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ABSTRACT
Background: Diabetic kidney disease (DKD) is an increasing health problem and an extra 
burden to health services. The study of characteristic metabolic alterations of DKD is crucial for 
a better understanding of pathogenesis to identify new potential biomarkers and drug targets. 
We hypothesized that metabolic profiling of amino acids, acylcarnitines, and organic acids are 
useful new biomarkers for the diagnosis of the early stages of DKD
Methods: The hypothesis was testing in a case-control study of 232 patients with type 2 
diabetes mellitus and 150 healthy controls. Patients were classified according to urinary 
albumin and estimated glomerular filtration rate (eGFR) into 100 with normoalbuminuria and 
132 with microalbuminuria group. Eighteen AcylCNs and 17 amino acids were measured in the 
blood by tandem mass spectrometry while 17 urinary organic acids were quantitatively 
measured by gas chromatography – mass spectrometry.
Results: Regression analysis found that dodecanoylcarnitines C12 (effect size 2.03 [95%CI 
1.73–2.32]), triglylcarnitine C5:1 (2.01 [1.70–2.30]), and isovalerylcarnitine C5 (1.78 [1.48–2.07]) 
were stronger predictors of albumin/creatinine ratio than HbA1c (1.50 [1.20–1.78]) and hence 
they could serve as potential biomarkers for the diagnosis of the early stages of DKD.
Conclusions: Targeted metabolic profiling offers a new, non-invasive approach for detecting 
biomarkers for the early diagnosis of DKD suggesting new pathogenetic phases that might be 
new targets for treatment.
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Introduction

Diabetic Kidney disease (DKD) is an important cause of 
end-stage renal disease (ESRD) with expected global 
increase in its prevalence reaching 44% by 2030 [1]. It is 
characterized by increased urinary albumin excretion 
with an enhanced rise in proteinuria and a drop in 
estimated glomerular filtration rate (eGFR) in the 
absence of other renal diseases [2,3]. Renal function 
may also be determined by the albumin to creatinine 
ratio (ACR), although affected by the muscle mass and 
the physical activity due to the variable creatinine 
excretion in male and female [4], and the equations 
such as the Modification of Diet in Renal Disease 
(MDRD) used for the estimation of GFR. However, the 
MDRD is suitable only for patients with a GFR level less 
than 60 mL/min/1.73 m2 [5], and there are several 
drawbacks to the use of urine albumin [5–7], leading 
to the need for better markers [8].

DKD is a consequence of a complicated interaction 
among metabolic, inflammatory and hemodynamic 
changes with the involvement of energy pathway- 
related metabolites such as the fatty acids and Krebs 
cycle intermediates [9]. As the early detection and 
management of DKD leads to a reduction in the risk 

of kidney damage by as much as 50%, the ability to 
detect asymptomatic renal dysfunction is crucial in 
minimising DKD progression [10].

Acylcarnitines (AcylCNs) consist of an acyl group 
esterified to carnitine, allowing crossing of long-chain 
fatty acids through the mitochondria membrane for β- 
oxidation [11]. They also participate during the 
branched-chain amino acids catabolism, with acyl- 
CoA intermediate status through carnitine acyltrans
ferases [12]. Organic acids are intermediate metabo
lites in certain critical metabolic pathways involved in 
carbohydrate, lipid, and protein metabolism, with the 
Krebs cycle and fatty acid β-oxidation gaining increas
ing interest in assessing the health status, pathogen
esis and development of many diseases, including 
DKD [13].

The use of a single biomarker such as HbA1C or 
eGFR alone, or in combination, may not be adequate 
in recognising the subtle pathogenic pathways under
lying complex diseases such as DKD [14]. With 
advances such as mass spectrometer dependent meta
bolomics, it is possible to identify and quantify in vivo 
metabolites with molecular mass <1.5 KDa and so 
develop a profile of biomarkers for certain disease or 
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diseases [15]. Additionally, if metabolites are pathog
nomic, they might also be new targets for treatment 
[16]. However, although metabolomics have discov
ered pathways possibly related to DKD development 
and progression, targeted blood and urine metabolo
mics studies are limited [17].

