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ABSTRACT -- Purpose: In the latest revision of the guideline for evaluation of bioequivalence (BE), 

European regulators introduced the requirement for using subjects as fixed factors in the underlying statistical 

models, even in replicate and semi-replicate studies. The implication was that estimates of within-subject 

variability were derived with a linear model rather than with a mixed model based on restricted maximum 

likelihood (REML). While REML-based methods are generally thought to give rise to less biased estimates of 

variance components, there have been no studies that compared the quality of REML-based estimates and 

estimates derived via linear models. Methods: A publication by Endrenyi and Tothfalusi from 1999 described 

simulations in a fashion that is useful for testing the European Medicines Agency’s (EMA) requirement.  This 

study defines 7 scenarios within which 10,000 individual 2-sequence, 2-treatment, 4-period trials are simulated 

and makes a comparison of the quality of estimates. Results: It is concluded that estimates based on REML 

are closer to the true values than estimates based on linear models, but significant differences are only shown 

in two of the seven scenarios tested.  REML-based estimators have less variability. Both types of estimates 

appear negatively biased and will therefore decrease the width of the acceptance range.  

 

INTRODUCTION 

 

With the regulatory requirement “Fixed effects, 

rather than random effects, should be used for all 

terms” European regulators in 2010 effectively 

phased out the use of mixed models for evaluation 

of bioequivalence data (1). The topic was subject 

to some debate as it had been common to use mixed 

models with subject specified as random effects for 

replicate and partially replicate trials. The practice 

of specifying subjects as a random factor is still a 

prevailing principle in other areas of science, as 

agreed even by the regulators (2,3).  

 In practice it means that BE data must fit 

within a normal linear model using treatment, 

subject, period, and sequence as fixed factors (1,3); 

this gives effect estimates for treatment, which in 

turn can be used to determine the test: reference 

ratio (point estimate).  The model can then be 

represented as follows (4): 𝑌𝑖𝑗𝑘 = 𝜇 + 𝑆𝑖𝑘 +

𝑃𝑗 + 𝐹𝑗𝑘 + 𝑄𝑘 + 𝑒𝑖𝑗𝑘  (Equation I) where, Yijk is 

the log-transformed metric of interest (Cmax or 

area under the concentration-time curve) for the i'th 

subject, measured in the j’th period, and who was 

randomized into the k’th treatment sequence, 

where µ is the intercept, Sik is the fixed subject 

effect for the i’t subject (who is assigned to the k’th 

sequence), Pj is the fixed period effect for the j’th 

period, Fjk is the fixed formulation effect for period 

j of the k’th sequence, and Qk is the fixed sequence 

effect of the for the k’th sequence. 

 For the common fully-replicate trial designs 

where subjects are randomized into two treatment 

sequences (“TRTR” and “RTRT” which define the 

order of administration of Test (T) and Reference 

(R) treatments)   to derive an estimate for the intra-

subject variability for the reference treatment 

(𝜎𝑊𝑅
2 ), data for the test treatment is removed, and 

a normal linear model is used on the remaining data 

with subject, period and sequence as fixed factors; 

the residual variability is taken as an estimate of 

𝜎𝑊𝑅
2 . From the effect estimates and estimate of 

𝜎𝑊𝑅
2  the confidence interval for the test:reference 

ratio can be derived. The acceptance range 

conditionally scales with the magnitude of the 

estimate of 𝜎𝑊𝑅
2 . Throughout this work, sigma 

subscripts “w” denotes “within”, subscript “b” 

denotes “between”, “T” refers to the test treatment, 

“R” refers to the reference treatment. 𝜎𝑊𝑅
2  is thus 

the intra- (“within”) subject variance associated 

with the reference treatment, and so forth. See 

Medicines Evaluation Board (5), for an example of 

how it may work in practice. 

 EU regulators did not present arguments for 

their proposal, and at the time of introduction they 

expressed that their approach is straightforward to 

calculate. Laird and Ware (6) mentioned that 

estimates of variance components are less biased 
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with REML than with ordinary maximum 

likelihood, much accounting for the popularity 

mixed models with REML have later enjoyed. 

Yet, nothing is really known about actual 

observational bias, if any, associated with the 

bioequivalence approaches for replicated studies. 

