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Dystonia, the third most commonmovement disorder, is clinically characterized

by involuntary muscle contractions leading to abnormal, patterned movements

and postures that are often activated or worsened by initiation of movement. In

addition tomotor features, the presence and contribution of non-motor features

including sensory and psychiatric features is increasingly recognized. However,

the underlying pathophysiology behind dystonia and its fascinating motor and

non-motor presentations remains inadequately understood. Advances in

neuroimaging may hold the key. This review outlines brain imaging studies,

with an intentional focus on our work, conducted using different structural

and functional neuroimaging modalities, focused on dystonia and its motor

and non-motor clinical presentations. It highlights the different parts of the

human brain that may be implicated with these aspects of this network

disorder. Finally, current limitations and promising future directions to

deconstruct this knot and take a leap forward are mentioned.
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Introduction

The earliest recorded documentation of dystonia is thought to be the abnormal neck

positions in the tomb of Bishop Pedro deOsma in the Cathedral of Burgo de Osma in Spain.

These carvings were executed in 1258 [1]. A few centuries later, Dr. Charcot coined the term

“nevroses” for conditions without an identifiable neuroanatomical cause in 1888. In 1911,

Dr. Oppenheim introduced the term “dystonia” as a unifying descriptor of the condition.

For a few years thereafter, our understanding of dystonia was that these movements were

unconscious conflicts transduced into physical symptoms. This psychoanalytical model

popularized by Dr. Sigmund Freud describes, at least partially, our understanding of

functional neurological disease and may be influenced by curious, inadequately understood

aspects of dystonia such as sensory tricks. Subsequently, Dr. David Marsden’s clinical and

electrophysiological research in the 1990s on adult-onset focal dystonias established a

physical basis for dystonia [1]. In 1991, a detailed published description of 300 patients with

dystonia in the clinic highlighted that cervical dystonia (CD) was the most common

dystonia (86%). The onset of CD was most common between the 4th and 6th decade of life.

Pain was reported in nearly 70% and psychiatric disorders in nearly 20% of patients [2].
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The primary criteria of our current definition of dystonia is

based onmotor features only: “Cervical dystonia is characterized by

sustained or intermittent neck movements caused by involuntary

muscle contractions, resulting in abnormal movements and

postures of head, neck, and/or shoulders. Movements are often

patterned and tremor may be present.” [3] However, non-motor

features including sensory trick and pain have been recognized as

supportive criteria instrumental for diagnosis [3]. In addition, it is

now well established that dystonia may additionally present with

psychiatric or even cognitive manifestations [4]. Monogenic

dystonias vary widely in topography, age of onset, spread, and

severity of motor and non-motor features [5]. Dystonia may not

uncommonly present as a feature with other neurological disorders

such as Parkinson’s disease, Corticobasal syndrome, or Multiple-

System Atrophy. With such heterogeneity of presentation, this

rabbit hole keeps on getting deeper.

Many centuries after it was presumably noted and over a

century after the term “dystonia” was coined, the underlying

pathophysiology behind dystonia and its fascinating motor and

non-motor presentations remains inadequately understood.

Advances in neuroimaging may hold the key.

Insights into pathophysiology of
dystonia

A short primer on
magnetoencephalography (MEG)

The brain consists of populations of neurons that work together

to send signals to other parts of the brain. These brain networks

consist of voltage-gated ion channels that drive action potentials

and spiking membrane potentials. The oscillatory activity thus

created contributes to synchronous activity in neighboring

neurons. Such synchronous activity, when it involves a large

population of neurons, leads to electrical field oscillations. The

magnetic field produced by these oscillations is detected byMEG [6,

7]. A metric used to quantify the frequency and amplitude of this

synchronicity of neuronal patterns is coherence. MEG offers a

direct representation of connectivity as it measures intra-cellular

current. MEG fields pass through the head without distortion [8].

Data capture throughMEG requires the patient to lie relatively still.

Movement may worsen environmental magnetic interference. This

can be challenging. However, given its good spatial and excellent

temporal resolution, it is uniquely placed in the study of movement

disorders [6, 9, 10] (Figure 1).

