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T helper type 2 signatures in atopic dermatitis
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Abstract

T helper type 2 (Th2)‐derived cytokines, such as IL‐4, IL‐13, and IL‐31, play a funda-

mental role in the development and progression of atopic dermatitis (AD). In addi-

tion to gene mutations of filaggrin (FLG), the Th2‐deviated microenvironment

downregulates FLG expression and disrupts barrier function, resulting in Staphylo-

coccus aureus colonization and increased penetration of external allergens. From

lesional AD skin, the Th2 milieu helps to release Th2‐related chemokines such as

CCL17, CCL22, and CCL26, which augment recruitment of Th2 cells and eosino-

phils. IL‐4 and IL‐13 stimulate B cells to produce IgE that links AD to other atopic

comorbidities. IL‐31 is the major pruritogenic cytokine in AD. Notably, the anti–IL‐4
receptor α antibody dupilumab and the anti–IL‐31 receptor A antibody nemolizumab

have proven to be effective for treatment of AD. In the present review, Th2 signa-

tures in AD are examined and overviewed.
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1 | INTRODUCTION

Atopic dermatitis (AD) is a common, chronic or chronically relapsing,

severely pruritic, eczematous skin disease that markedly deteriorates

quality of life of the afflicted patients.1–4 Clinical symptoms and

signs of AD are characterized by skin inflammation, xerosis, and itch-

ing.1,5,6 Severe pruritus induces sleep disturbance in AD patients and

their caregivers.7–9 The itch‐sleepless circuit may increase attention‐
deficit/hyperactivity disorder in children as well as in adults with

AD.8,9 Their stress levels are also very high.10

Atopic dermatitis is more frequent in childhood, especially in the

first five years of life.11,12 The prevalence or incidence of AD in the

first five years of childhood is 10%‐16.5% and is generally consid-

ered to be increasing worldwide, at least from the 1980s to early

2000s.13–15 Most pediatric AD cases are mild‐to‐moderate in sever-

ity, with 84% of cases considered mild, 14% moderate, and only 2%

severe.13 The number of patients with adult AD (over 40 years of

age) has decreased rapidly,14,16 but the occurrence of AD in senile

or elderly patients is also currently an important issue.17

Atopic dermatitis is composed of heterogeneous pathophysiolog-

ical groups regarding onset, persistence, genetics, seasonality, and

IgE sensitization.1,2,11,18–21 Eighty percent of childhood AD does not

persist past eight years, but most patients remit by adulthood.11,22,23

Less than 5% of childhood AD persists for 20 years after diagnosis.11

Moreover, children who developed AD in the first two years of life

have significantly lower risk of persistent disease than those who

developed AD later in childhood or adolescence.11 Children with

moderate‐to‐severe AD at age 9‐16 months are more likely to have

persistent AD 6‐12 years later compared to those with mild dis-

ease.24 Fifty percent of subjects have at least one six‐month symp-

tom‐/treatment‐free period, but symptoms frequently recur until

20 years of age.25 Therefore, AD is a lifelong illness.

As monozygotic twins have a higher co‐occurrence of AD than

dizygotic twins,26 genetic factors are decisive in the development of

AD. At least 31 gene loci have been identified as being associated

with AD by genome‐wide association studies.18,27 Most of the gene

loci such as filaggrin (FLG), OVOL1, and IL13 are ancestry‐indepen-
dent, but NLRP10 and CCDC80 are Japanese‐specific loci.18 The
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strongest risk factors are null mutations of FLG gene, resulting in

epidermal barrier deficiency.18,27 In accordance, FLG expression

levels have been reported to be reduced in lesional and nonlesional

skin in AD patients.28–30 Ichthyosis vulgaris is also known to be

caused by a loss‐of‐function mutation of the FLG gene.31 This may

explain why AD is significantly comorbid with ichthyosis vul-

garis.32,33 Children with FLG mutations were more likely to have

persistent AD.25 However, FLG mutations are not found in all AD

patients, and they are less common in southern Europeans34 and are

even absent in some African countries.35,36 A humid atmosphere

may reduce the contribution of FLG mutations to the onset of AD.37

These studies reiterate the genetic heterogeneity of AD.