Interestingly, the late Prof. Endrenyi and his 

colleague Laszlo Tothfalusi published a paper in 

1999 (7) where a simulation approach was used to 

define datasets and evaluate the quality of 

resulting estimates arising out of REML fits.  

Specifically, their paper looked into estimation of 

the subject-by-formulation interaction. This 

quantity is defined as: 𝜎𝐷
2 = 𝜎𝐵𝑅

2 + 𝜎𝐵𝑇
2 − 2𝑐𝑜𝑣𝑇𝑅 

(Equation II). The methodology used in their 

publication seems to provide a convenient way to 

simulate studies for the purpose of evaluating 

EMA’s requirement which has never been tested. 

Therefore, given EMA’s preference for models 

with all factors fixed, and given the importance of 

estimates of 𝜎𝑊𝑅
2 for the assessment of 

bioequivalence, and given the absence of papers 

dealing with the quality of estimates arising from 

REML versus the mandatory linear model in EU, 

this paper tries to apply Endrenyi and Tothfalusi’s 

simulation approach to answer the following main 

question: Is there an observable/quantifiable bias 

on estimates on 𝜎𝑊𝑅
2  when a normal linear model 

is used, and if there is, is the bias more or less 

pronounced than when REML is used (in which 

case one can  specify Sik of Equation I as random 

rather than fixed)? In addition, the paper will 

present evidence regarding the bias on estimates 

of 𝜎𝐷
2. Descriptive statistics and graphing will be 

used. Under the European guideline (1), the 

acceptance limits are defined as follows: a. The 

(lower, upper) limits are 80.00% - 125.00% when 

the estimate of 𝜎𝑊𝑅
2  corresponds to a CV no more 

than 30%, and where the relationship between 𝜎𝑊𝑅
2  

and CV is:   

𝐶𝑉 = √(𝑒𝑥𝑝(𝜎2̂) − 1)  (Equation III), b. The 

(lower, upper) limits are 69.84%-143.19% when 

the estimate of 𝜎𝑊𝑅
2  corresponds to a CV above 

50%, and c. When the estimate of 𝜎𝑊𝑅
2  

corresponds to a CV between 30% and 50% then 

the limits are: 𝑙𝑖𝑚𝑖𝑡𝑠 = 𝑒𝑥𝑝(±.760𝜎𝑊𝑅^ ) 
(Equation IV) 

 In order to quantify evaluate any practical 

implications of the difference in estimate bias, a 

quantity called P’x is defined as follows: P’x is the 

probability that REML provides a better estimate 

of the 𝜎𝑊𝑅
2  than the linear model and that the 

difference in the two estimates translate into a 

difference of more than x on the upper acceptance 

limit, as calculated through the application of 

Equations II and III. P’x will be used to discuss the 

extent to which the choice of estimation method is 

of practical relevance using levels of x being 0.01, 

0.02 and 0.05. P’x is an attempt at quantifying the 

practical importance of the difference between 

using the estimate from the linear model rather than 

the estimate from REML. A P of 0.01 is the 

probability that REML provides a better estimate 

which makes the confidence interval one 

percentage unit narrower. As this paper is the first 

of its kind, no alternative or better way of 

quantifying it exists, to the best of the author’s 

knowledge. 

 

MATERIALS AND METHODS 

 

Scenarios  

7 scenarios were simulated as depicted in Table 1. 

These were all based on dataset I which was 

released as supplementary material to the guideline 

of 2010 (1) that introduced the requirement for all 

fixed effects. The dataset is, in my experience, 

quite representative of the real-life data as it 

displays somewhat different variance components 

for Test and Reference (within as well as between). 

The within-subject variance for the Reference is 

estimated to be about 0.2025, corresponding to an 

intra-CV of roughly 47%. The dataset has a point 

estimate of about 1.157. Scenario 1 is a balanced 

simulation of datasets with these variance 

components and the original point estimate of 

dataset I. 

 Scenario 2 is a simulation of the same data 

but where the covariance of T and R has been 

adjusted so that the subject-by-formulation 

variance is 0.3 (=twice the critical level debated by 

Endrenyi and Tothfalusi (7)). In Scenario 2 ideas 

similar to those used by Endrenyi and Tothfalusi (7) 

have been used to produce a simulation with σ2
D 

=0.3 which is twice the level that has been 

proposed as a reasonable threshold for the presence 

of a subject by formulation interaction. 