We hypothesised that the metabolic profiling of 
amino acids, AcylCNs and organic acids can provide 
superior definition of T2DM patients with normo- 
albuminuria and micro-albuminuria compared to 
HbA1C.

Patients and methods

The institutional research board of Menoufia University 
school of medicine approved the study (11/2018 INTM) 
and written informed consent obtained from all parti
cipants. This study took place from December 2018 to 
December 2019. It enrolled 232 patients with early 
DKD (urinary albumin-to-creatinine ratio [ACR] 
<300 mg/g and eGFR ≥ 60 ml/min/1.73 m2) [18] classi
fied into two groups; 100 with normo-albuminuria 
(<30 mg/g) and 132 with microalbuminuria (30 to 
300 mg/g). The study also enrolled 150 non-diabetic 
healthy subjects as a control group. The MDRD was 
used to estimate the GFR (eGFR) [19]. Exclusion criteria 
were macro-albuminuria ≥ 300 mg/g (overt DKD) and 
renal diseases such as chronic glomerulonephritis or 
insulin-dependent type one DM.

Sample collection: Five millilitres of fasting venous 
blood collected from all participants and divided into 
two samples; 3 ml was collected in a plain vacationer, 
centrifuged, and the resulting sera were used for bio
chemical investigations. Two ml was collected into 
EDTA and centrifuged as soon as possible; plasma 
was separated within 10 min of collection and used 
immediately for HbA1c (Sysmex XT-1800i, Japan). 
Fasting blood glucose (FBG), 2 hours postprandial 
blood sugar (2HPPBS), lipid profile [total cholesterol, 
triglycerides, low-density lipoprotein cholesterol (LDL- 
C); high-density lipoprotein cholesterol (HDL-C)] and 
creatinine in blood were measured by the Beckman 
Coulter (Synchron CX 9 ALX) Clinical Auto analyser 
(Beckman Instruments, Fullerton, California, USA). 
Blood spots obtained by a sterile puncture in the 
thumb and spotted on the filter paper (Guthrie card, 
GE Healthcare, NJ, USA), left to dry on a clean surface, 
then stored at −80 C°. Urine samples were collected in 
a sterile plastic container for measuring urine creati
nine and albumin (Beckman Instruments, Synchron CX 
9 ALX, Fullerton, CA, USA) for albumin to creatine ratio 
(ACR) [20]. Some was stored immediately at −80°C till 
analysis of organic acids using GC/MS.

Chemicals and reagents: Component of MassChrom® 
Amino acids and Acylcarnitines were from 
Chromsystems Instruments & Chemicals GmbH, 
München, Germany. Pentadecanoic acid (PDA) was 
obtained from across organics (New Jersy, USA). N, 
O-bis-(trimethylsilyl)–trifluoroacetamide (BSTFA) plus 
1% trimethylchlorosilane (TMCS) was from SUPELCO, 
Bellefonte Pennsylvania, USA, and used as derivatizing 
reagents. The solvent was of HPLC Grade; methanol was 
purchased from Fisher Scientific (Loughborough, U.K.). 
All other chemicals and standards were purchased from 
Sigma-Aldrich (Fluka, St.Louis, Mo, USA).

