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Worldwide, the prevalence of obesity and diabetes have increased, with heart

disease being their leading cause of death. Traditionally, the management of

obesity and diabetes has focused mainly on weight reduction and controlling

high blood glucose. Unfortunately, despite these efforts, poor medication

management predisposes these patients to heart failure. One instigator for

the development of heart failure is how cardiac tissue utilizes different sources

of fuel for energy. In this regard, the heart switches from using various

substrates, to predominantly using fatty acids (FA). This transformation to

using FA as an exclusive source of energy is helpful in the initial stages of

the disease. However, over the progression of diabetes this has grave end

results. This is because toxic by-products are produced by overuse of FA, which

weaken heart function (heart disease). Lipoprotein lipase (LPL) is responsible for

regulating FA delivery to the heart, and its function during diabetes has not been

completely revealed. In this review, themechanisms bywhich LPL regulates fuel

utilization by the heart in control conditions and following diabetes will be

discussed in an attempt to identify new targets for therapeutic intervention.

Currently, as treatment options to directly target diabetic heart disease are

scarce, research on LPL may assist in drug development that exclusively targets

fuel utilization by the heart and lipid accumulation in macrophages to help

delay, prevent, or treat cardiac failure, and provide long-term management of

this condition during diabetes.
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Introduction

Continuous beating is a distinctive feature of the heart. As such, cardiomyocytes,

which are responsible for this heart contraction, have a high requirement for energy and

acquire it from several sources like fatty acids (FA) and glucose in addition to amino acids,

lactate and ketones. Among these, the majority of ATP produced in the heart is made

from glucose and FA through mitochondrial metabolism, with FA being the favored

substrate. The heart is unable to synthesize FA and obtains it from other sources. These

include a) release from adipose tissue triglyceride (TG) stores, b) endogenous TG within

lipid droplets in the heart, and c) breakdown of circulating TG-rich lipoproteins to FA by
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lipoprotein lipase (LPL) positioned at the endothelial cell (EC)

surface of the coronary lumen. Of these, LPL-mediated

breakdown of lipoproteins is suggested to be a major source

of FA for cardiac energy generation. This review will cover the

participation of LPL in FA delivery to the heart (for generation of

energy) and adipose tissue (for storage as TG), and the

consequences of its tissue mismanagement following diabetes.

Specifically, we will focus on LPL function and dysfunction, and

its contribution towards the development of both atherosclerosis

and cardiomyopathy. It is hoped that by understanding LPL

regulation and modification following diabetes, we can advance

the clinical management of diabetic heart disease as it relates to

FA metabolism.

Cardiac lipoprotein lipase—preamble

The breakdown of circulating TG in lipoproteins by LPL occurs

in the vascular lumen. However, endothelial cells (EC) that line the

lumen are incapable of producing LPL [1–3]. Using the heart (where

LPL can be examined at different sites), it has been documented that

this enzyme is made in cardiomyocytes before it is moved to the

coronary lumen. Thus, immunogold labeling of LPL confirmed that

in the heart, about 80% of LPL is present in cardiomyocytes, 18% is

located at the capillary EC, and the remaining amount is located in

the interstitial space (Figure 1) [4]. Related to its synthesis in

cardiomyocytes, LPL has been reported to be produced as a

monomer (inactive) in the endoplasmic reticulum. Enzyme

activation follows dimerization, with subsequent cellular secretion

[5, 6]. Recent evidence has suggested that monomeric LPL also

shows enzyme activity [7]. Following its synthesis, there are two

proteins that are important for LPL maturation (folding) and

transport; lipase maturation factor and suppressor of lin-12-like

protein 1 [8]. Intracellular vesicles then store LPL bound to

syndecan-1 [9]. Vesicular movement to the cell surface permits

LPL secretion onto heparan sulphate proteoglycan (HSPG) binding

sites on the outer surface of cardiomyocytes [10]. Attachment of the

positively charged LPL toHSPG ismade possible by ionic binding to

FIGURE 1
Role of LPL beyond its lipolytic action. LPL has traditionally been known to facilitate lipoprotein hydrolysis to release FA. This action of LPL
normally occurs at the endothelial lining of the vasculature following the translocation of LPL from subjacent parenchymal cells to the apical side of
endothelial cells. Posttranslationally, LPL activity can be regulated by a number of mechanisms including APOC3, ANGPTLs and insulin. On the other
hand, in macrophages, the action of LPL is mainly to promote remnant cholesterol uptake, foam cell formation and plaque development in
arteries. This bridging function of LPL in SMCs, especially synthetic cells thatmake up the plaque,may also contribute towards lipoprotein uptake and
foam cell formation.
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the heparan sulfate (HS) side chains that is negatively charged.