 Scenario 3 and scenario 4 are identical to 

scenario 1 and scenario 2 except the point estimate 

is 1.432 which is the maximum upper scaled 

acceptance limit in EU. 

 Scenarios 5 and 6 are identical to scenario 1 

and scenario 2, except the point estimate was 

simulated at a value of 1. 

 In the paper by Endrenyi and Tothfalusi (7) a 

radical idea was used: in each of a series of 

simulations they varied but with somewhat more -

subjectively- relevant values for Test and 

Reference. Endrenyi and Tothfalusi used a random 

uniform between 0.02 and 0.5 to define 𝜎𝑊𝑅
2 =

𝜎𝐵𝑅
2 = 𝜎𝑊𝑇

2 = 𝜎𝐵𝑇
2  and simulated a point estimate  
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Table 1. Scenarios for simulations in this paper. 

 

Scenario σ2
WR, σ2

BR, σ2
WT, σ2

BT, covTR  GMR Remark 

1 0.2025, 0.7272, 0.1175, 0.6861, 

0.7067 

1.157 These are the original values estimated from EMA dataset I 

2 0.2025, 0.7272, 0.1175, 0.6861, 

0.5567 

1.157 These are the variances from EMA dataset I but with the 

covariance of R and T adjusted so that the subject by 

formulation interaction is 0.3. This corresponds to a Pearson 

correlation of rho ~ 0.78 

3 0.2025, 0.7272, 0.1175, 0.6861, 

0.7067 

1.432 These are the original variance and covariance estimates 

from EMA dataset I but the GMR is the upper scaled limit in 

EU. 

4 0.2025, 0.7272, 0.1175, 0.6861, 

0.5567 

1.432 These are the original variance estimates from EMA dataset 

I, where the covariance is adjusted so that the subject by 

formulation interaction is 0.3 and the GMR is the upper 

scaled limit in EU. 

5 0.2025, 0.7272, 0.1175, 0.6861, 

0.7067 

1.000 These are the original variance and covariance estimates 

from EMA dataset I and where the GMR corresponds to a 

perfect match. 

6 0.2025, 0.7272, 0.1175, 0.6861, 

0.5567 

1.000 These are the original variance estimates from EMA dataset 

I, where the covariance is adjusted so that the subject by 

formulation interaction is 0.3 and where the GMR 

corresponds to a perfect match. 

7 variable, variable, variable, variable, 

variable 

variable Subject-by-formulation interaction maintained at 0.3. See 

material and methods for details on the selection of variance 

components. 

 

of 1.0 every time without a subject-by-formulation 

interaction. It is in my experience not at all 

common to see estimates of within-variances of a 

magnitude close to estimates of between-variances. 

Between-variances tend to be somewhat higher 

than within-variances. Trying to execute 

simulations based on their idea, an additional 

scenario was defined (scenario 7), but using 

putatively more realistic figures for the variance 

components, a naïve form of rejection sampling 

was employed where five individual and 

independent variance components were generated 

such that: a.  σ2
BR was a uniform random deviate 

between 0.08 and 1.60, corresponding to a 

between-CV of between 29% and 200% (29% to 

about 200% corresponds to levels of between-

subject variances that I have seen), and b.  σ2
BT was 

a uniform random deviate between 0.08 and 1.60, 

corresponding to a between-CV of between 29% 

and 200%, and c. σ2
WR was a uniform random 

deviate between 0.0036 (CV =6%, the lowest I 

have seen) and the minimum of σ2
BR and σ

2
BT, and 

d. σ2
WT was a uniform random deviate between 

0.0036 and the minimum of σ2
BR and σ

2
BT, and e.  

covTR
 was derived from Equation II so that the σ2

D 

was 0.3, and e. The Pearson correlation coefficient 

ρ was kept between -1 and 1. The relation between 

the correlation and the covariance is: 𝑐𝑜𝑣𝑇𝑅 =

𝜌𝜎𝐵𝑅𝜎𝐵𝑇    (Equation V) , where ρ (Pearson 

correlation) assumes values between -1 (perfect 

negative correlation of test and reference) and 1 

(perfect positive correlation). It is emphasized that 

the primary purpose of scenario 7 (or this 

submission in general) is not to make inference per 

se about the quality of estimates of σ2
D but this data 

is nevertheless available as a result of the 

simulations and are discussed. Scenario 7 provides 

a way to assess quality of estimates of the within-

subject variability under circumstances when 

neither the GMR (geometric mean ratio) nor the 

individual variance components are fixed, and this 

is the purpose of the scenario. 

