therapies that target specific proteins and pathways,
and these have significantly improved the outlook for
patients with MM. Moreover, the combination of these
therapies with other agents may also lead to improved
responses in this patient population. Indeed statistics from
Cancer Research UK demonstrate clear improvements in
survival rates, with one-year survival almost doubling
between the 1970s and 2009 (35% versus 70%), whereas five-
and 10-year survival rates have tripled and quadrupled (11%
versus 37% and 5% versus 19%), respectively. Furthermore,
current Cancer Research UK data may underestimate the
survival rates for myeloma patients diagnosed today.122

However, conventional treatment remains unsatisfactory
due to drug resistance.

Further investigation into the complex pathogenesis of
myeloma and the bone marrow microenvironment and its
interactions is required, in order to combat the development
of resistance to chemotherapeutics. Such new targeted
therapies are starting to emerge and a continually improving
rate of patient survival, quality of life and perhaps even a
cure for this debilitating disease may not be too far from our
reach. 5
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