MEG, resting state connectivity and
treatment in dystonia

Using MEG, we sought to identify resting-state connectivity

that distinguishes CD from healthy controls [11]. We identified

5 CD patients and 5 age- and sex-matched controls. All subjects

underwent MRIs of the brain. MEG scans were obtained with

results displayed on the subject’s MRI with images co-registered to

the subject’s digitized head shape at the time of data collection. The

coherence was calculated between all pairings (54 regions,

1431 locations in both hemispheres) of active cortical locations.

For each active source, pairwise coherence across frequencies for

all active cortical locations was calculated and only significant

coherence values with a large effect size were considered. Results

showed highly coherent networks in the cortico-striatal regions

(fronto-striatal, occipito-striatal, parieto-striatal and temporo-

striatal) in controls as compared to CD patients, which may

represent an underlying aberrant mechanism in CD [11]. To

assess the effect of botulinum toxin on CD, we additionally

captured MEG data in CD subjects pre- and post-botulinum

toxin injections [11]. Results showed an increase in coherence

overall in the afore-mentioned cortico-striatal pathways in patients

after botulinum toxin injections. In addition, a new pathway

showed significantly increased coherence: the occipito-temporal

pathway.After applying Benjamini-Hochberg correction to reduce

false discovery rate and further improve specificity, this increased

coherence localized to a connection between the left Putamen and

right Superior Parietal gyrus. While the basal ganglia are central to

motor function, the superior parietal lobule has been noted to be

important for sensorimotor integration by maintaining an internal

representation of the body’s state [12]. As such these results

highlighted the role of sensorimotor integration with clinical

benefit seen with botulinum toxin in CD. It further supports a

“central” effect of toxin secondary to sensory feedback. Finally,

with an increase in coherence appreciated within and between

hemispheres, these data highlighted the importance of local and

global networks in CD [11].

Other imaging modalities have been used to study network

abnormalities in dystonia. Aberrant fronto-striatal connectivity

and cerebellar involvement has been reported using FDG-PET

and DTI [13], altered connectivity within the sensorimotor,

executive control, and the primary visual networks using

fMRI [14], and motor-related altered activity in the primary

somatosensory cortex, cerebellum, dorsal premotor and posterior

parietal cortices, and occipital cortex using fMRI in another study

[15]. Using lesion network mapping, authors reported that a

positive connectivity to the cerebellum and negative connectivity

to the somatosensory cortex distinguished CD compared to

lesions causing other neurological symptoms. They concluded

that this connectivity signature was a specific marker for CD [16].

In 2019, the effect of botulinum toxin in CD at 6 months was

assessed using 3T fMRI. The authors reported altered

sensorimotor integration with involvement of the basal

ganglia, the thalamus, and the sensorimotor cortex, with a

“shift towards normal brain function” in CD patients

especially in the motor cortex and these regions [17].

In addition to CD, MEG has been used to investigate other

forms of dystonia. These studies further highlight the role of the
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sensorimotor cortex in dystonia. In their study on the effect of

successful rehabilitation on 11 subjects with Writer’s cramp and

10 controls, authors reported “normalization” of the MEG

somatosensory map of the cortex with hand representation

similar to healthy controls and significantly different from

untreated Writer’s cramp [18]. In another study on Writer’s

cramp using diffusion-weighted MRI for tractography and fMRI

during a finger tapping task, authors reported a possible aberrant

downstream influence of parietal multimodal sensory association

region on fine motor control network that could be “artificially

restored” with therapy [19]. Our MEG study of a case of

Embouchure dystonia revealed increased overall coherence in

bilateral parietal and inferior frontal lobes, with increased gamma

frequency while playing the instrument. This finding was thought

to reflect reduced intracortical inhibition and abnormal

sensorimotor processing [20]. Finally, the degree of pallido-

cerebellar coupling has been showed to inversely correlate

with motor symptom severity in idiopathic dystonia [21].