Location of LPL at this site serves as a rapidly accessible pool for the

heart when it requires energy in the form of FAs [11, 12]. For its

onward movement from the myocyte cell surface to the coronary

lumen, LPL is released fromHSPG, crosses the interstitial space and

binds to glycosylphosphatidylinositol-anchored high-density

lipoprotein-binding protein 1 (GPIHBP1) on the basolateral side

of EC [13]. GPIHBP1 functions as a transporter, moving LPL from

the basolateral side of EC to the capillary lumen [14–16]. At the

lumen, GPIHBP1 can bind LPL and circulating lipoproteins to

promote TG hydrolysis and supply FA to the underlying

cardiomyocytes for energy production [16–18] (see detailed

review [19]). Interestingly, the action of LPL on chylomicron

(lipoprotein produced mainly in the gut) clearance is likely more

substantial than its effect on VLDL (lipoprotein synthesised mainly

in the liver) hydrolysis. Compared to VLDL, chylomicrons are

larger, contain a greater amount of TG and have a better chance

to interact with coronary LPL [20]. In addition, LPL breakdown of

VLDL yields FA that require a FA transporter, CD36, for movement

into cells, whereas its breakdown of chylomicrons produces a higher

amount of FA that use a passive flip-flop and/or CD36-independent

transport mechanisms [21]. A more recent study produced

lipoproteins by administering radiolabelled 2H-FA by gastric

gavage. Following isolation and i.v. injection of the lipoproteins

(d = 1.006 g/mL), a rapid (as quickly as 2 min) accumulation of

radiolabelled FA within the cytosol and mitochondria of

cardiomyocytes was observed, indicating that EC did not serve as

a storehouse for FA as they traveled from the vascular lumen to the

underlying cardiomyocytes [22]. Additionally, as a deficiency in

CD36 did not modify the passage of lipoprotein FA into

cardiomyocytes, the authors concluded that LPL derived FA can

be taken up quickly by cardiomyocytes without the need for FA

carriers [22]. Finally, when LPL-derived FA are compared to non-

esterified fatty acid (NEFA) derived from adipose tissue, our data

suggest that following fasting, NEFA plays a central role in energy

generation [23], whereas LPL action also provides for lipid

accumulation in the heart [24].

Posttranslational processes that
regulate cardiac LPL

Of the multiple substrates that the heart can use as an energy

source, FA is the preferred fuel. As such, intrinsic mechanisms

have been developed by the heart to regulate delivery of this

substrate, with LPL being a major player. Several mediators are

present which modulate cardiac LPL. These include:

AMP-activated protein kinase (AMPK)

Upon a reduction in energy, AMPK is activated to stimulate

energy producing pathways and turn off energy consuming

pathways to restore the ATP/ADP ratio. Thus, AMPK is

known to inhibit acetyl-CoA carboxylase, lower malonyl-CoA

and increase the activity of carnitine palmitoyltransferase-1 to

facilitate FA uptake and oxidation in the mitochondria [25, 26].

Stimulation of AMPK is also known to modulate FA uptake via

CD36 [27]. Our laboratory has extensively published on the role

of AMPK in LPL translocation to the vascular lumen [28].

Specifically, we reported that AMPK plays a role in vesicular

formation and subsequent movement of LPL along the actin

cytoskeleton in cardiomyocyte through activation of heat shock

protein 25 [2]. Thus, physiological and pathological processes

that change AMPK are known to impact coronary LPL activity.

For instance, following overnight fasting, AMPK is activated to

increase coronary LPL, that guarantees FA delivery to meet the

energy demand in this nutrient deficient condition [29]. Using

streptozotocin (STZ) to induce moderate diabetes in rats, we

reported that like fasting, acute hypoinsulinemia stimulated

AMPK phosphorylation, and resulted in an augmented

coronary LPL activity. This enabled the heart to switch its

substrate utilization to exclusively using LPL-derived FA [10].