AcylCNs and amino acids assay by MS/MS:
Previously reported method [21] was used with 
modifications. Briefly, 3 mm of the dried blood 
spot disk punched into a well of the v-bottomed 
plate, containing 100 μl of lyophilized internal stan
dard reconstituted with 25 ml Extraction Buffer. The 
plate was sealed with a protective sheet and agi
tated at 600 rpm for 20 min at room temperature. 
The supernatant moved to a new v-bottomed well 
plate and covered by aluminiuman foil sheet. Ten μl 
of the elute injected into the MS/MS system 
(Acquity UPLC H-Class. Water Corporation, MA, 
USA) at a two-min interval in a flowing stream of 
80% acetonitrile at a flow rate of 200 μl/min and 
reduced to 20 μl/min in 0.25 min. The flow rate 
increased to (600 μl/min in 1.25 min) then 
decreased again to (200 μl/min). The scan time of 
the MS/MS system was 1.25 min. The obtained 
spectra of all analytes analysed with multiple reac
tions monitoring (MRM) mode. Quantitative analysis 
(expressed as μmol/l) achieved using Neolynx soft
ware (Neolynx Inc., Glendale, CA, USA) by compar
ing the signal intensity of an analyte against the 
corresponding internal standard.

Quantitative urinary organic acid assay by GC/MS:
Frozen urine samples incubated at 37°C for 15 min, 
vortexed for 15 sec and urine creatinine levels adjusted 
to 1 µMol creatinine [22]. Extraction and derivatization 
of the urine samples performed according to the pre
viously reported method [23] with some quantitative 
modifications. All standards were prepared in stock 
solutions after obtaining the molecular mass of each 
organic acid. The internal standard (PDA) stock solution 
was prepared by dissolving 48.8 mg in 100 ml of abso
lute methanol. One µl aliquot of derived sample injected 
in spitless mode into the Agilent 7890 GC system sup
ported by a 30.0 m × 0.25 mm i.d. fused-silica capillary 
column with 0.25 µm HP-5 MS stationary phase (Agilent, 
USA), with the injector temperature at adjusted at 
250◦C. Helium used as a carrier gas at a flow rate of 
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1 ml/min through the column. The column temperature 
primarily kept at 80◦C for 2 min and then increased to 
280◦C by 4◦C/min, then hold for 3 min, and the run time 
for 55 min. The column effluent introduced into the ion 
source of an Agilent 5975 mass selective detector 
(Agilent Technologies). The MS quadruple temperature 
fixed at 150◦C and the ion source temperature at 
230◦C. Turning on the acceleration voltage after 
a solvent delay of 3 minutes Followed by attaining 
masses from 50 to 550 m/z. Calibration linear graphs 
were created by plotting the linear regression of the 
peak area ratio of the analytes to the internal standard 
(IS) at seven concentration levels. For quantitation pur
poses, selective ion mentoring (SIM) mode was applied. 
Auto-acquisition of GC total ion chromatograms (TICs) 
and fragmentation patterns were done by GC/MSD 
ChemStation Software (Agilent, USA). Data were 
expressed as µM/mM creatinine.

Sample size: Using G Power 3.1, sample size was 
calculated for linear regression analysis with 
power = (1-ᵦ) = 0.95 and CI95% and it was estimated 
to be 220 patients. Accounting for a drop-out of 10%, 
the sample size was increased to 244 patients. From 
244 patients, 232 completed the study with 
a response rate of 95%. Healthy controls were 150 
subjects recruited from the hospital and relatives of 
the patients matched for age, sex, residence and 
socio-economic standard as controls. For correlation 
analysis, the sample size was estimated at power 80%, 
and 90% to be 84 and 112 respectively. We calculated 
the sample size at a level of 95% based on regression 
analysis (n = 232) which at the same time cover and 
exceeds the sample required for correlation (n = 112 
at 90%) [24,25].

Statistical analysis: Results were statistically ana
lysed by SPSS version 22(SPSS Inc., Chicago, IL, 
USA). Tests of normality were performed. An inde
pendent sample t-test was used for parametric data. 
Mann-Whitney test was used for non-parametric 
data. Chi-Squared (χ2) test was used for qualitative 
variables. Linear trend analysis using the 
Jonckheere-Terpstra Test was applied to detect 
whether there was an increasing or decreasing 
trend across the ordered groups. Spearman correla
tion determined the strength and direction of the 
association between variables. Correlation was con
sidered significant if r >0.30 [26]. Effect Size for 
Multivariate linear regression analysis determined 
the independent predictors of various amino acids, 
acylcarnitines and organic acids in patients with 
(normo and micro) albuminuria. Multiple compari
sons were tested using Holm-Bonferroni Sequential 
Correction. The p values <0.05 are statistically sig
nificant after this correction.