Head and neck tremor in CD

Unlike with other phenomenology, dystonia accompanied by

tremor is considered an “isolated” dystonia [22]. Tremor and

dystonia, especially of the head and neck region, are commonly

seen together [23]. Head tremor is recognized as an early

potential manifestation of CD. Such an irregular, jerky tremor

of the head and neck with a null-point may be seen as a

manifestation of acute or chronic cerebellar dysfunction

[24–27]. An anecdotal observation at the University of

Cincinnati was that CD patients with a head tremor at onset

of CD may experience difficulty with gait and balance over time.

This presentation is distinct from other CD patients who had a

more “tonic” or non-tremulous presentation.

To further delineate differences between such patients with a

tremor dominant (head tremor at onset of CD) and non-tremor

dominant CD, a multi-center effort sought to study data captured

through the Dystonia Coalition [28]. Patients with tremor dominant

CD were noted to be older, with a longer disease duration and more

likely to be female. Separately, blinded assessors rated videos of

patients with tremor dominant CD and (age, sex, and disease

duration) matched non-tremor dominant CD patients using

validated scales of dystonia and ataxia severity. Tremor dominant

CD patients had greater ataxia and milder dystonia [28].

Additionally, speech, gait, postural ataxia, and appendicular

tremor were worse in tremor dominant CD patients. The

authors concluded that CD patients with head tremor at onset

may be an “ataxic-subset” of CD, which becomes apparent after

years of progression [28]. To further explore the role of the

cerebellum in this distinct CD subset, we proceeded with a study

of eye movements to assess motor adaptation in tremor dominant

CD patients and healthy controls [29]. Disorders of the inferior olive

and its connections to the cerebellum have been implicated in

Impaired motor adaptation and resultant dysmetria [30]. We

found that tremor dominant CD patients were unable to increase

saccade gain by 25% in both fast and slow timescales thereby

suggesting a maladaptive cerebellar outflow disorder [29].

Structural imaging of the cerebellum in
cervical dystonia and tremor

With data from epidemiology and eye physiology of tremor

and dystonia indicative of a diseased cerebellum, we sought to

FIGURE 1
Representative MEG scan data from two different studies. The image on the left shows involvement of frontal and parietal regions during a
Continuous Performance Task when the subject is deciding to press a button or inhibit the desire to press a button. The image on the right represents
regions of mean coherence pre- and post-sensory trick.
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utilize structural imaging of the cerebellum to corroborate these

findings [31]. Patients with tremor dominant CD and age- and

sex-matched non-tremor dominant CD patients underwent MRI

of the brain. Additionally, patients underwent gait mapping and

assessment using validated scales. Our study found that tremor

dominant CD patients exhibited greater atrophy of the superior

vermis, greater median gait variability (a sign of a “cerebellar”

gait), and worse disability on the ataxia scale. As such, it

reiterated the role of the cerebellum in a distinct clinical

subtype of CD [31]. These data could be helpful in clinical

prognostication and clinical trial inclusion.

The cerebellum has emerged as a region of great interest in

dystonia with potential contributions to motor and non-motor

features [32]. Rapid advances in neuroimaging and

neurophysiology of the cerebellum will be key to fill our gaps

in knowledge of physiology and pathophysiology [33–35]. As the

field of cerebellar stimulation continues to mature, these data

could have a direct impact on therapeutics [36].

Non-motor aspects of dystonia

Cognition

The topic of cognition in dystonia has garnered relatively low

academic interest, in part due to it not being the primary symptom

patients present with in clinic. Cognitive assessment can be

challenging in dystonia, as can be the conclusions that may be

drawn from neuropsychological testing [37]. There are a number

of pertinent factors that may influence conclusions: age, pre-

morbid cognitive function, type of dystonia, pain, psychiatric

symptoms including anxiety, and anti-cholinergic medication

burden (not uncommonly used for treatment in dystonia).

