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ABSTRACT - Anemia is a common complication of chronic kidney disease (CKD), and its prevalence has shown 
a tendency to increase in many countries. Anemia is associated with incident heart failure and increases mortality 
in CKD patients, garnering public attention. Here, we reviewed recent studies about CKD with anemia, and tried 
to summarize the risks and causes and new progress in the treatment of renal anemia. Among the risks and causes, 
calcium and phosphorus metabolism disorders should be pointed out along with common causes such as iron and 
erythropoietin deficiencies, hypoxia, inflammation and uremic toxins, and so on. The new anti-anemia treatments 
mainly include hematopoietic materials supplementation, erythropoietin-stimulating agents, calcium and 
phosphorus regulators and hypoxia-inducible factor prolyl hydroxylase inhibitors. 
_________________________________________________________________________________________ 
 
INTRODUCTION 
 
Renal anemia is a common and significant 
complication of chronic kidney disease (CKD), and 
has a high prevalence in many countries [1-4]. The 
2012 KDIGO Clinical Practice guidelines suggest that 
anemia be defined as a hemoglobin level less than 130 
g/L in males or 120 g/L in females over 15 years old 
[5]. Renal anemia is not independently associated with 
the baseline cognitive function or a decline in CKD 
[6], but is strongly associated with a rapid decline in 
the estimated glomerular filtration rate (eGFR) [7]. It 
is also an independent risk factor for incident heart 
failure [8], and of all-cause mortality in CKD patients 
[9]. The recommended target level of hemoglobin is 
115 - 130 g/L in adult CKD patients [5]. However, 
treatments for anemia also carry risks.  

In this review, we summarize the causes of anemia 
in patients with CKD (Figure 1) and recent therapeutic 
regimens, trying to provide useful information for 
nephrologists about current and emerging drugs in the 
treatment of renal anemia. 

 
RISKS AND CAUSES 
 
Hematopoietic material deficiencies 
Blood loss tends to result in iron deficiency because 
of the edematous gastrointestinal tract and 
hemodialysis. 

Iron deficiency is the most commonly 
encountered reversible cause of anemia or worsening 
anemia in CKD patients [10]. It is believed that 
transferrin saturation, serum hepcidin and plasma 

neutrophil gelatinase-associated lipocalin were 
associated with renal anemia [11, 12]. This hypothesis 
explains that Helicobacter pylori (HP) infection may 
influence iron stores, but no significant effect on iron 
deficiency anemia is observed in HD patients with or 
without HP infection [13]. 

In end-stage renal disease (ESRD) patients on 
maintenance dialysis, folate deficiency, which 
manifests as megalocytic anemia, occurs mainly 
because of inadequate intake, rather than dialysis-
related loss or increased requirements during 
recombinant human erythropoietin (rhEPO) treatment. 
Folic acid supplementation was found to benefit 
hyporesponsiveness to rhEPO in elderly HD patients 
with folic acid deficiency anemia [14]. 

 
Calcium and phosphate abnormalities 
In advanced non-dialysis-dependent CKD (NDD-
CKD) patients, circulating levels of calcium and 
phosphorus are strongly associated with anemia [15], 
and not coincidentally, 25(OH)D3 has been reported to 
be correlated with ESRD [16]. Parathyroid hormone 
(PTH) has a direct toxic effect on EPO, and beyond 
that, it can cause aggravation of anemia via 
myelofibrosis. Brancaccio et al found that erythrocyte 
hematocrit levels could be increased after parathyroid 
resection in uremic patients [17]. 
___________________________________________ 
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Figure 1. The potential causes of anemia in patients with chronic kidney disease 

 

 
Phosphate plays a vital role in cellular energy 

metabolism, cell proliferation and nucleic acid 
synthesis. Calcium and phosphorus are absorbed in the 
intestinal tract and excreted by the intestine and kidney. 
Calcium phosphate is a component of bones, and is 
formed by coupling calcium and phosphorus in the 
body. Normally, the concentration of the product of 
plasma calcium and phosphorus is 35-40 mg/100 ml. 
When the product increases, bone formation is 
promoted, and calcium phosphate can even can be 
found in soft tissues, or specifically, in arteriosclerotic 
vascular diseases, when the product increases up to 70 
mg/100 ml. Conversely, the absorption of bones will 