 

Simulations  

For each scenario 10,000 studies of the 2-treatment, 

2-sequence, 4-period design were simulated, each 

with a balanced sample size of N=24 (a fairly 

common sample size). The simulations were done 

in the statistical language R, version 3.4.1 running 

under Windows 10. The choice of 10000 trial 

simulations per scenario reflected what is 

computationally feasible to accomplish in a 

reasonable time-frame.  The Multivariate Normal 

and t Distributions package (mvtnorm) was used to 

generate pseudo-random variates from 

multidimensional normal distributions with the 
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desired levels of intra- and between-subject 

variances and covariances. The log-likehood 

function was optimized using the profile method as 

described by Gurka (8). The profile method was 

preferred as it involves inversion of much smaller 

matrices which may have positive implications for 

numerical stability. The Nelder-Mead algorithm 

was selected as the optimizer of choice (9) after 

testing of the available options in the optim 

function and the library of optimizers in the nlminb 

package. From the tested optimizers only the 

Nelder-Mead algorithm was able to consistently 

converge, so this optimizer was used throughout. A 

relative tolerance of 10-9 was applied. 

 The covariance matrices were defined 

directly from the variances and co-variances, from 

the estimates of which ρ and the subject-by-

formulation interaction can be directly derived (an 

alternative, giving the same result, but 

parameterized differently is to use ρσBTσBR rather 

than the covariance explicitly, and then the 

covariance would be inferred from the resulting 

estimate of ρ) via equation V.  

From the REML fit, fixed effects and random 

effects were extracted. The same datasets were 

fitted with normal linear models ad modum EMA 

and the fixed and random effects were recorded. In 

the following, the term bias denotes the difference 

between observed levels and the simulated (true) 

level. The point estimate, or PE, is the estimate of 

GMR.  

 

RESULTS 

 

Table 2 shows the general performance of the 

mixed model and the linear model as descriptive 

statistics for estimates of 𝜎𝑊𝑅
2 , 𝜎𝐷

2 , and point 

estimates; the table is based on the 10,000 

simulations of scenario 1. 

 First of all, Table 2 shows a tendency of the 

mixed model to give better estimates of 𝜎𝑊𝑅
2  than 

the linear model; this can be seen by comparison of 

figures for medians or means and this observation 

holds regardless of whether there is a subject-by-

formulation interaction (scenario 2, 4, and 6) or 

none (scenario 1, 3, and 5), and it is dependent on 

the magnitude of the GMR. 

 For scenarios 4 and 6 there is statistically 

significant differences in variance estimates 

between the two method (p<0.05, F-test) while for 

the other scenarios p>0.05. Figure 1 shows a 

histogram of 𝜎𝑊𝑅,𝑅𝐸𝑀𝐿
2 − 𝜎𝑊𝑅

2  and Figure 2 

shows a corresponding histogram associated with 

the linear model. Both histograms are visually 

asymmetric, so the fair comparison of estimated 

bias should be based on the medians. Apart from 

yielding slightly better median estimates, Table 2 

also shows that the mixed model is associated with 

a somewhat less variable estimate, cf. e.g., the span 

of the 10th to 90ieth percentile, or the difference 

between maximum and minimum.  

 

 

Figure 1. Histogram of 𝜎𝑊𝑅,𝑅𝐸𝑀𝐿
2 − 𝜎𝑊𝑅

2  on basis of 

data from scenario 1. Positive values are cases of over-

estimation of the variance, negative values are cases of 

under-estimation. The median is 0.1965, and the mean 

is 0.2023 cf. Table 2. 

 

 

Figure 2. Histogram of 𝜎𝑊𝑅,𝐿𝑖𝑛.𝑚𝑜𝑑𝑒𝑙
2 − 𝜎𝑊𝑅

2  on 

basis of data from scenario 1. Positive values are cases 

of over estimation of the variance, negative values are 

cases of under-estimation. The median is 0.1958, and 

the mean is 0.2024 cf. Table 2. 