With a higher dose of STZ to induce severe diabetes, these

animals developed both hyperglycemia and severe

hyperlipidemia with increased circulating FA [30], that are

known to inhibit AMPK activation [31]. In hearts from these

animals, LPL activity was reduced and an unregulated uptake of

NEFA resulted in cardiac lipotoxicity and dysfunction [30, 32].

Overall, our data suggested that activation of AMPK is a

significant contributor towards LPL movement and

subsequent FA utilization. Thus, agents that are capable of

increasing cardiac LPL activity through the AMPK pathway

may be useful for preventing NEFA uptake and lipotoxicity

following diabetes.

Heparanase (Hpa)

Hpa is an endo-β-glucuronidase that is produced in EC as an

inactive latent protein (HpaL). Following its synthesis, it is

secreted to be taken up by HSPG and stored in lysosomes [33,

34]. At this location, enzyme processing results in a 50-kDa

polypeptide that is significantly more active (HpaA) than HpaL

[35, 36]. Both forms of Hpa are stored within the EC until

secreted in response to various stimuli. Related to its

physiological functioning, Hpa has roles in embryonic

development, wound healing and hair growth [37]. Studies

from our lab was the first to identify a novel role of Hpa in

cardiac metabolism. In this regard, we described how Hpa

released cardiomyocyte LPL for subsequent transfer to the

vascular lumen for FA generation [38]. In people living with

Type 2 diabetes, plasma and urine levels of Hpa are increased [39,

40]. In vitro studies using EC established that acute incubation of

these cells with high glucose had a robust influence on Hpa

secretion [41]. Using an animal model of STZ-induced diabetes,
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isolated hearts released significantly higher amounts of both

forms of Hpa within the first 5 min, with HpaL secretion

being greater than HpaA [42]. Related to HpaA, its heparan

sulfate hydrolyzing ability would be capable of releasing

myocyte surface-bound proteins including LPL. Intriguingly,

enzymatically inactive HpaL is also able to initiate HSPG-

clustering that activates p38 MAPK, Src, PI3K-Akt, and RhoA

[38, 43–46]. These signalling pathways could then allow for

replenishment of the cardiomyocyte pool of LPL that was

released by HpaA. Overall, circulating Hpa has an important

role in the communication between EC and cardiomyocytes to

eventually supply FA to the heart. Intriguingly, unlike high

glucose, when EC are exposed to increasing concentrations of

palmitic acid, the nuclear content of Hpa was augmented [41].

Moreover, in recently published data from our lab, severe

diabetes with concomitant hyperglycemia and hyperlipidemia

reduced Hpa secretion from the isolated heart, a possible

explanation for the lowered coronary LPL activity in these

hearts [47]. Currently, whether manipulation of EC Hpa is

capable of influencing cardiac metabolism following diabetes

is unknown and should be investigated.

Heparan sulfate proteoglycans (HSPG)

To determine the contribution of HSPG to LPL transcytosis,

LPL accumulation was determined following knock-out of

GIPHBP1. In this condition, LPL in skeletal muscle and heart

collected more at the basolateral side of EC as compared to the

cardiomyocyte side suggesting that an HSPG gradient

determines the direction of LPL flow from the underlying

cardiomyocyte to the basolateral surface of EC [48]. At this

location, collagen XVIII also acts as a reservoir for LPL [49].

GPIHBP1

LPL is expressed mainly in parenchymal cells like

cardiomyocytes, whereas GPIHBP1 is located exclusively in

capillary ECs. Interestingly, a comparable distribution of

GPIHBP1 is described at both the luminal or abluminal sides

of these cells [16, 50]. It should be noted that ECs that are part of

large blood vessels, arterioles and venules do not display

GPIHBP1 [16]. Regarding the binding of LPL to GPIHBP1,

this occurs at a 1:1 ratio and with a higher affinity when

compared to its binding to HSPG [51]. Structurally, as

GPIHBP1 contains a GPI anchor, its release from the plasma

membrane is achievable with phosphatidylinositol-specific

phospholipase C that is known to digest this anchor [14]. It is

the acidic domain of GPIHBP1 that can ionically attach LPL [52].

