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Background: Sulfonylureas have been a longstanding pharmacotherapy in the

management of type 2 diabetes, with potential benefits beyond glycemic control.

Although sulfonylureas are effective, interindividual variability exists in drug

response. Pharmacometabolomics is a potent method for elucidating

variations in individual drug response. Identifying unique metabolites

associated with treatment response can improve our ability to predict

outcomes and optimize treatment strategies for individual patients. Our

objective is to identify metabolic signatures associated with good and poor

response to sulfonylureas, which could enhance our capability to anticipate

treatment outcome.

Methods: In this cross-sectional study, clinical and metabolomics data for

137 patients with type 2 diabetes who are taking sulfonylurea as a monotherapy

or a combination therapy were obtained from Qatar Biobank. Patients were

empirically categorized according to their glycosylated hemoglobin levels into

poor and good responders to sulfonylureas. To examine variations in metabolic

signatures between the two distinct groups, we have employed orthogonal partial

least squares discriminant analysis and linear models while correcting for

demographic confounders and metformin usage.

Results: Good responders showed increased levels of acylcholines, gamma

glutamyl amino acids, sphingomyelins, methionine, and a novel metabolite 6-

bromotryptophan. Conversely, poor responders showed increased levels of

metabolites of glucose metabolism and branched chain amino acid metabolites.

Conclusion: The results of this study have the potential to empower our

knowledge of variability in patient response to sulfonylureas, and carry

significant implications for advancing precision medicine in type 2 diabetes

management.
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Introduction

Sulfonylureas, the oldest oral antidiabetic agents, remain

one of the most commonly prescribed drugs for the treatment

of type 2 diabetes (T2D), along with metformin [1].

Sulfonylureas are recommended as an add-on to metformin

therapy in most international guidelines, and they can be used

in combination with all classes of oral antidiabetics except

glinides [2]. The use of sulfonylureas as a monotherapy has

decreased over time, and it is mainly endorsed for patients who

cannot use metformin [3]. However, sulfonylureas have been

found to have pleiotropic effects beyond their use in diabetes

management which opens up the possibility of repurposing

these drugs [4]. Sulfonylureas can also be used as third-line

agents for the management of uncontrolled diabetes with dual

combination therapy [5].

Sulfonylureas are insulin secretagogues that function

through stimulating insulin secretion from the pancreatic

beta-cell (β-cell). Specifically, sulfonylureas bind to their

specific receptors on β-cell and inhibit the ATP-sensitive

potassium channels (KATP) on the membrane of β-cell,
causing potassium efflux to decrease and the β-cell
membrane to depolarize. This depolarization leads to

calcium channels opening which results in calcium influx

and increased intracellular calcium leading to a contraction

of the filaments of actomyosin responsible for the exocytosis of

insulin, and ultimately insulin secretion [6]. Sulfonylureas are

usually well tolerated, however, they may cause side effects such

as hypoglycemia and weight gain [7].

It is noteworthy that a significant proportion of patients do

not respond optimally to sulfonylurea treatment [8].

Pharmacogenomic studies have revealed the influence of

genetic factors on individual responses to sulfonylureas.

Genetic variants in genes like KCNQ1, KCNJ11, ABCC8,

CYP2C9, and TCF7L2 can influence the therapeutic response

and adverse effects of sulfonylureas [9, 10]. However, research

has shown conflicting results across various studies, highlighting

the complexity of understanding how genetic factors contribute

to sulfonylurea responses [9]. Metabolomics is a rapidly evolving

field with the potential to significantly impact the future of

precision medicine. It offers valuable insights into

individualized treatment strategies, enhances our

understanding of diseases, and enables the assessment of

therapeutic efficacy [11].

The objective of this study is to identify specific metabolic

signatures that are correlated with good and poor responses to

sulfonylureas. This is being pursued through a retrospective

cross-sectional study that is focusing on identifying blood

metabolites linked to each category of sulfonylureas response.

Comprehending the role of these metabolites can help tailor

sulfonylurea therapy, thereby enhancing treatment effectiveness,

and advancing the progressive shift toward precision medicine in

diabetes management.