be accelerated, calcification will be inhibited, and 
finally osteochondrosis will ultimately occur when the 
product is reduced. The product of calcium and 
phosphorus can be influenced by 1,25-(OH)2D3, PTH, 
and calcitonin. 25-(OH)D3 is activated into 1,25-
(OH)2D3, and the latter can promote the absorption of 
calcium and phosphorus and inhibit the secretion of 
PTH, by 1α- hydroxylase in the kidney. PTH can 
stimulate the activation of 1,25-(OH)2D3, raise the 
calcium levels and promote phosphorus excretion, 
while calcitonin inhibits the activation of 1,25-
(OH)2D3 and absorption of calcium and phosphorus. 
During ESRD, the kidney is severely damaged, 
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resulting in a significant reduction in the level of 1,25-
(OH)2D3, unrecoverable abnormal concentrations of 
calcium and phosphorus and increased PTH levels, 
which leads to secondary hyperparathyroidism [18]. 
In a study among a large diverse population, higher 
serum phosphorus levels, which may influence 
hematopoiesis, should probably be blamed for anemia 
in early CKD or with normal kidney function [19]. 
Elevation of fibroblast growth factor 23 (FGF23), 
which is known as the major phosphate regulatory 
hormone, is also associated with a decline in 
hemoglobin over time and the development of anemia 
in CKD patients [20]. FGF23 levels are negatively 
related to hemoglobin levels during stage 3 or 4 of 
CKD, which may be partially mediated through the 
effects of aldosterone [21].  

Interestingly, FGF23 seems ambiguously related 
to iron deficiency. In renal transplant recipients, the 
levels of C-terminal FGF-23 have been found to be 
increased in the presence of iron deficiency, and the 
state of iron deficiency can promote the production 
and cleavage of intact FGF23 into C-terminal FGF23 
[22]. There is reason to believe that iron deficiency 
may be involved in dysregulation of the intracellular 
FGF23-processing mechanism, but whether iron 
supplementation impacts the level of FGF23 is still 
controversial. A prospective study observed that oral 
ferric citrate hydrate could decrease serum intact 
FGF23 and C-terminal FGF23 levels and increase 
intact serum PTH levels, but with phosphate and 
1,25(OH)2D were unchanged in HD patients [23]. 
Another study showed that iron supplementation 
failed to affect the intact and C-terminal FGF23 
(i:cFGF23) ratios in CKD patients [24]. In NDD-CKD 
patients with normophosphatemia and ID, treatment 
with ferric citrate hydrate decreased PTH levels rather 
than serum FGF23 levels [25]. 

The reduction in 1,25-(OH)2D3 leads to a 
weakened inhibitory effect on aluminum deposition 
which can combine with phosphorus but at the same 
time, inhibit bone formation and bone mineralization, 
leading to aluminum-related bone disease [18]. 
Though there has been continuous improvement of 
hemodialysis systems and advances in phosphate-
binding medications, aluminum toxicity, should be 
considered with daily supplies such as aluminum 
utensils for cooking in HD patients [26]. 

 
Erythropoietin deficiency 
Erythropoietin deficiency is largely responsible for 
renal anemia. Under normal circumstances, renal 
erythropoietin-producing (REP) cells which act as 

sensors to increase EPO secretion by sensing the 
oxygen drop, are located in the marginal medullary 
area of the renal cortex. During the development of 
CKD, REP cells stop producing EPO, dedifferentiate 
and participate in renal fibrosis [27], and renal fibrosis 
will impact EPO production in turn.  
 
Hypoxia inducible factor (HIF) pathway 
HIFs regulate the gene expression to promote the 
body's adaptation to hypoxia, which is signal for 
angiogenesis, erythrogenesis and glycolysis [28], and 
specifically, the expression of the EPO gene in the 
kidney via the PHD2-HIF-2α pathway [29]. Under 
hypoxic conditions, HIF-2 regulates EPO synthesis in 
the kidney and liver, thus stimulating erythrogenesis 
[30]. Characterized as fibroblasts, pericytes and 
neurons, REP cells may have correlative functions. It 
is premised that REP cells could function as neurons, 
integrating the information on blood oxygen 
concentration and local oxygen consumption from 
sensing tissue pO2, and thereby regulate EPO 
secretion [27]. Additionally, HIFs activate a set of 
genes involved in ferric absorption and transport, 
increasing the intestinal iron uptake, promoting iron 
transport to tissues, and downregulating hepcidin [31]. 
 