Given its defined role in the bidirectional translocation of LPL

across the EC [16], and its ability to serve as a platform to

promote lipoprotein-TG hydrolysis (it allows lipoproteins to stay

bound/marginate to heart capillaries for several minutes [53,

54]), its absence in GPIHBP1 knockout mice causes robust

hypertriglyceridemia even when these animals are fed a low-

fat diet [16]. Similar effects are seen in patients with

GPIHBP1 mutations [55]. More recent functions of

GPIHBP1 include its ability to prevent the unfolding of LPL

by angiopoietin-like protein 4 (ANGPTL4) [56–58]. Regarding

its regulation, GPIHBP1 expression can be affected by fasting/

refeeding [59]. Fasting augments cardiac GPIHBP1, and this

effect can be overcome by refeeding [59]. Following diabetes,

cardiac GPIHBP1 gene and protein expression also increase with

an associated augmentation of coronary LPL activity [60].

Moreover, in vitro incubation of EC with high glucose also

caused a rapid increase in GPIHBP1 mRNA and protein [50,

61]. Intriguingly, exposure of EC to HpaL or HpaA produced a

significant increase in GPIHBP1 gene and protein [50]. Given

that high glucose can stimulate the secretion of both forms of

Hpa, this could be one mechanism by which the EC can increase

GPIHBP1 to accelerate FA delivery to the cardiomyocytes

after diabetes.

Angiopoietin-like proteins (ANGPTLs)
regulation of LPL

ANGPTL 3, 4, and 8 are endogenous LPL antagonists.

ANGPTL3 is exclusively expressed in the liver whereas

ANGPTL4 and 8 are abundant in the liver, adipose tissue and

muscle. One way by which fasting decreases LPL in the adipose

tissue is that nutritional deprivation increases ANGPTL4 in adipose

tissue. This is a positive effect as circulating TG are then diverted

towards oxidative tissues for provision of energy [62].

Fatty acids (FA)

FA is known to affect LPL in multiple ways, including a) FA

inhibition of LPL movement in the cardiomyocyte [63], b) FA

suppression of Hpa secretion, thus reducing cardiomyocyte to

EC transfer of LPL [41], c) FA detachment of vascular LPL for

hepatic degradation [64], and d) FA inactivation of LPL, either

directly [65] or through induction of ANGPTL4 [66–68]. With

severe diabetes, animals developed hyperlipidemia that was

associated with a reduction in heparin-releasable LPL activity

in the heart [32]. This occurred in the absence of any change in

LPL gene expression [69] suggesting that following diabetes,

cardiac LPL activity is mainly modulated by post-translational

mechanisms. In this regard, when RNA-seq was performed in

diabetic hearts, of the more than fifteen hundred differentially

expressed genes, the one that showed the greatest fold change

(~25-fold increase) was ANGPTL4 [30]. Altogether, these results

imply that circulating FA has the ability to supress vascular LPL

by a host of mechanisms to prevent lipid overload of the heart.

Journal of Pharmacy & Pharmaceutical Sciences
Published by Frontiers

Canadian Society for Pharmaceutical Sciences04

Shang and Rodrigues 10.3389/jpps.2024.13199

https://doi.org/10.3389/jpps.2024.13199


Insulin

Changes in circulating insulin can affect LPL and this response

varies with the tissues being studied [70]. Thus, a reduction in

insulin after fasting decreases adipocyte LPL but enhances its

activity in the heart [71], changes that occurred in the absence

of LPL gene or total protein expression [29]. Consequently, the FA

that are produced from lipoprotein-TG lipolysis by LPL are

directed away from storage in the adipose tissue so that they

can fulfill the metabolic demands of cardiomyocytes. As newly

synthesized LPL can transfer from myocytes to the vascular EC

within 30 min, an augmented vectorial movement of LPL could

explain the rapid increase of coronary LPL following fasting [72].

Mechanistically, a reduction in insulin after fasting or STZ-

induced diabetes decreases glucose uptake in the heart resulting

in activation of AMPK [1, 73, 74] with stimulation of LPL

translocation [2] (see detailed review [19]).