Unlike other movement disorders, the presence of executive

dysfunction in dystonia has been debated over the years

[38–40]. Tests used to measure executive function may depend

on time to complete a task as a metric, and this may introduce a

motor confound in patients with movement disorders; [37]. Tests

may not be sensitive enough to differentiate neurodegenerative

executive dysfunction fromnormative age-related changes. Finally,

our conclusionsmay be gleaned from large epidemiological studies

where screening cognitive measures (such as Mini mental status

exam or Montreal cognitive assessment) are used to comment on

the robustness of different cognitive domains [37]. The resulting

heterogeneity of tests makes it challenging to decisively comment

on cognition in movement disorders, especially dystonia [41].

Assessing executive function in CD
using MEG

To assess executive function inCD and the effect of BoNT on the

same, we capturedMEG data on subjects with CD and age- and sex-

matched controls while they performed a continuous performance

task [42]. As a part of this task, subjects underwent 100 trials of

random letters being shown on a screen briefly for 150ms with a

1.8 s inter-stimulus interval. Whenever they saw the letter “A”

followed by the letter “X,” they were instructed to press a button

as quickly as possible. Subjects were asked to complete this task

before and after BoNT. Only those with documented robust clinical

response from prior BoNT injections were included in the study.

Compared to controls, subjects demonstrated greater number of

errors despite taking a longer time to make decision, pre-BoNT [42].

After BoNT, both the time to make decisions and number of errors

improved, albeit still worse than controls. During performance of this

task, subjects demonstrated greater coherence compared to controls

in the cortico-frontal (fronto-frontal, fronto-parietal, fronto-

temporal, fronto-striatal, fronto-occipital) pathways and the

parieto-parietal, parieto-striatal and temporo-parietal pathways.

Comparing subjects post versus pre-BoNT, the following

pathways were significantly different: fronto-parietal, fronto-

cingulate, fronto-occipital, parieto-insular and parieto-temporal

[42]. Our pilot study highlighted the impairment of attention/

executive function and associated networks in CD. It further

reiterated the role of frontal networks in attention/executive

function and the parietal lobe in selective attention/preferential

processing [43]. The mechanism of benefit seen in cognition is

unclear and was not investigated in our study. While some have

speculated a direct benefit of toxin on non-motor features including

cognition, it is likely that at least, a substantial part of the

improvement can be attributed to improvement in motor

symptoms and pain, which improves attention [44].

Sensory trick/alleviating maneuver

Sensory trick or alleviating maneuver refers to a fascinating,

characteristic feature in CD where commonly, touching a body

segment ameliorates the dystonia posture or abnormal movement

[45]. It has now been recognized as a supportive diagnostic criteria

for isolated CD [3]. It has been proposed that this maneuver acts

via influencing sensorimotor integration, by enhancing pathways

between the occipital and parietal lobes through proprioception.

Neuroimaging and sensory trick in CD

Using MEG, we studied cerebral oscillations in a patient with

CD and an effective sensory trick [42]. Four scans were collected:

resting state, with sensory trick, before BoNT, and after BoNT.

Areas in the inferior frontal, left cerebellum and left parietal were

noted to be active before sensory trick, which changed to areas in

the occipital and left temporal lobe after the sensory trick. There

was a suggestion of increase in Gamma (>25 Hz) activity with a

decrease in Alpha (8–12 Hz) activity with the sensory trick.

Moreover, change in coherence with sensory trick and BoNT
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indicated that they may share similar pathways to clinical benefit,

specifically occipital and temporal lobe [42].

Subsequently, a study sought to investigate sensory trick using

functional MRI. CD patients without a sensory trick were found to

have increased functional connectivity of sensorimotor network

relative to controls, while CD patients with an effective sensory trick

demonstrated a decrease in sensorimotor network connectivity.

Finally, imagination of the sensory trick by CD subjects showed

increased recruitment of the cerebellum bilaterally, suggesting its

role in modulating cortical activity [46]. More recently, a study of

sensory trick using EEG and EMG demonstrated alpha

desynchronization in the sensorimotor cortex and theta

desynchronization in the sensorimotor and posterior parietal

cortex with an effective sensory trick. Greater decrease in muscle

activity correlated with higher desynchronization in the alpha and

theta bands in the sensorimotor and posterior parietal areas [47].