Inflammation 
Anemia and inflammation are common in peritoneal 
dialysis (PD) patients, and anemia is suggested to 
correlate with inflammation in PD patients [32]. 
However, another study showed no association 
between blood cell life span and inflammatory 
biomarkers, such as interleukins-6,18,and 10 and 
high-sensitivity C-reactive protein [33]. 

 
Uremic toxins 
Red blood cell life span is positively correlated with 
levels of uric acid and blood urea nitrogen [33] and 
CKD progression [34]. In CKD stage 3/4 or HD 
patients, uremic toxins increase erythrophagocytosis 
by increasing eryptosis and promoting a 
proinflammatory monocyte phenotype [35]. In 
addition, the numbers of CD55- and CD59-deficient 
red blood cells are significantly higher in CKD 
patients than in controls [36], though the red blood 
cells are usually positive in paroxysmal nocturnal 
hemoglobinuria. As a natural inhibitor of pluripotent 
hematopoietic stem cell proliferation, N-acetyl-seryl-
aspartyl-lysyl-proline accumulates due to CKD, 
which ultimately leads to anemia [37]. Controversially, 
uremic toxin concentrations, such as indole 3-acetic 
acid, paracresyl sulfate and indoxyl sulfate, are 
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detected, showing no association with anemia 
parameters in HD patients [38]. 
 
Other causes and risks 
In addition to the abovementioned factors, an 
unavoidable cause of anemia is chronic blood loss, 
including hemorrhaging trends and blood residue in 
dialyzers during hemodialysis. A cohort study 
identified a number of independent risk factors for 
anemia, such as CKD stage, body mass index, 
smoking, leukocyte count, serum albumin, 
phosphorus concentration, calcium, and iron markers 
[39]. In addition, albuminuria is observed as one of the 
significant risk factors for eGFR [9], which 
is inextricably linked with renal anemia. In NDD-
CKD patients, blood manganese levels are positively 
associated with Hb levels as well [40]. Serum 
adiponectin, an adipokine secreted by adipocytes, is 
considered to be associated with anemia development 
in CKD. A higher serum adiponectin level is reported 
to be independently associated with a low hemoglobin 
level [41]. 
 
TREATMENT 
 
While transfusion is not favorable, treatment with 
antianemia medications, although well accepted, 
nevertheless comes with risk in HD patients with 
anemia [42]. It is important to maintain stable 
antianemic drug concentrations for erythron response 
in dialysis patients and monitor the fluctuations in 
concentration, as the high variability of anti-anemic 
drugs will lead to a less successful erythron response 
[43]. Recent anti-anemia therapies are summarized as 
follows. 

 
Hematopoietic material supplementation therapy 
Oral iron supplementation via ferrous citrate iron is 
well-tolerated and efficient in IDA and CKD patients, 
regardless of NDD-CKD or hemodialysis-dependent 
CKD (HDD-CKD) [25, 44]. However, the optimal 
administration route and frequency of drug application 
are still being determined. It was reported that only 
21.6% of anemic patients achieved an increase in Hb 
of at least 1 g/dL via oral iron administration [45], 
while intravenous iron therapy may be an alternative 
for nonresponders using oral iron therapy [46]. Kalra 
et al hold the opinion that intravenous iron therapy is 
well tolerated and more efficacious than oral iron to 
increase Hb levels [47]. It is believed that intravenous 
iron therapy is not only effective and tolerated, but 
also helpful for lowering erythropoietin-stimulating 

agents (ESA) doses [48]. Ishida et al considered that 
intravenous iron can be administered for bacterial 
infection in HDD-CKD patients, although this 
treatment is deprecated by anemia guidelines for CKD 
[49]. In contrast, others think that risks of serious 
adverse events, including infectious diseases and 
cardiovascular events, are relatively increased in 
NDD-CKD patients on intravenous iron therapy [50]. 
The liver iron concentration was reported to be 
elevated during standard intravenous iron 
supplementation in HDD-CKD patients [51]. 
Concerning the issue of frequency of ESA application, 
intermittent intravenous iron administration is more 
highly recommended than continuous administration 
for stable antianemia efficacy in patients on 
maintenance hemodialysis [52]. Hepcidin is the key 
regulator of iron homeostasis. Hepcidin-25 was 
considered a significant predictor of 
erythrocytopoiesis response after intravenous iron 
therapy in CKD patients [53], while an RCT showed 
that neither the baseline level nor the change in 
hepcidin was able to predict response to iron therapy 
in NDD-CKD patients [54]. 

