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Introduction

Do we all experience a phase of dystonia in our lives? Surprisingly, yes. Based on the

current classification, dystonia is defined as “a movement disorder characterized by

sustained or intermittent muscle contractions causing abnormal, often repetitive,

movements, postures, or both” [1, 2]. Based on this definition, it appears that we all

pass through a physiological dystonia phase, at least early in life [3]. Indeed, movements

typically considered dystonic (abnormal) in pediatric and adult stages [1, 4] are not

phenotypically dissimilar from those observed in healthy neonates and infants [5, 6]. For

example, newborns and infants display involuntary paroxysmal behaviors - movements

that are non-epileptic and arise from normal developmental trajectories and exploratory

motor skills (e.g., arm rotations, oral-buccal-lingual movements, biking, and pacing)

[7–10]. Standard electroencephalographic (EEG) or video-EEG recordings performed

during these neonatal movements generally do not indicate seizure activity or other

encephalopathic conditions [11–13].

Interestingly, even before birth, fetuses display dystonia-like stereotyped movements

[14]. These movements occur in a unique environment, with the fetus fully immersed in a

microgravity-like amniotic fluid environment [15]. Throughout gestation, fetal

movements interact with increasing gravitational forces, a result of fetal growth and

the gradual reduction of amniotic fluid volume [16–18]. Remarkably, these motor,

neuromuscular, and brain developmental processes are finely regulated by specific

genetic, molecular, and physiological mechanisms, many of which have only recently

begun to be understood in terms of timing and their developmental (ontogenic) and

evolutionary (phylogenic) roles [19–22].

At another end of life experiences, humans (and some animals) may spend time in

space, either for occupational or recreational purposes [23]. In these conditions - ranging

from hours to months - subjects encounter changes and adaptations in motor and non-

motor functions due to weightlessness, or microgravity, which is a state of near or

complete absence of the sensation of weight. Life on Earth, and animal life in general, has

evolved to adapt motor and non-motor behaviors in response to gravity [24, 25]. Through
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various sensory and motor adaptations, humans and land

animals maintain postural equilibrium, coordinating agonist-

antagonist muscle processing to survive [26]. This

coordination involves complex integration of visual, vestibular,

and somatosensory inputs to counteract gravity’s effects [27].

Cerebellum and gravity adaptation

Neuroanatomically, the cerebellum (CRB) is a central hub for

gravity response and adaptation, primarily due to its direct

connections with both ocular- and gravity-sensing vestibular

receptors [28]. The CRB is integral to spatial orientation and

gait regulation via the spino-cerebellum and ponto-cerebellum

systems, which are essential for motor control, coordination, and

learning, making it the main center for anti-gravity processes

[29–32]. Both on Earth and in space, dystonic movements

disrupt gravity perception, affecting posture, gait, and fine

motor coordination [33]. In space, where gravitational forces

are reduced, the vestibulocerebellar system rapidly adapts,

recalibrating its responses to accommodate the altered

gravitational environment [34]. This adaptation occurs almost

instantly, similar to the adjustment newborns make at birth when

transitioning from microgravity in the womb to Earth’s full

gravity [19, 35].

Understanding cerebellar responses to altered gravity in both

space and prenatal environments could deepen insights into

gravity-related consequences for astronauts, fetuses, infants,

and patients with dystonia [36]. Gravity shifts, such as

weightlessness, trigger neuromuscular, sensory, and vestibular

changes that may contribute to distinct syndromic features,

particularly in astronauts [37, 38]. Among these phenomena,

dystonia-like movements stand out [39–41]. Notably, though

similar dystonia-like movements appear in healthy individuals

on Earth (pre- and post-birth), in microgravity, and in patients

with dystonia, the underlying causes may differ. However,

phenotypic, pathogenetic and adaptive similarities and

differences across different dystonia-appearing phenomena

could still provide meaningful and possibly unexpected tools

for the treatment of dystonia in general or specific forms of it

[42]. For example, it is expected that hypergravity environments

exacerbate symptoms or lead to different manifestations of

muscle control challenges. Increased gravitational forces may

amplify muscle rigidity or spasms in those with dystonia. On the

other hand, for individuals with dystonia, exposure to

microgravity (like fetuses) could have therapeutic effects.