The therapeutic effect of an effective sensory trick is well

established but is yet to be consistently harnessed as a treatment

modality. In future efforts, quantification of the therapeutic benefit

seen with sensory trick will greatly help in its study in clinical trials.

While the majority of neuroimaging studies have focused on

disorder of motor function in dystonia, it is imperative that future

efforts focus on non-motor features including clinically-relevant

ones such as anxiety [48]. Understanding these networks would

move the needle in understanding whether these are intrinsic to

dystonia or a consequence of it. As with other movement

disorders, a therapeutic approach towards motor disability that

under-estimates anxiety would likely be sub-optimal.

Localization in dystonia and the
neural integrator model

The field of neurology has traditionally been based on

localization of specific symptoms to singular brain regions.

Through neuroimaging, specific motor and non-motor

symptoms in dystonia have been localized to different regions of

the brain, albeit with some overlap. Based on afore-mentioned data,

the sensorimotor cortex has been implicated in the pathophysiology

and response to botulinum toxin. The cerebellum appears to drive

head and neck tremor in CD. The frontal lobe and its connection

with the striatum is involved with cognitive tasks. As expected from

a disorder of movement, the basal ganglia present as a culprit. In

addition, they may be the generator of anxiety though that needs

further assessment. As such, dystonia is truly a network disorder

with the strength of connectivity between regions representing the

severity of associated clinical manifestations.

An interesting hypothesis that may explain widespread

involvement of networks in CD is the neural integrator model

[49, 50]. This model has two key aspects: One, the basal ganglia,

cerebellum and neck muscles (through proprioception) provide

feedback to an integrator loop to prevent drifts in the position of

head and neck. Second, disturbance anywhere in this feedback

network may change the entire network [49, 50]. This conceptual

model would also explain how botulinum toxin (through feedback

through the neckmuscles) and stimulation of the basal ganglia can

both lead to clinical improvement in CD [49, 50].

Limitations and future directions:
gaps, pitfalls and promises

The primary limitation of literature in structural and

functional neuroimaging, including that in dystonia, is the

absence of a satisfactory sample size to adequately power

studies. As a result, false positive results are aplenty, and

replicability suffers [51]. Combining clinical data with pre-

specified regions of interest may help address this limitation.

Neuroimaging in dystonia suffers from the chicken or egg

conundrum, and cause versus effect/compensation is tough to

FIGURE 2
The “chicken or the egg” conundrum in the motor pathophysiology of dystonia. Based on neurophysiology and imaging studies, a number of
regions within the CNS have been proposed to cause dystonia. Some are non-specific to dystonia. It is unclear whether these results represent an
effect of dystonia or the pathophysiology behind the clinical manifestation of dystonia. As such, these show correlation and do not offer evidence of
causation. Three major themes have been proposed [52].
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comprehend [52] (Figure 2). An extension of this existential

question lies in studying differences in brain structure and

function in isolated dystonia versus dystonia as a manifestation

of neurological entities (such as corticobasal syndrome). As

dystonia may be initiated or worsened by voluntary action,

modalities with higher temporal resolution may help shed light

on this problem. The advent of 7-Tesla (and now, 14-Tesla)

magnets will improve visualization of smaller structures with

greater spatial resolution and reduce noise. In addition, a

possibly shorter scan time may presumably improve our study

sample size [53, 54]. We have barely scratched the surface of

appropriate application ofmachine learning in identifying patterns

of presentation, response to treatments and overcoming the

problem of a low sample size [55]. Molecular brain imaging,

not covered in this review, continues to be a promising tool to

question the neural basis of dystonia and to identify targets for

therapeutics in humans [56, 57]. Future considerations in

neuroimaging must include the effect of environment and

genetics on the study of brain organization through structural

and functional neuroimaging in dystonia [58]. An approach that

connects the dots between genes/proteins, biochemistry, structures

and networks and clinical phenotypes will perhaps be our best bet

to deconstruct this knot and take a substantial leap forward [59].
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