Results

Demographic and laboratory characteristics of the 
patients and controls are shown in Table 1. The two 
groups were matched for age and sex, and all other 
indices (except triglycerides) were, as expected, signifi
cantly different. One hundred and four patients were on 
dyslipidemic drugs, 33 on blood pressure lowering 
drugs. Mean (SD) creatinine in those with normal- and 
microalbuminuria were 76 [5] and 115 [14] respectively. 
Similarly, eGFR was 92 [10] and 64 [11], and ACR (med
ian/IQR) was 16 [14–24] and 145 (99–180). These three 
sets of data all give a linear trend estimate with levels in 
the healthy controls of p < 0.001.

Table 2 shows data of the 17 amino acids. In linear 
trend estimation, most were highly significant, the most 
significant were (in order) arginine, valine, phenylala
nine:tyrosine and citrulline. Table 3 shows data of 18 
AcylCNs, and again, almost all showed a significant 
trend, the most significant being (in order) decanoylcar
nitine (C10), propionylcarnitine (C3), propionylcarnitine: 
acetylcarnitine (C3:C2) and decenoylcarnitine (C10:1). 
Table 4 shows data on the urinary organic acids with 
many showing very significant linear trends, the most 
significant being lactic acid, 2- and 3-hydroxybutric acid 
and 5-hydroxyhexanoic acid.

On univariate analysis between Albumin/creati
nine ratio (ACR) and HbA1c, eGFR, Blood amino acid, 
acylcarnitines, and urinary organic acids levels in the 
diseased groups, the highest correlations were 
reported with 2hydroxy butyric acid (r = 0.90), 
Sebacic (r = 0.81), Adipic (r = 0.78), Suberic (r = 0.78) 
and L-pyroglutamic acid (0.78) while lower values 
were reported with HbA1c (r = 0.57) and eGFR 
(r = −0.68). The effect size (95% CI) of key analytes in 
predicting DKD by multivariate regression analysis 
were C12 2.03 (1.73-2.32), C5:1 2.01 (1.70-2.30), C5 
1.78 (1.48-2.07), HbA1c 1.50 (1.20-1.78), C5DC 1.12 
(0.41-1.72), suberic acid 1.0 (0.70-1.29), methionine 
0.78 (0.48-1.07), tiglyl-glycine 0.59 (0.29-0.89), c0 
0.52-0.22-0.82), adipic acid 0.37 (0.07-0.66), L-pyroglu
tamic 0.35 (0.05-0.64), arginine 0.33 (0.03-0.62), 2- 
hydroxybutric acid 0.23 (0.06-0.52), lactic acid 0.22 
(0.07-0.52) and citric acid 0.15 (0.14-0.44).

Discussion

Changes in amino acids, acylcarnitines and organic acid 
metabolites have been detected in some genetic disor
ders such as aminoacidopathies, fatty acid oxidation 
disorders and organic acidurias by using MS/MS of 
dried blood spots and GC/MS of urine samples [27]. 
We performed targeted, quantitative metabolic profil
ing of a few sets of these metabolites diabetic patients 
with normo and micro albuminuria for identifying more 
specific and sensitive markers for the early diagnosis of 
diabetic kidney disease.
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Sustained hyperglycaemia in diabetes encourages 
fatty acid synthesis and triglycerides build-up causing 
lipid accumulation in ectopic non-adipose tissues 
playing a role in the pathogenesis of DKD [28,29]. 
Altered blood and muscle amino acid profile in DKD 
may be a cause of chronic inflammation and oxidative 
stress, leading to progressive renal disease so they 
have been proposed as nutritional markers for early 
renal dysfunction in diabetic patients [30]. In early 
DKD groups, the blood concentrations of the amino 
acids arginine, citrulline, and ornithine showed an 
increasing trend, most so by arginine. We speculate 