2 | TH2 DEVIATION IN ATOPIC
DERMATITIS

Compiling evidence has shown that acute AD lesions have a signifi-

cantly greater number of T helper 2 (Th2) cells expressing inter-

leukin‐4 (IL‐4) and IL‐13 compared with normal skin or unaffected

AD skin (Figure 1).38,39 The Th2‐deviated immune response is

demonstrated both in pediatric and adult AD40–42 and is more pro-

nounced in chronic lesions than in acute lesions.40,43 In addition to

Th2 deviation, IL‐22 produced by Th22 cells is also linked to the

chronicity and amplification of atopic inflammation.41,43,44 The

pathogenic importance of IL‐4/IL‐13 and IL‐22 signaling in AD has

recently been demonstrated by the successful improvement in skin

inflammation in patients with AD upon treatment with the specific

anti–IL‐4 receptor α antibody dupilumab and the anti–IL‐22 antibody

fezakinumab45,46 Although a potential role for the IL‐17–producing
Th17 cells has been proposed in AD,47,48 conflicting results have

been reported.49,50

Despite a low phylogenetic homology of the IL‐31 gene in mam-

mals, administration of IL‐31 causes an itch response in rodents,

dogs, and cynomolgus monkeys.51 IL‐31 transgenic mice demon-

strate continuous scratching behaviors and AD‐like skin lesions.52 IL‐
31 is preferentially expressed by Th2 cells after activation.52,53 The

expression of IL‐31 is amplified in lesional skin and peripheral blood

lymphocytes in AD compared with healthy controls.51,54,55 The anti-

canine IL‐31 antibody (lokivetmab) significantly reduces scratching in

dogs with canine AD.56 More importantly, antihuman IL‐31 receptor

A antibody nemolizumab also reduces pruritus and sleep disturbance

in patients with moderate‐to‐severe AD.57

3 | SKIN BARRIER DISRUPTION BY TH2
CYTOKINES

Skin barrier maturation is accomplished by sequential and coordi-

nated expression of various terminal differentiation proteins such as

FLG and loricrin (LOR) (Figure 1).58 In addition to the loss‐of‐function
mutations of FLG,18,59 Th2‐derived IL‐4 and IL‐13 inhibit FLG and

LOR expression (Figure 1).29,30 IL‐22 and IL‐31 also downregulate

FLG and LOR expression.60,61 Therefore, the Th2‐ and Th22‐polar-
ized inflammatory milieus in AD interfere with coordinated epidermal

differentiation and maturation and exacerbate barrier dysfunction.

The barrier dysfunction is associated with atopic dry skin, increased

penetration of allergens, and enhanced Staphylococcus aureus colo-

nization.62

In line with this notion, topical steroids significantly improve clin-

ical inflammatory signs and normalize transepidermal water loss in

lesional AD skin because of the upregulation of FLG and LOR

expression.63 These improvements are associated with the downreg-

ulation of the Th2 signatures such as IL‐13 and IL‐31.63 OVOL1 is

an upstream transcription factor for FLG and LOR expression29,64

and is one of the susceptibility genes for AD.18 IL‐4 is known to

inhibit the activation of OVOL1 by interfering with its cytoplasmic

to nuclear translocation.29,65
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F IGURE 1 Simplified pathogenesis of atopic dermatitis (AD). Skin
barrier dysfunction caused by genetic mutations of filaggrin (FLG)
and Th2/Th22‐deviated cytokines induces atopic dry skin,
accelerates penetration of allergens, and increases colonization of
Staphylococcus aureus. Skin barrier dysfunction and T helper type 2
(Th2)‐skewed allergic inflammation mutually exacerbate each other.
In response to IL‐4 and IL‐13, B cells produce high amounts of IgE
and cutaneous resident and infiltrated cells release Th2‐related
chemokines such as CCL17, CCL22, and CCL26. Th2 cells also
release IL‐31, which stimulates sensory nerves and evokes the itch
sensation leading to mechanical scratching and exacerbation of
barrier dysfunction
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Coal tar and soybean tar were historically used for the treatment

of AD.30,66 Both agents are potent activators for the aryl hydrocar-

bon receptor (AHR), which is abundantly expressed in epidermal ker-

atinocytes.30,66,67 Notably, AHR is an upstream transcription factor

for OVOL1/FLG and OVOL1/LOR signaling.29,64,65 For example, soy-

bean tar, Glyteer, activates AHR, which induces nuclear translocation

of OVOL1 and upregulation of FLG and LOR expression.29,64,65 AHR

activation by soybean tar restores the inhibitory action of IL‐4 on

FLG expression.29,65,66 In addition, recent clinical trials have revealed

that a natural AHR agonist, tapinarof, improves AD skin lesions

when used topically.68,69

4 | CHEMOKINES IN ATOPIC DERMATITIS

In parallel with the pivotal participation of Th2/Th22 cells, the upreg-

ulation of chemokines and chemokine receptors is also an integral

component of atopic inflammation, that is, CCL1, CCL4, CCL13,

CCL17, CCL18, CCL20, CCL22, CCL26, CXCL1, CXCL2, CXCL3,

CXCL8, CXCL9, CXCL10, CCR1, and CCR7 (Figure 1).70–73 Among

them, CCL17, CCL22, and CCL26 are key Th2‐related chemokines.

