AUTHOR=Ji Yong , Zhang Guoqing , Zhang Xingyi TITLE=Identification of LncRNA CARD8-AS1 as a Potential Prognostic Biomarker Associated With Progression of Lung Adenocarcinoma JOURNAL=British Journal of Biomedical Science VOLUME=79 YEAR=2022 URL=https://www.frontierspartnerships.org/journals/british-journal-of-biomedical-science/articles/10.3389/bjbs.2022.10498 DOI=10.3389/bjbs.2022.10498 ISSN=2474-0896 ABSTRACT=

Introduction: Long non-coding RNAs (lncRNAs) exhibit crucial roles in human tumors. However, the role of lncRNA CARD8-AS1 in lung adenocarcinoma remains elusive. This study investigated the role of CARD8-AS1 in lung adenocarcinoma.

Materials and Methods: The expression of CARD8-AS1 was detected by RT-qPCR analysis and confirmed using an online database. The clinical value of CARD8-AS1 was evaluated using the Kaplan-Meier curve and multivariate Cox regression analyses. The effects of CARD8-AS1 on cancer cell proliferation, migration, and invasion potential were assessed through several cellular experiments. Western blot assay was used to measure Bcl-2 and Bax protein levels. The interaction among CARD8-AS1, miR-650, and Bax, was assessed using a dual-luciferase reporter assay.

Results: The expression of CARD8-AS1 was decreased in lung adenocarcinoma tissues and cell lines (p < 0.001). Low expression of CARD8-AS1 was related to tumor size (p = 0.042), TNM stage (p = 0.021), lymph node metastasis (p = 0.025), and poor overall survival (p < 0.05). Elevated expression of CARD8-AS1 could suppress cellular viability, migration potential, and invasion ability (p < 0.05). The Bcl-2 protein levels were decreased while Bax levels were increased by overexpression of CARD8-AS1 (p < 0.001). miR-650 may thus be a direct target of CARD8-AS1 and Bax may be a direct target of miR-650.

Discussion: CARD8-AS1 expression was downregulated in lung adenocarcinoma and associated with several clinical parameters. CARD8-AS1 exerted tumor-suppressive effects by targeting the miR-650 and then regulating Bax expression. CARD8-AS1/miR-650 may serve as novel prognostic biomarkers and potential therapeutic targets for the treatment of lung adenocarcinoma.