More specifically, microgravity environments tend to decrease

overall muscle tone and reduce physical resistance and

consequently, people with dystonia could ease some

symptoms related to muscle contractions and spasms.

Moreover, microgravity may offer temporary relief from the

continuous muscle firing and rigidity that characterizes

dystonia. In addition, microgravity could set changes in

neurocircuits feedback loops, and specifically in the BG-CRB

inputs since it alters proprioception and how the brain interprets

muscle feedback and so potentially modifying movement

patterns. We hypothesize that the same adaptive phenomena

are actually present in the opposite direction at the passage from

in-utero (microgravity) to extra-utero (at birth). A better

understanding of the genetic or metabolic causes and

processes of these BG-CRB mechanisms at birth could

actually provide new rehabilitative approaches for dystonia

patients in general or for those type of dystonia (isolated

dystonia) that appear physiopathological closer to the

neonatal events. Importantly, this hypothesis, while still

speculative, seems to be supported by studies using animals in

a microgravitational environment during and after pregnancy

[43, 44]. Furthermore, microgravity leads to muscle atrophy over

time, and without gravity as resistance, muscles lose strength. For

someone with dystonia, muscle weakening might temporarily

lessen spastic contractions but could also lead to long-term

challenges in muscle control. In general, microgravity effects

exploration has expanded our understanding of neurological

conditions by showing how the absence of gravity affects

motor control and muscle function [45, 46]. This knowledge

might inform treatments that mimic the effects of microgravity

to help manage dystonia symptoms on Earth, such as specialized

anti-gravity rehabilitation apparatuses.

In general, we propose that motor phenomena in space and

the womb may be more accurately linked to cerebellar

mechanisms rather than primarily to basal ganglia (BG)

dysfunction, as seen in many dystonia cases [47, 48]. In

particular, cerebellar injury in utero have been recently the

focus of various studies that have applied non-invasive

imaging techniques (i.e., MRI, ultrasound) to analyze in more

detail, especially in neuroanatomical terms, cerebellar lesions in

utero and their clinical consequences during gestation and after

birth [49]. Cerebellar injury in utero are associated to both motor

and non-motor consequences and among the motor

abnormalities alterations of fine motor skills have been

described and some of them have dystonia-like features.

Moreover, the biological and neurophysiological aspects of the

synchronization between vestibular system development and

microgravity-to-gravity passage started to offer more specific

notions about the possibility of cerebellar injury and their

consequence on the motor and vestibular system [50].

Furthermore, study of hypergravity (in animals) have shown

that hypergravity exposure during different period of gestation

deeply alter cerebellar development and Purkinje cells in

particular [51, 52]. Purkinje cells have been shown to be

affected by subtle changes in dystonia human cases [48, 53]

and specific genes have been involved in paroxysmal dystonia

episodes in mice [54]. Moreover, a study by Dooley JC [55]

described, in an animal model, how the brain develops internal

models for tracking limb movements in real-time, even without

visual cues, to avoid delays from sensory feedback. These
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investigators found that, in rats, these cerebellum-dependent

internal models begin forming by postnatal day 20 (P20),

allowing the brain to predict and mirror movements rather

than reacting to them after the fact. In particular, observing

neural activity during spontaneous limb twitches in sleep, the

study showed that only by P20 did a specific part of the thalamus

(the ventral lateral nucleus, receiving cerebellar input)

synchronize precisely with limb movement. These findings

suggest that sleep twitches help develop and refine these

internal movement models. These findings, if confirmed in

newborns or in-utero babies, would support our hypothesis

for which cerebellar-dependent internal movement modules

could be associated to normal dystonic-like movement during

normal development or if affected by different types of injury

could be actually related to prolonged dystonic-like movements

early in life and later.