Apolipoproteins

Activators of LPL include Apolipoproteins (Apo) C-II and

Apo A-V, whereas inhibitors include Apo C-III. Apo-CII is

produced primarily in the liver and then incorporated into

lipoproteins. On binding to LPL, it promotes conformational

changes in the enzyme, allowing the catalytic site of LPL to

interact with lipoproteins permitting their hydrolysis [75]. Apo

A-V increases the activity of Apo C-II [76, 77].

Oscillations in cardiac LPL following
diabetes and its impact on plasma
triglycerides

In the clinical setting, plasma LPL activity is determined after

infusion of heparin to release HSPG-bound LPL [12, 78]. The

downside with this method is that the measured LPL represents

enzyme that is released from a host of different tissues (heart,

skeletal muscle, adipose tissue). Regarding tissue-specific detection

of LPL following diabetes, adipose tissue and skeletal muscle show

low levels of enzyme in homogenates [79], with virtually no

information available on the cardiac content of this enzyme.

Even if heart homogenates are used to determine LPL levels, this

would only provide an estimation of total cardiac LPL and would

not correctly reflect the enzymatically active LPL at the vascular

lumen. Hence, studies in animals have provided the key source of

information regarding LPL biology in the diabetic heart. Thus, acute

insulin resistance following administration of dexamethasone [80,

81] or hyperglycemia and hypoinsulinemia in rats injected with

55 mg/kg STZ (D55) causes a significant increase of heparin-

releasable LPL at the coronary lumen [10, 32, 82, 83]. This

increase occurred due to a rapid filling of the unoccupied

HSPG-binding sites [70, 82, 84] and was independent of changes

in LPL gene and protein expression [82, 85]. Occupation of these

empty HSPG-binding sites at the EC surface was mediated by

enhanced translocation of LPL [29, 38, 41, 63, 69, 70, 86–91].

For a considerable period, it has been undecided whether the

hypertriglyceridemia following diabetes was an outcome of

augmented synthesis of VLDL-TG from the liver or a product

of reduced clearance of lipoprotein-TG by LPL. In the

moderately diabetic D55 animals with 2-fold increase in

cardiac LPL activity, circulating TG and NEFA were

maintained at levels that were comparable to control animals

[30]. Willecke et al. using STZ-diabetic mice revealed that VLDL

secretion remained unchanged in these mice [92]. Interestingly

however, TG clearance was significantly reduced and was related

to a reduction in skeletal muscle, cardiac, and brown adipose

tissue LPLmRNA/activity, suggesting that LPL clearance of TG is

the more important contributor.

In diabetes, an increase in circulating and intracellular TG are

risk factors associated with atherosclerotic cardiovascular disease

and cardiac lipotoxicity [93]. It is possible that in D55 heart, LPL

derived FA are directed towards oxidative metabolism rather than

storage (Figure 2) [30]. Intriguingly, similar to our observations in

themoderately diabetic D55 heart, a modest overexpression of LPL

in adipose tissue was associated with better glucose and insulin

tolerance [94]. When these animals were provided a high fat diet,

weight gain was not observed. In fact, dietary lipids did not

accumulate in adipose tissue, and the animals displayed

amplified energy expenditure. The authors proposed that a

moderate increase in adipose LPL has favourable effects on

total body energy metabolism. In contrast, we also observed a

decline in LPL, both in animals infused with Intralipid [95] and

with severe diabetes induced by injecting 100 mg/kg STZ (D100)

[10, 30]. As the D100 diabetic animals exhibit elevated plasma FA,

we concluded that LPL-mediated FA delivery would be redundant

in these circumstances and is “turned off.” Additionally, this

reduced cardiac LPL likely contributed to the robust increase in

circulating TG.We have previously shown that when FAuptake by

LPL action is augmented, this competes with NEFA uptake [23].

Thus, following severe diabetes, when cardiac LPL action is

reduced, NEFA uptake and oxidation takes precedence over

provision of FAs to the heart from circulating lipoproteins.

This excessive supply of NEFA overwhelmed the mitochondrial

capacity, leading to a mismatch between FA delivery and

utilization, lipid metabolite build-up and cell death (Figure 2)

[30]. Thus, approaches that maintain cardiac LPL would be a

useful therapeutic approach to preventing cardiac pathology seen

following diabetes that is poorly controlled.