Materials and methods

Data source and study participants

This research gathered information from individuals

recruited at Qatar Biobank (QBB). The QBB database

encompasses a comprehensive profile of Qatari citizens or

long-term residents (≥15 years residing in Qatar), aged

18 years and above, within the State of Qatar. Detailed

baseline socio-demographic, clinical and behavioral

phenotypic data, as well a wide range of biochemical

parameters were assessed at the central laboratory of

Hamad Medical Corporation (HMC), which is accredited

by the College of American Pathologists. QBB data also

included questionnaires related to their history of diabetes,

medication usage, and metabolomics data for more than

1,000 metabolites. The research was approved by the

Institutional Review Boards of the Qatar Biobank. All

participants provided informed consent. Among the

participants, a total of 137 patients with Type 2 Diabetes

who were taking sulfonylurea in monotherapy or combination

therapy and had available metabolic data were selected and

included in this study. Patients with incomplete or

inconsistent medication records were excluded. Among

them, 41 patients were on sulfonylurea monotherapy

(Gliclazide), 63 on dual therapy (59 combined with

metformin, 2 combined with sitagliptin, and 2 combined

with pioglitazone), and 33 on triple therapy (28 combined

with both metformin and sitagliptin, and 5 combined with

both metformin and pioglitazone). Daily doses of gliclazide

modified release range from 30 mg to 120 mg, and for

gliclazide immediate release from 80 mg to 320 mg.

Patients were empirically dichotomized according to their

HbA1C levels, which is the most widely used measure of

glycemic control [12] into poor responders (HbA1C ≥ 7),

and good responders (HbA1C < 7) in accordance with the

American Diabetes Association guidelines and previous

studies [13, 14].

Metabolomics

All participant serum samples were subjected to untargeted

metabolomics using established protocols by Metabolon [15].

Metabolites measurement was performed using a Thermo

Scientific Q-Exactive high resolution/accurate mass

spectrometer (Thermo Fisher Scientific, Inc., Waltham, MA,

United States) interfaced with a heated electrospray ionization

(HESI-II) source and Orbitrap mass analyzer operated at

35,000 mass resolution along with Waters ACQUITY ultra-

performance liquid chromatography (UPLC) (Waters

Corporation, Milford, MA, United States). A thorough

explanation of the process has already been provided [15].
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Hits were matched with pre-existing library entries of over

3,300 pure standard chemicals to identify the compounds.

Compounds were divided into several groups according to

their sources. Internal standards and quality checks have

been previously published [16]. In short, to adjust for

discrepancies in sample preparation and instrument

performance, a combination of stable isotope-labeled

chemicals was utilized as internal standards. The stability

and repeatability of the procedure were tracked over time

using quality control samples. To reduce variability and

guarantee the integrity of the samples, a systematic

methodology was employed for pre-analytical sample

management including sample collection, storage, and

preparation.

Statistical analysis

The metabolomics data were inverse rank normalized.

SIMCA® and R software were used to conduct multivariate

analysis and linear models respectively. Linear regression

analysis was performed to for each metabolite as y and good/

poor responder grouping variable as x. The model also contained

age, gender, body mass index (BMI), metformin usage (yes/no)

and principal components 1 and 2 as confounders. To ensure the

robustness of our findings, we have meticulously adjusted our

analysis to account for any confounding effects of concurrent

metformin treatment. This adjustment is crucial as it isolates the

specific metabolic effects attributable to sulfonylureas, thereby

providing a clearer understanding of the metabolomic variations

associated with their response. The nominal p-values were

adjusted using the multiple testing correction method (False

Discovery Rate, FDR). Statistical significance was defined as

FDR < 0.05. Functional enrichment analysis was performed

on all nominally significant metabolites using Wilcoxon sum

of ranks test and was followed by p-value adjustment using FDR

method. Additional details of the statistical analysis has

previously been provided [17].

Results

General characteristics of participants

One hundred and thirty-seven patients with T2D were

categorized into “poor responders” (n = 85) and “good

responders” (n = 52) based on their HbA1C levels. Table 1

reveals significantly higher levels of fasting blood glucose,

HbA1C, homeostatic model assessment of insulin resistance

(HOMA-IR), and gamma-glutamyl transferase (GGT) in the

poor response group when compared to the good response

one; whereas the good response group reveals significantly

higher levels of C-peptide and chloride.