The overlapping yet distinct causes of these motor

phenomena, despite genetic or environmental differences,

could illuminate previously unexplored brain mechanisms

involved in dystonia and dystonia-like movements across

various life stages. A valuable approach would be to examine

these movements for neuroanatomical, neurophysiological, and

neurotransmitter-based similarities and differences, from fetal

life to life in space (see Figure 1). To test this hypothesis one of the

possible analysis would be to systematically record (video-

ultrasound) and score in-utero vs. extra-utero “dystonia-like”

movements as related to specific cerebellar injury (vascular,

developmental, metabolic). In addition, this set of data should

be related to the specific timing and development of the

vestibular system. These types of correlations if confirmed to

be associated to an increase incidence of dystonia-like

phenomena during the first month of life and later, could be

an excellent clinicometrics tool to assess and mitigate the long-

term effect of the cerebellar-vestibular dysfunction manifesting

as a dystonic disorder. Moreover, a similar approach could be

used to study the long-term effects of microgravity in astronauts

exposed for a long period of time to a weightlessness

environment and mitigate the serious effects described after a

“quick” hypergravity change when back on Earth [56–58].

Clinically, the CRB’s role in dystonia has often been

overlooked in favor of BG involvement. However, recent

debates have increasingly recognized the CRB’s influence,

challenging the idea that dystonia is solely a BG-driven

condition [59–61]. Evidence now suggests that both BG and

CRB, along with their associated neurocircuits and

neurotransmitters, are central to dystonia’s pathogenesis [53].

Rather than one region exclusively dominating, the involvement

of BG vs. CRB appears to vary dynamically. Depending on the

dystonic disorder’s type, timing, and the specific genetic,

developmental, and environmental conditions present, either

BG or CRB dysfunction may predominate, a phenomenon

that could be termed “dynamic BG-CRB shifting.”

FIGURE 1
Physiological and Pathologic Cerebellum-Basal Ganglia Interactions from the womb to the space.
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Direct synaptic connections between
cerebellum and basal ganglia: a
game-changer

One of the most transformative breakthroughs in the

cerebellum (CRB) and basal ganglia (BG) debate has been the

recent discovery of direct disynaptic connections between the

CRB and BG in non-human primates - a finding that is likely

applicable to humans as well [62]. For decades, it was widely

believed that the CRB and BG operated in isolation, with no

direct connectivity. This assumption led researchers to attribute

many “cerebellar” phenomena, such as the resting tremor seen in

Parkinson’s disease (PD), exclusively to BG dysfunction. The

recent neuroanatomical discovery of these connections has

prompted a reevaluation of the pathophysiological

mechanisms underlying various movement disorders,

including PD and dystonia.

The disynaptic connection between the CRB and BG -

mediated through the thalamus - holds significant

physiological and pathophysiological implications. Through

this pathway, the CRB sends signals to the BG, which

influence both motor planning and execution. This

connection may help to synchronize the CRB’s role in

movement coordination with the BG’s role in movement

initiation and control. Furthermore, the CRB influences the

subthalamic nucleus, a central structure within the BG. This

connection enables the CRB to indirectly modulate BG circuits

involved in movement control, including those that are altered

in dystonia.

Adding to this complexity, the CRB appears to have a notable

role in dopaminergic modulation, which is increasingly

recognized as a key factor in movement disorders. Research

suggests that the dopaminergic system within the cerebellum

may also regulate vestibular circuits, adding another layer of

influence on balance and motor stability [63]. Although further

research is needed to determine how these dopaminergic

pathways specifically relate to dystonic symptoms, this new

understanding of the CRB’s neuroanatomy and neurochemical

connections is already reshaping our understanding of motor

abnormalities. These findings underscore the need for a

paradigm shift in the study and treatment of primary

dystonia. No longer can we view dystonia solely through a

BG-centered lens; rather, we must adopt a dynamic BG-CRB

model that recognizes the interplay between these two regions

[64]. This broader perspective opens new avenues for

understanding and addressing dystonia’s complex

symptomatology.