Role of LPL in development of
atherosclerosis

Atherosclerosis is defined as a thickening (and loss of

elasticity) of the arterial intima as a consequence of lipid
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accumulation [96]. During this condition, there is narrowing or

obstruction of the vessel lumen and thinning of the vessel wall. In

preclinical animal models, atherosclerosis is a progressive disease

beginning with the development of fatty streaks and potentially

leading to complicated atherosclerotic plaques that can rupture,

set up thrombosis and occlude the lumen. The clinical

manifestations of atherosclerosis are dependent on the site of

lesion. Hence, its presence at the coronary arteries leads to angina

pectoris and myocardial infarction, at the central nervous system

it causes transient cerebral ischemia and stroke whereas its

occurrence in the peripheral circulation elicits peripheral

vascular disease [96]. The level of plasma cholesterol, and in

particular LDL-associated cholesterol, is one of the main risk

factors of atherosclerosis [97]. Following LDL infiltration and

trapping in the arterial intima with potential oxidative

modification, ox-LDL causes endothelial cells to express

monocyte chemoattractant protein (MCP-1). MCP-1 attracts

monocytes from the vessel lumen into the subendothelial

space, one of the very early stages in the development of

atherosclerosis. Modified LDL also promotes differentiation of

monocytes into macrophages which avidly take up the ox-LDL.

This accumulation transforms macrophages into lipid-rich foam

cells, that are the hallmark of atherosclerosis [96]. Engorgement

of foam cells with lipids causes release of cytokines, and

eventually cell death. Macrophage/foam cell-released

proteolytic enzymes (matrix metalloproteinases, MMPs) allows

for smooth muscle cells from the adjacent media to migrate into

the intima, proliferate and secrete fibrous connective tissue

(i.e., collagen) and extracellular matrix (smooth muscle cells

change their phenotype from contractile to synthetic cells).

This makes the lesion harder and contributes to the formation

of a fibrous cap (which includes a mixture of macrophages, lipid

and cell debris which form a necrotic core). The expanding

intima pushes against the endothelial wall of the intima and the

fibrous cap is very susceptible to rupture. MMPs also cause a

thinning of the fibrous cap with eventual cap destruction along

with a host of other events like platelet aggregation and adhesion,

thrombosis and clot formation. The rupture of such lesions is

believed to be responsible for most cases of unstable angina and

acute myocardial infarction. Dislodging of the clot blocks the

artery near the plaque or in a more distal and narrower segment

causing total or near total occlusion [96, 98].

LPL in macrophages

Given the contribution of LPL in supplying FAs to various

tissues for storage and energy generation, in addition to its role in

plasma lipoprotein clearance, the action of LPL is considered

beneficial. Thus, the contribution of LPL towards the etiology of

atherosclerosis is contentious. On the one hand, overexpression

of LPL has been shown to protect against diet-induced

atherosclerosis in Ldlr−/− and Apoe−/− mice, established animal

models to study atherosclerosis [99, 100]. This protective effect of

LPL was linked to beneficial changes in plasma lipoproteins. On

the other hand, this was not the case when LPL levels were

manipulated in macrophages. Specific deletion of macrophage

LPL (with no changes in total plasma LPL activity) significantly

reduced atherosclerotic lesions in Apoe−/− mice, supporting an

important role for macrophage LPL in atherosclerosis [101].

Similarly, overexpression of human LPL in rabbit macrophages

accelerated atherosclerotic plaque development, and this

FIGURE 2
Impact of LPL-derived FA on heart and adipose tissue. LPL positioned at the vascular lumen is responsible for lipoprotein-TG break down to
release FA for multiple purposes. These include uptake into the heart for generation of energy and adipose tissue for lipid storage. In pathological
conditions like diabetes when LPL activity is reduced in both these tissues, the reduction in TG clearance results in hypertriglyceridemia. Additionally,
the heart switches to using NEFA for oxidation leading to excessive TG accumulation and lipotoxicity.
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occurred in the absence of any changes in plasma lipids [102].

