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Recent literature extensively investigates the crucial role of energy metabolism

in determining the inflammatory response and polarization status of

macrophages. This rapidly expanding area of research highlights the

importance of understanding the link between energy metabolism and

macrophage function. The metabolic pathways in macrophages are intricate

and interdependent, and they can affect the polarization of macrophages.

Previous studies suggested that glucose flux through cytosolic glycolysis is

necessary to trigger pro-inflammatory phenotypes of macrophages, and fatty

acid oxidation is crucial to support anti-inflammatory responses. However, recent

studies demonstrated that this understanding is oversimplified and that the

metabolic control of macrophage polarization is highly complex and not fully

understood yet. How the metabolic flux through different metabolic pathways

(glycolysis, glucose oxidation, fatty acid oxidation, ketone oxidation, and amino

acid oxidation) is altered by obesity- and type 2 diabetes (T2D)-associated insulin

resistance is also not fully defined. This mini-review focuses on the impact of

insulin resistance in obesity and T2D on the metabolic flux through the main

metabolic pathways in macrophages, which might be linked to changes in their

inflammatory responses. We closely evaluated the experimental studies and

methodologies used in the published research and highlighted priority

research areas for future investigations.
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Introduction

Obesity and type 2 diabetes (T2D) are conditions marked by insulin resistance and

persistent low-grade inflammation [1–3]. Chronic tissue inflammation is now recognized

as an essential characteristic of obesity and T2D, affecting insulin-target tissues such as

adipose tissue, liver, muscle, and heart. The recruitment, accumulation, and activation of

pro-inflammatory macrophages in metabolic tissues play important roles in driving this

chronic low-grade inflammation. Although other types of immune cells also contribute to

these inflammatory processes, macrophages are primary effector cells known to be closely

associated with the development of cardiometabolic disease, including obesity and T2D
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(see for [3–7] review). Macrophages are crucial immune cells

involved in immune response [8] and play important roles in

tissue repair and maintaining the body’s homeostasis [9]. The

inflammatory responses of macrophages are supported by

different metabolic pathways (glycolysis, glucose oxidation,

fatty acid oxidation, ketone oxidation, and amino acid

oxidation) that adjust to their polarization state [10].

Importantly, the metabolic flux through different metabolic

pathways could be influenced by the tissue microenvironment,

the availability of oxidative substrates, and neurohormonal

status. In addition, altered macrophage energy metabolism can

impact tissue repair, inflammatory responses, and the severity of

insulin resistance [2, 11–13].

Earlier studies suggested that pro-inflammatory (also called

M1-like or classical) macrophages are highly glycolytic, while

anti-inflammatory (also called M2-like or alternative)

macrophages are highly oxidative [14–16]. However, this

classification has been challenged as simplistic, as emerging

evidence shows that macrophages have a very complex and

dynamic metabolic profile that influences their activity.

Importantly, “immunometabolism” has emerged as a

prerequisite trigger of macrophage activation and phenotype.

Nevertheless, minimal research has been steered to understand

how the metabolic phenotype of macrophages influences disease

progression [17]. Therefore, a better understanding of

macrophage metabolism may shed an innovative light on the

pathological basis of disease and lead to the future development

of macrophage-targeted treatment approaches. In this mini-

review, we discussed how carbon flux through the main

metabolic pathways in macrophages is perturbed in obesity

and T2D and how that influences the inflammatory response,

activity and metabolic profile of macrophages.

Glycolysis

Insulin signalling is a keymodulator ofmacrophagemetabolism

by regulating glucose uptake and oxidation [18, 19]. However, in

obesity and T2D, the insulin signalling pathway is impaired, leading

to insulin resistance in macrophages [18, 19]. Interestingly, this

results in the upregulation of glycolysis and glucose uptake, which is

associated with proinflammatory macrophage polarization [20].

This metabolic switch is crucial for the host defence mechanisms

of macrophages, such as cytokine production and phagocytosis.