Serum levels of CCL17 and CCL22 are elevated in patients with AD

compared to healthy controls and are associated with disease sever-

ity.74–76 Topical steroids are effective in normalizing the levels of

CCL17 and CCL22.63,77,78 Notably, serum TARC levels are inversely

correlated with corneal water content not only in mild AD patients

but also in healthy controls.79 Dendritic cells, especially Langerhans

cells, are one of the major sources of CCL17 and CCL22 production

upon IL‐4 stimulation.80–82 CCL17 and CCL22 are potent attractants

for CCR4‐expressing Th2 cells.83,84 Increased CCL17 is also evident

in AD‐like mouse models.85

Normal pregnancy is associated with Th2 skewing of the immune

system. This is most pronounced at the maternal‐fetal interface and

affords protection to the “semi‐allogeneic” fetus.86–88 This Th2 bias

persists in the neonates and infants, and it is likely to promote onset

of infantile atopic diseases such as AD and food allergies.86,89,90

Consistent with this notion, the levels of CCL17 and CCL22 are

highest in neonates and then decrease over the course of the fol-

lowing two years.91–93 Umbilical cord blood CCL22 levels were posi-

tively associated with IgE sensitization at age 2.94 Cord blood levels

of CCL17 from neonates destined to develop AD in infancy are

higher than those from neonates who show no signs of AD during

infancy. Moreover, high umbilical cord serum levels of CCL17 are

associated with infantile AD development in neonates born to moth-

ers without AD.95 Serum levels of CCL17 are higher in childhood

AD patients with egg allergy than those without egg allergy.73,96

CCL26 is also a Th2‐associated chemokine, which potently

attracts eosinophils.97 Levels of CCL26 are elevated in the sera and

lesional skins of patients with AD and are correlated with their dis-

ease activity.98 Notably, administration of dupilumab significantly

diminishes the lesional expression of CCL26 as well as CCL17 and

CCL22 in AD.99

5 | IGE IN ATOPIC DERMATITIS

The definition of “atopy” is a diathesis to overproduce IgE anti-

bodies or to have a personal and/or family history of asthma,

allergic rhinitis, allergic conjunctivitis, and AD.6 With the help of

Th2 cytokines, activated B cells undergo IgE production (Fig-

ure 1).100 Diverse activation and differentiation of multiple B cell

subsets are indeed reported in AD, with a significant correlation

with circulating IgE levels, but not in psoriasis or normal con-

trols.101 Approximately 80% of AD patients exhibit elevated levels

of serum IgE.19 In contrast to normo‐IgE and nonallergic intrinsic

AD patients, extrinsic AD patients with hyper IgE levels are asso-

ciated with increased disease severity,102 mutations in the FLG

gene,20 and impaired skin barrier function.102,103 Some IgE anti-

bodies are known to be reactive to autoantigens such as α‐nas-
cent polypeptide‐associated complex.104,105 In accordance,

autoimmune diseases involving skin and intestinal mucosa are fre-

quently associated with AD.106,107

Consistent with the preponderant Th2 deviation in early child-

hood AD (Czarnowicki, Esaki),40,41 elevated levels of total or allergen

specific IgE are noted in infantile and early childhood AD.71,73,108

Cord blood IgE levels are apparently associated with onset of food

allergies in infants.109 IgE levels specific for ovomucoid, wheat, and

mite allergens are correlated with serum levels of the Th2‐related
chemokines CCL17 and CCL22 in childhood AD.71,73,110 The skin

barrier dysfunction with FLG mutation and increased S. aureus colo-

nization contribute to disease progression and aberrant IgE produc-

tion in AD.20,111,112

6 | CONCLUSION

T helper type 2 deviation appears to affect immune function and

epidermal barrier integrity in AD by forming an IL‐4/IL‐13–domi-

nant milieu. Moreover, it induces atopic itch because of IL‐31,
which is preferentially released by Th2 cells.51,53 Itch‐induced
scratching is a cardinal factor in the exacerbation of AD.113 In

parallel, recent clinical trials have revealed that blockade of IL‐4/IL‐
13 signaling by anti–IL‐4 receptor α antibody dupilumab signifi-

cantly improves atopic inflammation.45,114 In addition, the anti–IL‐
31 receptor A antibody nemolizumab successfully resolves atopic

itch.57,115 Despite the safety and the considerable effectiveness of

these biologics, there still exists high and low responders. This

fact reiterates the heterogeneity of AD. Search for relevant

biomarkers that dictate treatment response is warranted for these

targeted biologic therapies.
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