these may be related to increased levels of blood urea 
nitrogen in patients with early stages of renal insuffi
ciency and thus enhanced urea cycle activity might be 
beneficial in cases of diabetic kidney disease [12]. 
Additionally, the current study revealed that the 
blood levels of valine and leucine:alanine significantly 
increased in linear trend over the three groups. This 
was in line with the study of Chuang et al [13] due to 
reduced take-up of branched chain amino acids, 
especially valine, into the muscles due to insulin resis
tance and decreased expression levels of adipose- 
tissue enzymes [31]. Regarding aromatic amino 
acids, phenylalanine and tyrosine showed 
a moderately increasing trend, as increased phenyla
lanine levels are related to higher macrovascular risk 
and mortality [32]. Raised concentrations of branched 
chain and aromatic amino acids were detected as 
predictors of diabetic kidney disease in 
a longitudinal liquid chromatography mass spectro
metry (LC-MS)-based plasma metabolomic study [15].

Numerous studies have documented altered 
plasma AcylCNs in T2DM patients with various stages 
of albuminuria [12,33]. The present study showed that 
the short-chain acylcarnitines (C2, C4) showed 
a moderately increasing trend, while medium-chain 
acylcarnitines (C8 and C10) had a highly decreasing 
trend especially C10, additionally, the long-chain 
acylCNs (C18:1) showed a moderately decreasing 
trend as there is a mismatch between energy substrate 
flux and its consumption due to impaired mitochon
drial function and initiation of alternative ω- FAO as it 
was reported in Liu et al [18] playing a role in the 
development and progression of DKD [34].

Table 1. Demographic and laboratory characteristics of the 
patients and healthy controls.

Groups

Controls 
(n = 150)

Patients 
(n = 232)

Mean ± SD Mean ± SD

Age (Years) 56.8 ± 3.9 56.1 ± 3.9
Sex: Male/Female 72/78 115/117
BMI (kg/m2) 21.4 ± 0.9 30.0 ± 4.1
SBP (mm Hg) 119 ± 9 130 ± 8
DBP (mm Hg) 74 ± 6 80 ± 6
DM Duration (y) - 6.1 ± 2.2
HbA1 c% 4.7 ± 0.3 8.0 ± 0.8
Glucose (mmol/l) 4.5 ± 0.3 8.6 ± 0.5
2hPPBG (mmol/l) 6.0 ± 0.7 12.7 ± 2.2
Cholesterol (mmol/l) 3.7 ± 0.3 4.7 ± 0.4
Triglycerides (mmol/l) 1.32 ± 0.06 1.30 ± 0.17
HDL-C (mmol/l) 1.55 ± 0.19 1.35 ± 0.14
LDL-C (mmol/l) 1.7 ± 0.4 2.7 ± 0.3
Creatinine (µmol/l) 64 ± 6 98 ± 10
eGFR (mL/min/1.73 m2) 119 ± 10 80 ± 10
ACR (mg/g) 9 (6–11) 80 (56 − 102)

BMI: Body Mass Index, (ACR): albumin to creatinine ratio,  LDL-C: low- 
density lipoprotein cholesterol, HDL-C: high-density lipoprotein choles
terol, 2hPPBG: 2-hour post-prandial blood glucose. Data is mean/SD or 
median/IQR. All differences p < 0.001 except triglycerides p = 0.08.