Increased glucose influx in insulin-resistant macrophages is

facilitated by upregulated glucose transporter 1 (GLUT1)

expression [21, 22]. In high-fat diet (HFD) fed mice, the

overexpression of GLUT1 in the pro-inflammatory macrophages

also led to a hyperinflammatory state with the elevated secretion of

inflammatory mediators and increased reactive oxygen species

(ROS) production [23]. The metabolomic analysis also

demonstrated an increased glucose uptake in the

GLUT1 overexpressed macrophages enhances glucose flux

through the pentose phosphate pathway, where glucose is utilized

to generate NADPH for use in biosynthetic pathways and ROS

production [23]. Upon activation, proinflammatory macrophages

undergo a “respiratory burst,” also called “glycolytic burst,” driven

by augmentedNADPHoxidase activity to generate large amounts of

ROS as a defence mechanism against pathogens [24]. To support

redox balance, the glycolysis-PPP axis is triggered in response to

M1 polarization, presumably to support the increased generation of

NADPH for use by NADPH oxidase as well as glutathione

production used by macrophages to protect from the excessive

amounts of superoxide being produced [24]. This suggests that

GLUT1-mediated glucose metabolism plays an important part in

driving the pro-inflammatory state of macrophages in obesity and

T2D (Figure 1). Consistent with that, genetic deletion of GLUT1 in

bone marrow-derived macrophages (BMDMs) displays marked

reductions in the classically activated pro-inflammatory markers

and associated oxidative stress [25]. Inhibiting glycolysis or treating

macrophages with an antioxidant (N-acetyl-cysteine) reversed

GLUT1-mediated pro-inflammatory elevations [23].

Increased glucose availability in T2D-induced hyperglycemic

conditions can also promote the formation of advanced glycation

end products (AGEs) in macrophages [26, 27]. AGEs are

pathogenic factors that trigger the activation of a number of

signalling pathways in macrophages, including the NF- κB and

the MAPK signalling pathways under hyperglycemia conditions

[28, 29]. Enhanced AGEs in BMDMs increase interleukin 6 (IL-6)

and tumour necrosis factor-alpha (TNF-α) production [30]. AGEs

also enhance the polarization of macrophages toward the pro-

inflammatory state by inducing the expression of pro-inflammatory

molecules in T2D [29, 31]. Hypoxia-inducible factor 1 subunit

alpha (HIF1α) also plays a critical role in increasing glycolytic flux

and abrogating oxidative metabolism (OXPHOS) in macrophages

in obesity and T2D [32, 33]. To further support this, HIF-1α gene

deletion in mice protected against HFD-induced adipose tissue

inflammation and systemic insulin resistance [34].

Glucose oxidation

Increasing glucose uptake in macrophages by overexpressing

GLUT1 enhances glucose flux through cytosolic glycolysis and

mitochondrial glucose oxidation [23]. While these metabolic

changes are associated with promoting the pro-inflammatory

phenotype of macrophages, it is still unclear whether the

increase in glycolysis and/or glucose oxidation are essential for

promoting pro-inflammatory macrophages. Min et al.

demonstrated that pyruvate dehydrogenase kinase (PDK), which

inhibits the pyruvate dehydrogenase-mediated conversion of

cytosolic pyruvate to mitochondrial acetyl-CoA, functions as a

metabolic checkpoint in inflammatory macrophages [35].

Deletion of PDK2 and PDK4 completely abolishes the

development of pro-inflammatory macrophages in HFD-induced

insulin resistance [35]. Inhibition of macrophage glucose oxidation
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is also associated with weight loss, reduced insulin resistance, and

decreased adipose tissue inflammation [35]. Taken together,

inhibiting macrophage glucose oxidation is a potential target to

limit the severity of insulin resistance in obesity and T2D (Figure 1).

It has been suggested that the neurogenic locus notch

homolog protein 1 (NOTCH1) signalling pathway contributes

to the activation of mitochondrial glucose oxidation in obesity.

For instance, Xu et al. showed an enhanced macrophage glucose

oxidation in obesity that is mediated, at least in part, by increased

recruitment of the NOTCH1 intracellular domain (NICD1) to

nuclear and mitochondrial genes that encode respiratory chain

components [36]. This effect also involved NOTCH-dependent

induction of pyruvate dehydrogenase phosphatase 1 (Pdp1)

expression, pyruvate dehydrogenase activity, and glucose flux

to the tricarboxylic acid (TCA) cycle [36]. This enhancement of

glucose oxidation is associated with augmented levels of

mitochondrial DNA transcription in pro-inflammatory

macrophages, thus causing enhanced mitochondrial ROS

levels [36]. Therefore, glucose oxidation may be a target in

macrophages to alleviate insulin resistance and inflammation

induced by HFD.