Folic acid and vitamin B12 deficiencies are 
important causes of anemia; however, 
supplementation with vitamins seems unessential for 
improving anemia but is associated with delaying the 
progression of CKD and reducing cardiovascular 
risks in CKD patients [14, 55, 56]. 

 
Calcium and phosphorus metabolism regulation 
Cinacalcet, a drug used in the treatment of 
hyperparathroidism secondary to CKD, suggests an 
additional benefit in the management of anemia in 
HDD-CKD patients [57] via PTH pathways [58]. Iron-
based phosphate binders, represented by sucroferric 
oxyhydroxide and ferric citrate, are gradually 
emerging. In HDD-CKD patients who were receiving 
antihyperphosphatemic drugs with poor 
dephosphorizing effects, the administration of 
sucroferric oxyhydroxide had lower serum 
phosphorus and FGF-23 levels and a higher 
hemoglobin concentration compared to those without 
sucroferric oxyhydroxide treatment [59]. There were 
441 patients on dialysis who were randomly assigned 
to two groups, with one group treated with ferric 
citrate and the other treated with sevelamer, calcium 
acetate or both. Over 52 weeks, no significant 
difference was seen in the mean serum phosphorus 
level, but increased mean hemoglobin levels and red 
blood cell mean cell volume were statistically 
significant in the ferric citrate group. Then, the ferric 
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citrate group was sequentially rerandomized into two 
groups, a ferric citrate group and a placebo group. 
After 1 month of treatment, the ferric citrate group 
presented a lower mean serum phosphorus level than 
the placebo group. A conclusion was drawn that ferric 
citrate could decrease serum phosphorus as well as 
improve anemia [60]. In NDD-CKD patients, ferric 
citrate is also effective in reducing FGF23 and 
improving renal anemia [61]. Currently, sucroferric 
oxyhydroxide and ferric citrate have been approved 
for marketing in the United States. 

 
Erythropoietin stimulating agents (ESAs) 
ESAs may have renoprotective effects and slow the 
progression of CKD [62]. Long-acting ESAs tend to 
be more effective and stable than short-acting ESAs in 
treating anemia [63], and a fixed dose of long-acting 
ESAs at a higher frequency can improve appetite, 
reduce inflammation and correct anemia in patients on 
hemodialysis [64]. For predialysis patients with CKD, 
long-acting ESAs may be more useful, because of the 
lower frequency of hospital visits [65]. Darbepoetin, a 
newer ESA with a longer half-life than rhEPO, split 
into "mini-doses", or fixed small doses, and used at a 
frequency of twice-monthly or once a month is 
effective in CKD patients [66, 67]. Individualized 
dosing of ESAs through a computer-designed dosing 
system, can facilitate improvement in Hb levels, 
decrease Hb variability and reduce the dose of ESAs 
required to achieve target [68]. Subcutaneous epoetin 
is associated with a lower dose of ESAs and lower 
risks of death and hospitalization than intravenous 
administration in HD patients [69]. 

The Hb level usually fluctuates widely in ESA-
treated HDD-CKD patients, which fortunately, has 
been reported to have no significant impact on 
mortality and hospitalization rates [70]. ESAs have 
similar anemic control in patients either with or 
without transplantation owing to chronic ESA 
rejection, though those with transplantation were 
supposed to have a more severe  anemic state 
because of immunosuppression [71]. In a randomized, 
placebo-controlled trial with a 2-year follow-up, the 
renal function of patients with moderate CKD or with 
previous kidney transplantation was observed to be 
stable in the absence of low-dose ESAs, and early low-
dose ESA therapy showed no significant effect on the 
amelioration of proteinuria [72]. Nakhoul et al 
reviewed the complicated and conflicting evidence on 
the treatment of renal anemia and held that ESAs 
should be individually prescribed according to 
the severity of anemia or stages of CKD to reduce the 

risk of cardiovascular events [73]. The initiation of 
ESA therapy is suggested when Hb levels decrease to 
10 - 11 g/dL in nondialysis CKD patients [74, 75].  