Does white matter matter?

Recent advancements in neuroimaging have spurred interest

in white matter (WM) alterations as a critical factor in dystonia

research. Subtle but pathophysiologically significant WM

changes have been documented across various forms of

dystonia, underscoring the potential role of WM integrity in

motor dysfunction [65–69]. Intriguingly, MRI scans of

astronauts returning from extended space missions also reveal

unique WM changes, likely due to the effects of prolonged

weightlessness on motor control [39, 58, 70]. These findings

highlight the adaptability of the cerebellum-basal ganglia (CRB-

BG) circuit and suggest that neuroplasticity - especially involving

WM changes - may play a significant role in dystonia’s

development and manifestations. Indeed, WM changes have

been observed in dystonia patients and even in response to

targeted peripheral treatments, such as botulinum toxin

injections for cervical dystonia [71].

Emerging research increasingly implicates cerebellar WM in

dystonia, suggesting a larger-than-expected role for the cerebellum

in this disorder.WM in the cerebellum comprisesmyelinated axons

that connect it to the basal ganglia, motor cortex, and brainstem,

facilitating complex motor coordination and communication.

Alterations within these WM pathways - whether structural or

metabolic - could be critical to the abnormal muscle contractions

and motor control issues typical of dystonia. Diffusion tensor

imaging (DTI), which assesses WM microstructure, has

identified altered WM integrity in dystonia patients, particularly

affecting pathways like the cerebello-thalamo-cortical circuit, which

links the cerebellum to the thalamus and cortex. Disruptions in this

pathway impair the cerebellum’s ability to relay precise timing and

coordination signals, contributing to the disordered motor output

characteristic of dystonia.

Further, WM disruptions within the CRB-BG circuit affect

connectivity between the cerebellum and basal ganglia, skewing

the balance between motor initiation (a BG function) and motor

coordination (a CRB function). This imbalance may contribute to

dystonia’s hallmark symptoms: disorganized movement timing,

abnormal muscle contractions, and postural irregularities.

Additionally, the cerebellum’s involvement extends beyond

mere coordination to encompass sensorimotor integration,

which is essential for refining movement through sensory

feedback. WM alterations interfere with this sensory processing,

leading to proprioceptive challenges and decreased movement

accuracy - effects that closely resemble those reported by

astronauts and likely mirror the sensory experiences of

neonates during the first days of life outside the womb. In fact,

imaging studies in neonates, including preterm infants, reveal that

WM integrity is closely linked to motor development and could

predict dystonia-like motor abnormalities [72, 73].

These findings underscore the importance of WM integrity

within the BG-CRB framework, validating WM as a key factor in

both typical and pathological motor processes. By focusing on

WM changes within this framework, we may open new avenues

for personalized treatments in dystonia and improve our

understanding of motor adaptation under unique

physiological conditions.
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Discussion and future perspectives

This opinion article explores dystonia and dystonia-like

disorders through the lens of recent pathophysiological

findings in both dystonia patients and individuals in unique

environments - such as the womb and space. We advocate for a

new Cerebellum-Basal Ganglia (CRB-BG) paradigm to advance

our understanding of dystonic phenomena. This approach is

poised to benefit from emerging technologies andmethodologies,

including advanced neuroimaging, omics, telemedicine,

neuroanatomy, and neuropathology, in both human and

animal models.

We propose examining this CRB-BG paradigm across three

distinct environments: the womb, Earth, and space. This

“environmental triad” offers a comprehensive framework for

studying dystonic phenomena within physiological states (e.g.,

the floating fetus), pathological states (e.g., generalized dystonia),

and paraphysiological states (e.g., human beings in

microgravity). By exploring these varied environments, we

aim to improve personalized treatment strategies for dystonia

patients and address the motor control challenges that long-term

space travel may pose.
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