 

 Figure 3 shows a plot of 𝜎𝑊𝑅,𝐿𝑖𝑛.𝑚𝑜𝑑𝑒𝑙
2  

against 𝜎𝑊𝑅,𝑅𝐸𝑀𝐿
2  (left), and the corresponding 

Bland-Altman plot (right). The solid black line is 

the line of identity; the plot on the left shows the 

degree of agreement between the two estimates. A 

linear regression gives r2~0.96. It is noted that 

points that are farthest from the line of identity 
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Table 2. Descriptive statistics for  𝜎WR,REML
2

, 𝜎WR,Lin.model
2

, 𝜎𝐷
2 and point estimates obtained for scenarios 1-6  

 

Metric Scenario Mean Median SD Min Max Q10 Q90 

𝜎WR,REML
2

 

1 0.2023 0.1965 0.0599 0.0460 0.4996 0.1308 0.2812 

2 0.2036 0.1982 0.0605 0.0471 0.5415 0.1306 0.2841 

3 0.2014 0.1949 0.0606 0.0525 0.5269 0.1286 0.2824 

4 0.2022 0.1968 0.0596 0.0490 0.4703 0.1297 0.2808 

5 0.2025 0.1961 0.0609 0.0481 0.4911 0.1297 0.2849 

6 0.2027 0.1968 0.0603 0.0468 0.4903 0.1295 0.2843 

𝜎WR,Lin.model
2

 

1 0.2024 0.1958 0.0610 0.0471 0.4931 0.1295 0.2823 

2 0.2036 0.1975 0.0614 0.0476 0.5166 0.1295 0.2841 

3 0.2013 0.1946 0.0615 0.0513 0.5629 0.1272 0.2832 

4 0.2023 0.1965 0.0607 0.0485 0.4736 0.1286 0.2815 

5 0.2024 0.1959 0.0617 0.0486 0.4827 0.1292 0.2853 

6 0.2027 0.1967 0.0615 0.0481 0.5182 0.1287 0.2851 

PE 

1 1.1611 1.1575 0.0955 0.8195 1.5882 1.0414 1.2856 

2 1.1637 1.1556 0.1602 0.6555 1.8263 0.9656 1.3745 

3 1.4369 1.4316 0.1168 1.0482 1.9063 1.2896 1.5881 

4 1.4456 1.4319 0.2023 0.8651 2.3490 1.1980 1.7122 

5 1.0034 1.0009 0.0818 0.7215 1.4449 0.9016 1.1104 

6 1.0112 1.0018 0.1415 0.6346 1.7259 0.8351 1.1979 

𝜎𝐷
2

 

1 -0.0004 -0.0023 0.0592 -0.2218 0.2827 -0.0736 0.0752 

2 0.2995 0.2878 0.1420 -0.0800 0.9756 0.1248 0.4864 

3 0.0001 -0.0025 0.0594 -0.2115 0.2413 -0.0727 0.0772 

4 0.3009 0.2885 0.1434 -0.1150 1.0735 0.1283 0.4905 

5 0.0003 -0.0016 0.0597 -0.2237 0.2906 -0.0743 0.0772 

6 0.2986 0.2845 0.1435 -0.0761 0.9878 0.1258 0.4910 

Point estimates are identical for REML and the linear model in all cases. Across all these scenarios the true value of 𝜎WR
2

 

was 0.2025. See materials and methods for details on geometric mean ratios and 𝜎𝐷
2. SD: Standard deviation (of a sample); 

Q10=10th percentile; Q90=90ieth percentile; PE=point estimate (=estimate of the test: reference ratio). 

 

 

 

 

 

Figure 3. 𝜎WR,Lin.model
2

plotted against 𝜎WR,REML
2

 (left, line of identity shown in black) and the corresponding Bland-

Altman plot of the two quantities (right). Data from scenario 1. There is a generally good correlation; differences tend to 

get larger as the estimates get bigger. All points stem from simulations with the true level being 0.2025, see Table 1. 
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fall on the lower side of it. The interpretation of the 

Bland-Altman plot is that differences are smaller 

when the estimates themselves are smaller.  