These studies reinforced a pro-atherogenic role for macrophage

LPL. It is worth noting that although LPL has abundant

expression in highly oxidative tissues, it is also detected in

tissues like the kidneys, brain and macrophages where its

binding properties are likely more important than its lipolytic

activity [103]. Thus, the effect of macrophage LPL on

atherosclerosis could be the result of its lipolytic activity and/

or its ability to act as a receptor to assist remnant particle uptake.

Related to the latter function of LPL, subsequent to lipolysis of

lipoproteins, the remnant particles that detach from the

endothelial GPIHBP1 platform have inactive LPL bound to

them. It has been proposed that this inactive LPL may act as

a hepatic receptor ligand to promote lipoprotein uptake

[104–106]. When this process occurs in macrophages, LPL

acted as a bridging molecule for remnant uptake to increase

foam cell formation and lesion progression (Figure 1) [107].

LPL in smooth muscle cells (SMC)

The above discussion brings forward the contribution of

macrophages towards foam cell formation and development of

atherosclerosis. However, more recent studies have also

implicated SMCs in foam cell formation, at least in humans

[108]. Thus, in mouse models of atherosclerosis, the lipid milieu

along with the resident inflammation recruits’ monocytes across

EC to initiate atherosclerosis [109]. In contrast, in human

atherosclerosis, SMCs migration from the arterial media

occurs before lipid accumulation and in fact SMC make up

almost 50% of the foam cells in the plaque lesion [108]. It is

possible that SMCs take up lipoprotein remnants through

expression of scavenger receptors. However, LPL expression in

SMC may also contribute to this mechanism. In vitro, SMC and

macrophages synthesize LPL [110] which could act as a co-

receptor to facilitate the binding of native and ox-LDL to HSPG

(Figure 1) [111]. Interestingly, LPL has been detected in the

fibrous cap of the atherosclerotic lesions [112]. Whether SMCs in

the atherosclerotic lesion synthesize LPL per se or whether it is

transferred from the macrophages is currently unknown. It

should be noted that at least in the heart, the translocation of

LPL has been reported from cells like the cardiomyocyte to

endothelial cells [86]. In support, SMC interact with

macrophages both directly and indirectly. For example, in the

presence of macrophages, SMC increases their phagocytic

activity by enhancing LPL and proteoglycans to promote

lipoprotein uptake [113].

LPL as a therapeutic target

Given the importance of LPL in FA delivery to multiple

tissues in addition to its contribution to atherosclerotic plaque

development, there are a number of pharmaceutical approaches

that have been attempted to lower cardiovascular risk by

targeting LPL. These include:

Incretins

Oral glucose causes the release of gut hormones like

glucagon-like peptide-1 (GLP-1) and glucose-dependent

insulinotropic polypeptide (GIP) that amplify glucose-induced

insulin secretion in addition to acting via multiple mechanisms to

influence blood glucose [114]. Drugs that mimic GLP-1 (e.g.,

Semaglutide) and/or GIP (e.g., Tirzepatide) are gaining in

popularity not only due to their control of blood glucose but

also due to their ability to promote weight loss [115, 116].

Intriguingly, cardiovascular outcome trials demonstrate that

long-term use of GLP-1 receptor agonists reduce

cardiovascular complications of diabetes [117] or obesity [118]

by mechanisms that not completely understood. It has been

proposed that incretins could offer cardioprotection via their

influence on lipid metabolism. In this regard, GLP-1 has been

shown to regulate secretion of lipoproteins and cholesterol

metabolism [119, 120]. GIP, on the other hand, demonstrated

a regulatory role in lipid metabolism that occurred partially via

LPL activation. Thus, in cultured 3T3-L1 cells and human

adipocytes, GIP stimulated LPL activity in a dose-dependent

manner [121–123]. These results were supported by in vivo

studies which reported that GIP accelerated chylomicron TG

clearance in dogs [124]. Similarly, human studies revealed that

GIP infusion significantly increased LPL action, where LPL-

derived FA largely contributed to an increase in re-

esterification rate and TG storage in adipose tissue of lean

individuals [125]. However, unlike adipose tissue, the effects

of GIP on cardiac LPL level remain unclear. Given the opposing

mechanisms of LPL regulation between adipose tissue and the

heart, it is possible that GIP lowers cardiac LPL activity.