Fatty acid oxidation

Obesity and T2D-induced lipid accumulation in adipose

tissue are associated with elevated fatty acid uptake, increased

macrophage infiltration, and decreased fatty acid oxidation [37,

38]. Moreover, increased lipolysis at the adipose tissue level has

been linked to lipid-droplet accumulation in adipose tissue

macrophages (ATMs) and obesity-induced inflammation [39,

40]. Studies have shown that macrophages develop a distinct

phenotype in obesity exemplified by increased lysosomal acid

type lipase, fatty acid receptor, ATP-binding cassette

A1 expressions, and inflammatory cytokines (IL-1β and TNF-

α) [41, 42]. In addition to acting as fuel for activated

macrophages, excessive lipid intake is also shown to be a

primary factor that causes pro-inflammatory macrophage

polarization in obesity and T2D [43].

The fatty acid translocase CD36 binds to fatty acids and is

important for fatty acid uptake at the myocardium, skeletal

muscle, gastrointestinal tract, liver, and adipose tissue level

[44–46]. In macrophages, CD36 primarily acts as a scavenger

receptor, recognizing specific self and nonself molecular patterns

and triggering internalization and inflammatory signalling

pathways to eliminate pathogens and altered self components,

such as apoptotic cells [47]. CD36 cooperates with toll-like

receptor (TLR)-4 and −6 to trigger inflammatory responses to

altered self-components oxidized LDL (ox-LDL) and amyloid-β
[48]. CD36 also acts as a coreceptor with TLR2 and −6 in

recognizing microbial diacylglycerides [49]. The deletion of

CD36 in BMDMs displayed improved insulin signalling and

reduced macrophage infiltration in adipose tissue [50, 51]. This

may be attributed to the potential role of upregulated fatty acid

uptake in mediating obesity-induced inflammation and insulin

resistance (Figure 1), although this is yet to be directly

FIGURE 1
Illustration of the alterations in the flux through different metabolic pathways in macrophage in obesity and type-2 diabetes. NO, nitric oxide;
NADPH, nicotinamide adenine dinucleotide phosphate.
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investigated. Recent studies have shown that CD36 is important

in the mitochondrial metabolic switch from oxidative

phosphorylation to superoxide production in response to ox-

LDL and that mitochondrial reactive oxygen species positively

correlate with macrophage CD36 expression [52].

Fatty acid oxidation occurs within the mitochondria, and

several steps are required to activate the fatty acids and transport

them into the mitochondria [53–55]. Cytosolic fatty acids are

first esterified to fatty acyl-CoA (a process consuming two high-

energy phosphate bonds as ATP is converted to AMP), followed

by the transfer of the fatty acid moiety to carnitine via the action

of carnitine palmitoyl-transferase 1 (CPT1) to form fatty

acylcarnitine. CPT1, residing on the outer mitochondrial

membrane, works collaboratively with carnitine

acyltranslocase and carnitine palmitoyl-transferase 2 (CPT2),

residing on the inner mitochondrial member, to transfer fatty

acylcarnitine into the mitochondrial matrix, where it is converted

back to fatty acyl-CoA. These acyl-CoAs then undergo β-
oxidation to produce reduced equivalents (NADH and

FADH2) for the electron transport chain (ETC), as well as

acetyl-CoA for the tricarboxylic acid (TCA) cycle. Malonyl-

CoA can be generated by acetyl-CoA carboxylase (ACC) from

cytosolic acetyl-CoA [56, 57]. Malonyl-CoA can be converted

back to acetyl-CoA by malonyl-CoA decarboxylase (MCD) [58,

59]. While the role of ACC enzymes (ACC1 and ACC2) in

macrophages is not fully defined, individual deletion of ACC1 or

ACC2 in the myeloid lineage is a prerequisite for the function of

highly proliferative T cells, but not for macrophages [60]. Recent

studies have shown that ACC is required for the early metabolic

switch to glycolysis and remodelling of the fatty acid metabolism

in macrophages. Using mice with myeloid-specific deletion of

both ACC isoforms, ACC deficiency impairs macrophage innate

immune functions, including bacterial clearance [61]. Myeloid-

specific deletion or pharmacological inhibition of ACC in mice

attenuated LPS-induced expression of proinflammatory

cytokines interleukin-6 (IL-6) and IL-1β. In contrast,

pharmacological inhibition of ACC increased susceptibility to

bacterial peritonitis in wild-type mice [61].