 Point estimates are identical for REML and 

the linear model in these simulations. This will be 

the case when data has no imbalance, but it will be 

a future objective to evaluate outcomes when data 

is imbalanced w.r.t. sequences or when data has 

missing periods. Figure 4 shows a histogram of PE-

GMR based on scenario 1.  

 

 
Figure 4. Histogram of PE-GMR (point estimate of 

GMR minus true GMR) on basis of data from scenario 

1. Positive values are cases of over-estimation, negative 

values are cases of under-estimation. Note that since 

these simulations are balanced w.r.t. sequences, and 

have no missing values, the point estimate will be 

exactly the same for the linear model and for the mixed 

model (but the individual treatment effects will clearly 

not be the same).  

 

 Table 1 suggest the absence of a positive bias 

on the estimates of subject-by-formulation 

interactions derived via Equation I. Note that a few 

of the estimates are slightly negative; this anomaly 

is simply because of the unconstrained optimizer 

and a result of the iterative process continuing with 

adaptations in all five variance components 

individually until the convergence criterion is met. 

Figure 5 shows a histogram of 𝜎𝐷
2 − 𝜎𝐷

2 from 

scenario 2, where σ2
D is 0.3. It is remarkable to 

observe this as it is not quite in agreement with the 

observations of Endrenyi and Tothfalusi (7). The 

same is observed when scenario 7 is evaluated. 

Figure 6 illustrates  𝜎𝐷
2 − 𝜎𝐷

2from this scenario.  

 The median estimate of σ2
D is 0.2858 and the 

mean is 0.2990. It is impossible for me, on the basis 

of observations made, to make a claim for σ2
D being 

generally over-estimated. It may indeed be a little 

under-estimated, at least the results presented here 

suggest so.  

 

 

Figure 5. Histogram of 𝜎𝐷
2 − 𝜎𝐷

2 on basis of data from 

scenario 2. Positive values are cases of over-estimation 

of the subject-by-formulation interaction, negative 

values are cases of under-estimation.  

 

 

Figure 6. Histogram of𝜎𝐷
2 − 𝜎𝐷

2 on basis of data from 

scenario 7. There appears to be no visible case for 

claiming the presence of a bias on the estimation of the 

magnitude of subject-by-formulation interactions. The 

median is -0.0143 and the mean is -0.0010. 

 

 Table 3 shows the descriptive statistics for 

scenario 7. Note that since variances are variable 

for all trials within this scenario it does not make 

sense to present the estimates of the variance’s 

components, rather the table presents how different 

the estimates of the variance components are from 
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the true values. It is observed that with variable 

within- and between-variances and variable point 

estimates (and in the presence of the subject-by-

formulation interaction), REML-based estimates 

are still marginally better than estimates based on 

the linear model, and as for scenarios 1-6 the 

REML-based estimates have less variability than 

those based on the linear model. 

 Table 4 shows P’0.01, P’0.02, and P’0.05 for the 

results obtained for scenario 1. The chance that 

REML provides a better estimate (closer to the 

simulated value) of 𝜎𝑊𝑅
2   than the linear model and 

that the difference in terms of upper acceptance 

limit amount to at least 1% is 11.14%. Results for 

scenarios 2-6 are similar (not shown). 
Table 4. Probabilities (P’x) that REML provides a 

better estimate than the linear model and that the 

resulting difference in upper acceptance limit amounts 

to x=1% or more, x=2% or more or x=5% or more.  

 

x P’x 

0.01 0.1114 

0.02 0.0365 

0.05 0.0031 

Figures are from data simulated under scenario 1. 
 

Table 3. Descriptive statistics for scenario 7   

Metric Mean Median SD Min Max Q10 Q90 

𝜎𝑊𝑅,𝑅𝐸𝑀𝐿
2 − 𝜎𝑊𝑅

2  0.0010 -0.0025 0.1261 -0.7815 1.1371 -0.1223 0.1238 

𝜎𝑊𝑅,𝐿𝑖𝑛.𝑚𝑜𝑑𝑒𝑙
2

− 𝜎𝑊𝑅
2  

0.0008 -0.0026 0.1274 -0.8186 1.2366 -0.1220 0.1243 

𝜎𝐷
2 − 𝜎𝐷

2 -0.0010 -0.0143 0.2216 -1.4958 1.5048 -0.2481 0.2610 

SD: Standard deviation (of a sample); Q10=10th percentile; Q90=90ieth percentile. 