Interestingly, eliminating GIP receptor signaling protected the

heart against experimental myocardial infarction, and this was

associated with reduced phosphorylation of HSL and increased

cardiac TG storage [126]. As intramuscular TG accumulation is

predominantly regulated by the action of HSL and LPL [127], the

contribution of cardiac LPL to the altered lipid accumulation and

the cardioprotective phenotype of Gipr−/− mice following

myocardial infarction would be interesting to study.

Apolipoprotein and angiopoietin-like
protein inhibitors

Apolipoprotein C3 (APOC3) and angiopoietin-like protein

(e.g. ANGPTL3) are known to inhibit LPL activity directly. Thus,

a genetic reduction in APOC3 increases LPL activity, reduces

plasma TG and causes a decrease in coronary heart disease [128].
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Related to targeting APOC3, two antisense oligonucleotides,

Olezarsen and Volanesorsen, are currently in Phase 3 clinical

trials to determine their therapeutic potential to lower circulating

TG [129, 130]. Similar to APOC3, genetic variants in ANGPTL3

impacts plasma TG [131]. As such, Evinacumab (human

monoclonal antibody) is currently on the market to inhibit

the action of APOC3 to lower TG levels [132].

Omega-3 fatty acids (icosapent ethyl)

Used in statin-treated patients with elevated TG (≥150 mg/

dL), who are at high risk of cardiovascular events due to

established cardiovascular disease, or diabetes, and at least one

other cardiovascular risk factor. Mechanism of action not

completely understood and likely multifactorial and includes a

decreased production and accelerated clearance of triglycerides

[133]. It decreases VLDL synthesis and secretion by a) reducing

hepatic lipogenesis (synthesis of FA from acetyl CoA), b)

increasing beta-oxidation of FA and c) inhibiting TG-

synthesizing enzymes (e.g., DGAT). It increases VLDL

clearance by a) augmenting LPL activity directly or b)

indirectly by reducing APOC3, an inhibitor of LPL. It’s a

unique form of omega-3 fatty acid (eicosapentaenoic acid)

that reduces VLDL-TG. Affects multiple atherosclerotic

processes including endothelial function, oxidative stress, foam

cell formation, inflammatory response (its anti-inflammatory),

platelet aggregation and plaque rupture (it causes plaque

regression) [134, 135].

Fibric acid derivatives

Also called fibrates (e.g., fenofibrate and bezafibrate).

Function primarily as peroxisome proliferator-activated

receptors (PPAR) agonists (stimulates the PPARα receptor),

thereby increasing the oxidation of fatty acids in liver

(decreases VLDL production) and striated muscle (also kidney

and heart). Also increases LPL activity (increased catabolism of

circulating TGs increases the rate of clearance of TG) by both

transcription upregulation of LPL and down regulation of

APOC3 (an inhibitor of LPL) [136, 137].

Statins

They are reversible, competitive inhibitors of HMG-CoA

reductase. As a result, there is inhibition of intracellular

cholesterol synthesis mainly in the liver. Because a precise

amount of cholesterol is required in cells, on decrease of

intracellular cholesterol, hepatocytes increase the expression of

LDL receptors which then promote the extraction of LDL

cholesterol from plasma secondarily. Are also known to

influence LPL, especially in patients with Type 2 diabetes

[138, 139]. These effects of statins occurred in a tissue specific

manner, with an increased LPL production observed in skeletal

muscle [140] and a decrease in LPL mass reported in

macrophages [141].

Discussion

The enzyme LPL is essential for circulating TG clearance,

FA delivery for both oxidation and storage, and for prompting

lipoprotein uptake by acting as a receptor. Given these

multiple functions, changes in LPL would be expected to

have diverse consequences. For example, a decrease in

adipose tissue LPL would impede lipoprotein clearance

resulting in augmented plasma lipids. In the heart,

reduction in LPL, as observed with severe diabetes, causes a

switch in substrate utilization to predominantly NEFA. This

overwhelms the mitochondrial oxidative capacity leading to

TG storage and lipid toxicity. However, depletion of

macrophage LPL demonstrated beneficial effects against the

development of atherosclerosis. Thus, when attempting to

modulate LPL levels, one should consider the tissue and

cell type in addition to the disease entity. In this regard,

tissue or cell-specific manipulation of LPL offers promise to

overcome the cardiac complications associated with obesity

and diabetes.
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