It has been shown that the overabundant influx of fatty acids

largely shifts from fatty acid oxidation to triglyceride,

phospholipid, and ceramide synthesis, contributing to

macrophage lipotoxicity [62–64]. This also contributes to

macrophage insulin resistance and the consequential

promotion of mitochondrial dysfunction in macrophages [63].

While indirect evidence suggests that altered fatty acid

metabolism influences macrophage activation in obesity and

T2D [65], it is unknown whether macrophage fatty acid

oxidation is upregulated or downregulated in obesity and

T2D. Malandrino et al. reported that enhancing fatty acid

oxidation in human ATMs reduces ROS, endoplasmic

reticulum stress, and pro-inflammatory responses of

macrophages [37]. In line with that, the deletion of

macrophage carnitine palmitoyl transferase 1A (CPT1A)

catalyzes the transfer of the long-chain acyl group in acyl-

CoA ester to carnitine. This allows fatty acids to enter the

mitochondrial matrix for oxidation and exacerbates the

accumulation of diacylglycerols and triacylglycerols after

palmitate treatment in vitro [66]. CPT1A deletion also

increased pro-inflammatory signalling, cytokine expression

and endoplasmic reticulum stress after palmitate treatment

[66]. Consistent with that, decreasing triglyceride and free

cholesterol levels in macrophages mitigates the activation of

pro-inflammatory macrophages, supporting the link between

lipid accumulation in these cells and the switch to the pro-

inflammatory polarization state (Figure 1) [43]. The

intermediates of the biosynthetic pathways for triacylglycerol

or phospholipids can affect the inflammatory and insulin

signalling pathways in different tissues. Saturated fatty acids

are also precursors of sphingolipids; in particular, ceramides

are strongly linked to insulin resistance and inflammation.

TLR4 signalling can trigger ceramide biosynthesis, promoting

insulin resistance by activating protein phosphatase 2A and

protein kinase C-zeta, ultimately inhibiting Akt [67].

Ceramides may also activate the inflammasome, inducing IL-

1β secretion in macrophages, which can blunt insulin signalling

[68]. These results might suggest that enhancing macrophage

fatty acid oxidation could reduce macrophage activation and

mitigate insulin resistance in obesity and T2D. However, this

needs to be directly investigated in future research.

Insulin-resistant adipocytes also release greater levels of fatty

acids while activating ATMs, leading to an intensified cycle of

inflammation through the indirect stimulation of the

macrophage toll-like receptor 4 (TLR4) [69, 70]. This causes

the initiation of the Jun N-terminal kinase and inhibitor of κB
kinase (JNK/IKK- κB) pathways followed by inflammatory

cascades [71]. Suganami et al. showed that coculturing obese

mice-derived hypertrophied adipocytes and macrophages

augments the production of TNF-α in macrophages [69]. The

released TNF- α in turn promotes the secretion of FFAs and

inflammatory changes in adipocytes [69]. To further support

this, TLR4-deletion in BMDMs inhibits saturated FA-induced

inflammation via inhibiting palmitate-induced activation of the

JNK signalling pathway [72]. Therefore, this shift in fatty acid

metabolism towards greater production of inflammatory lipids

and levels of FFAs in ATMs exacerbate insulin resistance in

obesity and T2D [73, 74]. Glucose-6-phosphate dehydrogenase

(G6PD) is a key enzyme that produces cellular NADPH, which is

required for cellular redox potential and the biosynthesis of fatty

acids and cholesterol. Macrophage G6PD levels are increased in

the adipose tissue of obese animals, and G6PD mRNA levels

positively correlated with those of pro-inflammatory genes [75].