The 2012 KDIGO clinical guidelines practice 
claims that the recommended target level of 
hemoglobin is 115 - 130 g/L in adult CKD patients. 
Higher Hb levels have been found to be associated 
with higher mortality in CKD patients, and higher 
ESA doses are accompanied by a 1.2-1.5-fold 
increased risk of mortality [76]. A prospective cohort 
study showed that ESA hyporesponsiveness is 
associated with an increased risk of all-cause mortality 
in patients treated with HD [77]. ESA 
hyporesponsiveness may be related to the interaction 
between ESAs and statins [78], ACE gene 
polymorphism [79] and inhibition of erythropoietin 
receptor expression [80], which accounts for 
increasing doses of ESAs, and finally sets up a 
vicious circle of worsening responsiveness. Higher 
ESA doses resulted in higher mortality. Thus, the 
safety of high doses of ESAs has been questioned. An 
estimated EPO dose of 66.5 IU/kg/wk was suggested 
for each 1 g/dL Hb level below the target, and the 
feasible maintenance dose was 8000 IU/wk among 
HD patients [81]. Adequate dosages of iron 
preparations and ESA were suggested to be helpful in 
preventing cardio- and cerebrovascular events [82], 
and lower than normal doses (150 - 300IU) were more 
appropriate when Hb levels were greater than 11 g/dl 
[83]. A study found that iron supplementation 
maintaining serum ferritin levels between 500 and 
1200 ng/ml might help improve erythropoietin 
reactivity [84]. The standard 
dose remains inconclusive. V-J combinations of T-cell 
receptors have been reported to be helpful in 
predicting EPO responses in ESRD patients [85]. 
Erythropoietin-resistant anemia is associated with 
cardiovascular events in ESRD patients. As shown in 
a longitudinal study, inflammatory state, low serum 
iron reserve, continuous usage of ARBs and poor 
nutritional status are related risks in epoetin α 
resistance in HD patients [86]. Higher doses of rhEPO 
are required in ESRD patients with increased serum 
IL-17 and IFN-γ levels [87]. C-reactive protein is a 
determining factor of ESA resistance in HD patients 
[88]. The platelet/lymphocyte ratio can be used as a 
predictive value in HD patients with erythropoietin 
resistance [89].  
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Hypoxia inducible factor prolyl hydroxylase 
inhibitor (HIF-PHI) 
HIF-PHIs are an emerging drug class in the treatment 
of anemia with CKD. As a HIF stabilizer, HIF-PHIs 
simulate the hypoxic state of the body, increase 
endogenous EPO levels and coordinate iron utilization 
[90]. Vadadustat, roxadustat and daprodustat are 
representatives HIF-PHIs, and they have entered into 
clinical trials. All of them seem effective and safe, and 
have potential in the treatment of anemia with CKD in 
both NDD-CKD and HDD-CKD patients [91-99]. 
However, in our previous meta-analysis, HIF-PHIs 
were only effective in NDD-CKD patients [100]. 
Because of their connection with TGF-β and VEGF, 
the issue of whether HIF-PHIs cause renal fibrosis 
remains unknown. HIF-PHIs are a topic of 
considerable interest in the treatment of renal anemia, 
but their safety and tolerability should be assessed 
cautiously [101, 102]. 
Other treatments 
L-carnitine may help increase hemoglobin and reduce 
erythropoietin usage by its antioxidant and anti-
inflammatory effects [103]. Endoscopy is 
recommended for the early identification of 
gastrointestinal lesions, particularly adenomatous 
polyps and colorectal cancer, which may have an 
effect on anemia in CKD patients [104]. Excluding the 
disadvantage of albumin removal, a more permeable 
dialysis membrane is suggested for its potential 
impact on ESA resistance in HD patients [105]. Renal 
outcomes were independent of the patient/registered 
nurse ratio [106]. 

 
CONCLUSION 
 
In conclusion, anemia is a common, mortality-related 
and increasing complication of CKD. CKD stage, 
body mass index, smoking, leukocyte count, serum 
albumin, phosphorus concentration, calcium, and low 
25-(OH)D3 and 1,25-(OH)2D3 levels are thought to be 
independent risk factors of renal anemia. 
Hematopoietic material deficiency, calcium and 
phosphorus metabolism disorder, EPO deficiency, 
hypoxia, inflammation and uremic toxins may be 
involved in the mechanism or progression of anemia 
in CKD. Correction of anemia conditions can lower 
mortality and hospital admission rates. Antianemia 
drugs mainly include hematopoietic material 
supplementation, ESAs, calcium and phosphorus 
regulators, and HIF-PHIs. However, much remains 
unknown and controversial. The treatment of renal 
anemia still has a long way to go. 
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