DISCUSSION 

 

The largest deviation of the estimates of 𝜎𝑊𝑅
2  from 

the true value were seen in scenario 3. For products 

for which the true variance components are 

reflected by this scenario, the scaled limits would 

be 71.50%-139.87% when the median 

𝜎𝑊𝑅,𝑙𝑖𝑛.𝑚𝑜𝑑𝑒𝑙
2  is plugged into equation III. The 

scaled limits would be 71.52%-139.83% with the 

median 𝜎𝑊𝑅,𝑅𝐸𝑀𝐿
2  and they would be 71.04%-

140.78% if the estimate corresponded to the true 

value. Therefore, the use of the linear model does 

decrease power for any given sample size, as 

compared to an alternative when we could input the 

true value or the REML estimate for the calculation 

of the scaled limits. The slight under-estimation of 

the width of the acceptance window will translate 

directly into only the sponsor’s risk, not the 

patient’s risk. The generated data cannot infer 

anything quantitatively about the degree by which 

the type I error is affected, but it would be a future 

relevant simulation study to examine the effect of 

bias on that property. It should be noted, though, 

that a statistically significant difference in variance 

estimates was only observed for scenarios 4 and 6, 

and only weakly so (p<0.05). Thus, in terms of the 

F-test produced by these studies we cannot say that 

the variances beyond a reasonable doubt differ 

generally. 

 The practical importance may be judged by 

the figures in Table 4; for scenario 1 there is a 11.14% 

chance that REML gives a better estimate of  𝜎𝑊𝑅
2  

than the linear model does and that this difference 

translates into a difference in the upper acceptance 

limit of 0.01 or more. There is a 3.65% chance that 

it translates into a difference of 0.02 or more. There 

is a 0.31% chance that it translates into a difference 

of 0.05 or more. Due to the numbers in table 4 and, 

due to the fact that variance estimates are not 

significantly different in 5 of 7 scenarios, and only 

at p<0.05 for two of those scenarios, I see no reason 

to conclude that the two approaches are 

meaningfully different. 

 The simulations undertaken by Endrenyi and 

Tothfalusi (7) showed over-estimation of the 

subject-by-formulation interaction, this 

phenomenon is absent here. There are 

methodological differences between the present 

approach to quantifying the phenomenon and theirs, 

notably apart from using equal variance levels 

within and between subjects for the simulations 

they did use a mode complex model matrix for the 

fixed effects as they applied a period-by-sequence-

in treatment interaction (See also Hauck et al. (10) 

for a discussion of technical aspects of the 

estimation approaches and optimizer constraints). 

At any rate, the discussion of bias on the observed 

subject-by-formulation interaction is not of huge 

practical importance anymore. What is important 

in relation to subject-by-formulation interaction, 

however, is that Endrenyi and Tothfalusi (7) noted 

a relationship between the magnitude of its 
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estimate and the magnitude of 𝜎𝑊𝑅
2 (and an 

estimate of it). A causative relationship was not 

investigated, in the sense that their paper did not 

conclude if changes in the magnitude of 𝜎𝑊𝑅
2  

causes changes in the estimate of 𝜎𝐷
2 or vice versa. 

If the observation of Endrenyi and Tothfalusi was 

more general, i.e., if the estimate of one variance 

components when fit with REML could be 

generally biased due to the magnitude of another 

variance component, then the quality of any 

estimator could suffer. The simulations here 

suggest that this isn’t the apparent case, at least not 

to any appreciable degree.  

 

CONCLUSIONS 

 

The results presented give rise to the following 

conclusions: 1. Estimates of 𝜎𝑊𝑅
2   obtained with 

the linear model correlate well with estimates 

obtained through REML (r2~0.96, linear 

regression). 2. REML generally gives marginally 

better and less variable estimates of 𝜎𝑊𝑅
2  than the 

linear model, but there is only a significant 

difference (p<0.05) in estimates for two of the 

seven scenarios. In these trials the observed levels 

are slightly below the (true) simulated values. 3. 

Estimates of 𝜎𝑊𝑅
2   appear quite independent of the 

subject-by-formulation interaction, regardless of 

whether REML or a linear model is used. 4. The 

subject-by-formulation interaction σ2
D does not 

appear to be over-estimated with REML. 
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