Table 2. Levels of blood amino acids in controls and patients.
Groups

Blood amino acids (μmol/l)
Controls 

(n = 150) Normoalbuminuria (n = 100) Microalbuminuria (n = 132) Linear trend analysis test p value

Arginine 5.7 ± 2.6 10.9 ± 2.8 18.2 ± 5.2 18.35 <0.001
Valine 58.4 ± 14.5 72.5 ± 15.1 83.9 ± 17.7 11.60 <0.001
Phe:Tyr 0.9 ± 0.2 1.2 ± 0.1 1.2 ± 0.3 10.39 <0.001
Citruline 19.7 ± 7.3 22.5 ± 5.6 28.9 ± 9.1 8.89 <0.001
Leu: Ala 0.34 ± 0.1 0.40 ± 0.1 0.48 ± 0.2 8.85 <0.001
Glu:cit 2.7 ± 1.6 2.4 ± 1.3 1.7 ± 0.7 7.19 <0.001
Aspartate 51.2 ± 17.2 63.8 ± 19.6 67.6 ± 24.4 7.07 <0.001
Cit: phe 0.35 ± 0.09 0.43 ± 0.12 0.48 ± 0.16 6.89 <0.001
Ornithine 95 ± 25 110 ± 18 119 ± 29 6.85 <0.001
Tyrosine 41.9 ± 11.6 45.1 ± 11.8 52.2 ± 14.6 6.77 <0.001
Phenylalanine 33.8 ± 8.5 37.5 ± 4.0 41.5 ± 9.6 6.31 <0.001
Glutamate 102 ± 33 166 ± 54 132 ± 36 6.14 <0.001
Leu: Ile 85.7 ± 16.8 63.5 ± 16.5 75.3 ± 14.9 4.61 <0.001
Proline 90 ± 26 84 ± 18 106 ± 29 4.06 <0.001
Alanine 210 ± 66 178 ± 21 184 ± 42 3.84 <0.001
Gly:Ala 0.66 ± 0.18 0.71 ± 0.21 0.73 ± 0.22 2.97 0.003
Met:ph 0.11 ± 0.03 0.11 ± 0.03 0.10 ± 0.02 2.32 0.020
Leu:Phe 1.6 ± 0.3 1.6 ± 0.3 1.7 ± 0.4 2.14 0.032
Methionine 5.3 ± 1.5 4.1 ± 1.1 6.1 ± 2.1 1.70 0.087
Glycine 103 ± 32 128 ± 28 99 ± 20 0.67 0.500

Leu, leucine; Ile, Isoleucine; . Met, Methionine; Tyr, Tyrosine; Cit, Citrulline; Ala, Alanine. Linear trend analysis using Jonckheere-Terpstra Test 
was applied to detect whether there was an increasing or decreasing trend across the ordered groups. The Mann-Kendall (M-K) test is used 
to detect the presence of linear or non-linear trends (steadily increasing/decreasing or unchanging) in a series data by estimating the effect 
size following Jonckheere-Terpstra (J-T) Test. Data mean with SD
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Compared with blood metabolomics, urine metabo
lomics may offer a straight understanding of biological 
pathways related to kidney dysfunction as urine meta
bolites are directly emitted by the kidney [35]. Organic 
anion transporters (OAT), which were involved in the 
elimination of these organic anions via the kidney, are 
affected in DKD. This hypothesis was supported, as 
there was a greater than twofold reduction in the 
gene expression levels of OAT1 and OAT3 in kidney 
biopsy samples from patients with diabetic nephropa
thy compared with that of the non-diseased kidney [36]. 
Analysis of the organic acids in the current study 
revealed that the tricarboxylic cycle metabolites had 
a significantly highly increasing linear trend over the 
three groups that could be an indicator of kidney func
tion [37]. Remarkably, the main bulk of the 17 organic 

acids or the enzymes generating metabolites is oxidized 
in mitochondria, therefore implicating mitochondrial 
dysfunction and reduced mitochondrial biogenesis as 
the main feature associated with early DKD [15]. The 
metabolite 5-hydroxyhexanoic acid is produced from 
fatty acids degradation with medium-chain lengths 
(particularly hexanoic acid) [35]. Its level showed 
a highly significant decreasing trend in the groups of 
early DKD, this was in line with the study of Tang et al, 
that may increase the risk of ESRD progression in T2DM 
patients with microalbuminuria [35]. A novel view of this 
metabolism could present a probable new medical the
ory for the avoidance of renal function decline by 
increasing their levels, such as supplementation which 
necessitates further confirmation [35]. In addition, the 
diseased groups showed a highly decreasing trend of 