Lipopolysaccharide (LPS) and free fatty acids, which initiate pro-

inflammatory signals, stimulated macrophage G6PD.

Overexpression of macrophage G6PD potentiated the

expression of pro-inflammatory and pro-oxidative genes

responsible for the aggravation of insulin sensitivity in
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adipocytes. Macrophage G6PD stimulates the p38 mitogen-

activated protein kinase (MAPK) and NF-κB pathways,

causing a vicious cycle of oxidative stress and pro-

inflammatory cascade [75].

Macrophage infiltration to the myocardium also increases

due to obesity and T2D-induced inflammation. Saturated fatty

acids contribute to myocardial inflammation by inducing the

release of inflammatory molecules through pattern recognition

receptors (PRRs) in macrophages [71, 72, 76]. Enhanced fatty

acid delivery to the heart in obesity and T2D causes uncoupling

of fatty acid oxidation from adenosine diphosphate

phosphorylation and promotes further mitochondrial

dysfunction in cardiomyocytes [77–80]. The imbalance in

cardiac lipid metabolism leads to the accumulation of

ceramides and diacylglycerols in the hearts of obese and

diabetic patients [77, 81–83]. Ceramides activate the

NLRP3 inflammasome and further promote cardiac

lipotoxicity in palmitate-exposed human cardiac cells and

HFD-fed mice [84]. The interplay between altered cardiac

fatty acid oxidation and macrophage infiltration into the

myocardium in obesity and T2D is an interesting scope for

future investigations.

Ketone oxidation

Ketone bodies are organic compounds mainly produced by

the liver by breaking down fatty acid molecules. The three major

ketone bodies are β-hydroxybutyrate (βOHB), acetoacetate

(AcAc), and acetone. βOHB is first oxidized to AcAc by

βOHB dehydrogenase, followed by conversion to acetoacetyl-

CoA by succinyl-CoA:3 oxoacid-CoA transferase (SCOT). The

end-product of ketone oxidation is acetyl-CoA, which has a

similar fate as acetyl-CoA produced from fatty acid or glucose

oxidation. While there is limited data regarding how ketone

metabolism is regulated in macrophages and how it might be

altered in obesity and T2D, a recent study using isotope tracking

LC/MS untargeted metabolomics showed that macrophages

could oxidize ketones with preferential utilization of AcAc

compared to βOHB [85]. Preclinical studies have shown that

enhancing circulating AcAc levels ameliorates diet-induced

hepatic fibrosis, and this protective effect is abolished in

macrophage-specific SCOT knock-out mice [85]. These

findings suggest that increasing macrophage ketone oxidation

plays a critical role in modifying the inflammatory responses of

macrophages [85].

Furthermore, another study demonstrated that

administration of βOHB increases the expression of IL-10 and

arginase 1, markers of the inflammation-resolving state of

macrophages and the resolution of damaged intestinal tissue

in a mouse model of inflammatory bowel disease [86]. In

addition to supporting macrophage energetics, βOHB could

also influence macrophage activity by acting as a signalling

molecule (see for [87] review). For instance, the inhibitory

effect of βOHB on the NLRP3 inflammasome in BMDMs is

mediating by acting as a ligand of macrophage GPR109A, a

member of the hydrocarboxylic acid GPR sub-family expressed

in adipose tissues (white and brown) and immune cells [88].

While these findings suggest that ketone bodies elicit a

predominantly anti-inflammatory response, augmented

circulating ketone levels in diabetic patients may trigger a

pro-inflammatory response (Figure 1) [89–91]. Future studies

are required to delineate whether this modulatory effect of

ketones on macrophage function is mediated by enhancing

increased macrophage ketone oxidation and/or via acting as a

signalling molecule [87]. It would also be important to determine

how modulating macrophage ketone oxidation affects

macrophage function in obesity and T2D. Taken together, this

encouraging emerging evidence suggests that ketone bodies have

an inhibitory effect on the inflammatory response of

macrophages, which might be beneficial against the low-grade

chronic inflammation in obesity and T2D and its detrimental

effects. However, it is yet to be determined whether ketone bodies

modulate macrophage responses by serving as oxidative

substrates to modulate macrophage ATP production or acting

as signalling molecules.

Amino acid oxidation

The flux through different amino acid metabolic pathways

changes according to macrophage phenotype. For instance,

arginine is converted to nitric oxide (NO) via inducible NO

synthase (iNOS) in pro-inflammatory M1-like macrophages [92,

93]. In contrast, it is converted to proline and polyamines via

arginase-1 in inflammation-resolving M2-like macrophages

(Figure 1) [94]. Glutamine is the most abundant amino acid

in the body and acts as a main source of carbon and nitrogen for

cells. While serum glutamine levels are lower in patients with

obesity and diabetes [95], studies have demonstrated that

glutamine metabolism is altered in macrophages on exposure

to M1-or M2-polarizing agents. For instance, glutamine is

channelled into the TCA cycle for synthesizing succinate in

M1-like macrophages, leading to a marked intracellular

accumulation of succinate, enhancing proinflammatory

cytokine production [33]. On the contrary, glutamine is

critical for acquiring the M2 polarization state. It is mostly

converted to α-ketoglutarate in M2-like macrophages and

enhances the production of key anti-inflammatory cytokines

through its role in protein glycosylation (Figure 1) [96, 97].

Consistent with that, glutamine deprivation impairs the

expression of M2-like macrophage markers in vitro [97].

Macrophages collected from obese insulin-resistant Zucker

rats had a significantly lower NO production than those

collected from lean control rats [98]. Interestingly, incubating

macrophages from obese insulin-resistant Zucker rats with
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glutamine increases NO production [98]. Since NO is produced

using arginine as a precursor, these findings suggest crosstalk

between arginine and glutamine metabolism in macrophages,

highlighting the importance of differential use of amino acids to

modulate macrophage responses in insulin resistance conditions.

It is important to mention that the action of iNOS in converting

arginine to NO depends on the availability of an important

cofactor, NADPH. Macrophages can utilize glucose and

glutamine to synthesize NADPH [99]. Macrophages collected

from insulin-resistant rats have impaired NO production due to

impaired synthesis of NADPH and less activation of iNOS in the

absence of glutamine [98]. Therefore, suggesting that glutamate

contributes to NADPH synthesis in insulin-resistant

macrophages seems plausible.

Augmented levels of branched-chain amino acids (BCAAs),

namely leucine, isoleucine, and valine, and their respective

metabolites, namely branched-chain keto acids (BCKAs), have

been linked with metabolic alterations, insulin resistance, and a

predisposition to T2D [100]. It has been shown that BCAAs play

a role in modulating inflammatory responses in immune cells.

However, the data regarding whether high levels of BCAAs

promote pro-inflammatory or anti-inflammatory immune cells

are inconclusive. For instance, enhancing BCAA levels promotes

oxidative stress, inflammation and human peripheral blood

mononuclear cell migration [101]. In contrast, high levels of

BCAA exert anti-inflammatory and anti-genotoxic activity in

LPS-stimulated macrophages [102]. Whether these effects are

mediated via enhancing BCAAs and BCKAs contributions to

mitochondrial oxidative metabolism as fuel or via acting as

signalling molecules in macrophages remains to be

determined in future investigations.

Discussion

Recent studies have linked macrophage metabolic processes

to their inflammatory behaviour. They demonstrated that

macrophages could switch from promoting tissue protection

to contributing to disease development by altering the flux

through different metabolic pathways. Although macrophage

insulin signalling is impaired in obesity and T2D, insulin-

resistant macrophages have increased glucose uptake,

glycolysis, and glucose oxidation. Macrophage fatty acid

uptake is also increased, but it seems uncoupled to fatty acid

oxidation, which is decreased in obesity and T2D. Instead, fatty

acids are converted to triacylglycerol and ceramide

accumulation, which contribute to lipotoxicity in insulin-

resistant macrophages. Arginine and glutamate metabolism

also have divergent effects in pro- and anti-inflammatory

macrophages in obesity and T2D. Understanding the complex

metabolic profile of different macrophage phenotypes will help

characterize how different oxidative substrates could influence

macrophage responses. In addition, understanding the metabolic

reprogramming behind macrophage responses will help identify

new avenues for therapeutic intervention to combat

obesity and T2D.
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