Table 3. Levels of AcylCNs in controls and patients.
Groups

AcylCNs 
(μmol/l)

Controls 
(n = 150) Normoalbuminuria (n = 100) Microalbuminuria (n = 132) Linear Trend analysis test p value

C10 0.14 ± 0.08 0.08 ± 0.03 0.06 ± 0.04 11.17 <0.001
C3 0.5 ± 0.3 0.9 ± 0.4 0.8 ± 0.4 8.12 <0.001
C3:C2 0.10 ± 0.02 0.14 ± 0.05 0.16 ± 0.07 8.09 <0.001
C10:1 0.06 ± 0.01 0.07 ± 0.03 0.08 ± 0.03 7.77 <0.001
C8 0.07 ± 0.02 0.05 ± 0.02 0.04 ± 0.02 7.26 <0.001
C6 0.02 ± 0.01 0.03 ± 0.01 0.04 ± 0.01 6.91 <0.001
C18:1 0.4 ± 0.1 0.2 ± 0.1 0.3 ± 0.1 6.90 <0.001
C2 5.8 ± 2.6 9.3 ± 2.9 8.3 ± 3.3 6.80 <0.001
C16 0.45 ± 0.2 0.7 ± 0.2 0.6 ± 0.2 5.96 <0.001
C14 0.03 ± 0.02 0.05 ± 0.01 0.03 ± 0.01 5.07 <0.001
C12 0.02 ± 0.01 0.03 ± 0.01 0.03 ± 0.02 4.74 <0.001
C3DC 0.03 ± 0.01 0.05 ± 0.01 0.04 ± 0.02 4.50 <0.001
C4 0.07 ± 0.02 0.07 ± 0.01 0.08 ± 0.02 4.42 <0.001
C5DC 0.11 ± 0.03 0.15 ± 0.02 0.13 ± 0.04 2.78 0.005
C0 13.8 ± 5.2 7.8 ± 2.2 15.7 ± 5.8 2.24 0.025
C5:1 0.07 ± 0.01 0.02 ± 0.01 0.08 ± 0.05 1.89 0.058
C5 0.15 ± 0.03 0.08 ± 0.02 0.14 ± 0.03 1.49 0.136

C0, free carnitine; C2, Acetylcarnitine; C3, Propionylcarnitine; C3-DC, Malonylcarntine; C4, Isobutyrylcarnitine;; C5, Isovalerylcarnitine, C5:1, 
Tiglylcarnitine;; C5-DC, Glutarylcarnitine; C6, Hexanoylcarnitine; C8, Octanoylcarnitine; C10, Decanoylcarnitine; C10:1,Decenoylcarnitine; 
C12, Dodecanoylcarnitines; C14, Tetradecanoylcarnitine; C16, Hexadecanoylcarnitine;; C18, Octadecanoylcarnitine; C18:1, 
Octadecenoylcarnitine. Data: mean with SD.

Table 4. Distribution of urinary organic acids levels in controls and patients.
Groups

Urinary organic acids(μmol/l)
Controls 

(n = 150) Normoalbuminurea (n = 100) Microalbuminuria (n = 132) Linear Trend analysis test

Lactic acid 3.2 ± 0.9 25.6 ± 4.3 89.9 ± 13.6 20.56
2hydroxy butyric acid 1.6 ± 0.3 15.5 ± 3.3 73.9 ± 17.0 20.55
3hydroxy butyric acid 2.4 ± 0.4 71.9 ± 4.4 88.7 ± 6.9 20.38
5hydroxy hexanoic acid 2.1 ± 0.6 1.4 ± 0.1 1.1 ± 0.1 19.49
Hydroxy propionic acid 3.9 ± 1.6 6.4 ± 1.3 14.8 ± 4.3 18.90
Sebacic acid 0.9 ± 0.2 3.6 ± 2.2 11.7 ± 0.9 18.54
Adipic acid 2.2 ± 0.7 3.4 ± 0.9 13.12 ± 4.4 18.04
Methyl malonic acid 3.8 ± 0.9 5.4 ± 1.6 12.9 ± 1.5 17.98
L-pyroglutamic acid 19.8 ± 3.5 24.7 ± 2.9 46.4 ± 11.8 17.88
Suberic acid 1.6 ± 0.1 1.9 ± 0.5 7.1 ± 1.9 16.34
Citric acid 3.7 ± 1.6 13.7 ± 1.6 21.4 ± 5.8 14.74
Succinic acid 5.6 ± 1.5 5.5 ± 1.5 24.7 ± 7.5 14.13
Ethyl malonic acid 4.6 ± 1.6 1.8 ± 0.6 1.7 ± 0.6 13.92
Azelaic acid 1.5 ± 0.3 1.0 ± 0.2 1.01 ± 0.1 13.82
Tiglyl glycine 0.9 ± 0.2 3.9 ± 0.8 2.5 ± 1.7 10.23
Glutaric acid 4.1 ± 17 4.0 ± 1.7 4.1 ± 1.4 1.31
Pimelic acid 1.7 ± 0.2 1.7 ± 0.2 1.7 ± 0.3 0.27

Linear trend analysis using Jonckheere-Terpstra Test was applied to detect whether there was an increasing or decreasing trend across 
the ordered groups. All trends strongly significant except glutamic acid (p = 0.188) and pimelic acid (p = 0.785). Data: mean with SD.
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azelaic acid in urine. Azelaic acid increases the amounts 
of enzymatic and nonenzymatic antioxidants that was 
related to the development of DKD [35]. Furthermore, 
L-pyroglutamic acid showed an increasing trend in the 
diseased groups, in accordance with the study of Kim 
et al. [38] due to impaired fasting glucose of the diabetic 
subjects [38]. These results provide new pathogenetic 
phases that may be new targets for treatment.

Interestingly, on multivariate analysis; C12, C5:1 
and C5 served as significantly stronger predictors of 
DKD than others, and also HbA1c, that may be due 
to the mismatch of fatty acid delivery and the tricar
boxylic acid cycle capacity [39]. Acyl-carnitines may 
interact with NF-Kβ, that stimulates inflammation 
and insulin resistance affecting the development 
and progression of DKD [39]. Hence, acylcarnitines, 
especially C12, C5:1 and C5, may be more sensitive 
biomarkers for the diagnosis of early DKD in T2DM 
patients with normoalbuminria and microalbumi
nuria than HbA1c that might offer additional thera
peutic goals for limiting DKD progression. The 
limitations to metabolome coverage in this study 
result from multiple steps of metabolite extraction, 
and the chemical derivatization of the urine samples 
analysed via GC-MS [40].

This work represents an advance in biomedical 
science because it shows an innovative, non-invasive 
approach for detecting specific and sensitive biomar
kers for the diagnosis of early DKD in T2DM patients 
with normoalbuminuria and microalbuminuria that 
might offer additional therapeutic goals for limiting 
DKD progression.

Summary table

What is known about this subject?
● Diabetic Kidney disease (DKD) is an important cause of the end-stage 

renal disease (ESRD).
● Determination of the urinary microalbuminuria is the standard non- 

invasive test for the detection and assessment of DKD.
What this study adds:
● Acylcarnitines are stronger predictors of the ACR compared to HbA1c, 

and so may be of value in diagnosing early DKD (normoalbuminuria to 
microalbuminuria)
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