Multivariate analysis of metabolites
differentiating poor and good sulfonylurea
responders

Non-targeted metabolomics analysis was performed to

investigate the metabolic signatures of 137 patients with Type

2 Diabetes (T2D) who were taking sulfonylureas. Orthogonal

partial least squares discriminant analysis (OPLS-DA) was used

to identify the best distinguishing components between poor and

good responders as shown in Figure 1. OPLS-DA showed one

predictive and two orthogonal components, with the

discriminatory component accounting for 85.2% of the

variance between poor and good responders. Figure 2C shows

the list of metabolites with VIP > 1.5.

Univariate analysis of metabolites
differentiating poor and good sulfonylurea
responders

Linear model analysis revealed a number of FDR (≤0.05)
significant changes between the two studied groups (Table 2).

This includes an increase in 1,5-anhydroglucitol, 6-

bromotryptophan, 3-methoxytyrosine, methionine,

pyroglutamine, ethyl and methyl glucopyranoside, gamma-

glutamyl amino acids and acylcholines in the good responders

group. Whereas an increase in glucose, mannose, fructose,

mannonate, gluconate, fructosyl-lysine, and many branched

chain amino acid metabolites was shown in the poor

responders group. Supplementary Table S1 contains raw data

values with standard deviations. The analysis conducted

separately for males and females produced similar results

except for 6-bromotryptophan which differentiate good

responders from poor responders in males only

(Supplementary Table S2).

Functional enrichment analysis

Results of functional enrichment analysis (Table 3) indicated

significant differences in pathways of acylcholines, gamma-

glutamyl amino acids, sphingomyelins, branched chain amino

acid metabolites, fructose, mannose and galactose metabolism,

and in glycolysis, gluconeogenesis, and pyruvate metabolism.

Heatmap showing the top metabolites is also shown in Figure 2.

Discussion

Sulfonylureas have been a longstanding option in the

treatment armamentarium of T2D. Sulfonylureas exert their

therapeutic effects on pancreatic beta cells by promoting

calcium influx into these cells and ultimately increasing
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insulin secretion. Pharmacogenomics may offer some insight

into the variable responses to sulfonylurea which lead to better or

worse glycemic control. However, the current estimate suggests

that genetics contributes to approximately 20%–40% of the

individual variation in drug responses [18].

Pharmacometabolomics is sensitive to both genetic and

environmental influences. Therefore, it is a potent method for

elucidating variations in individual drug response. In this cross-

sectional study, we have identified metabolic signatures

associated with poor and good responders to sulfonylurea in a

set of 137 samples from the Qatar Biobank. To the best of our

knowledge, this study represents the first comparative analysis of

the metabolic profiles between poor and good responders to

sulfonylurea therapy.

TABLE 1 General characteristics of participants.

Test Variable Poor responders (N = 85) Good responders (N = 52) P-value

General characteristics Gender (M/F) 40/45 32/20 0.141

Age 53 (46–58) 50.5 (40.75–58.25) 0.304

Metformin use (Y/N) 66/19 26/26 0.002

BMI (kg/m2) 30.41 (26.56–34.63) 29.69 (27.61–34.03) 0.755

Systolic blood pressure (mmHg) 128.06 (15.3) 121.02 (15.89) 0.018

Diastolic blood pressure (mmHg) 76.59 (10.84) 73.94 (10.94) 0.088

Blood sugar Fasting blood glucose (mmol/L) 11.1 (9.1–15.3) 6.75 (5.39–8.22) <0.001*

HbA1C (%) 9 (8.2–10.4) 6.1 (5.9–6.4) <0.001*

C-peptide (ng/mL) 2.7 (1.88–3.93) 3.48 (2.28–5.86) 0.009*

HOMA-IR 10.06 (5.43–18.24) 4.04 (2.4–12.26) 0.001*

Insulin (uU/mL) 18.5 (12–36.9) 13 (8.97–38.42) 0.388

Lipid profile Total cholesterol (mmol/L) 4.67 (4.2–5.21) 5 (4.1–5.53) 0.204

HDL-cholesterol (mmol/L) 1.1 (0.96–1.37) 1.1 (0.92–1.41) 0.645

LDL-cholesterol (mmol/L) 2.75 (2.02–3.18) 3 (2.07–3.5) 0.245

Triglyceride (mmol/L) 1.55 (1.2–2.2) 1.96 (1.1–2.4) 0.688

Kidney function Creatinine (µmol/L) 63 (51–76) 69.5 (54.75–85.25) 0.038

Chloride 99 (97–100) 101 (100–102) <0.001*

Urea (mmol/L) 4.5 (3.7–5.1) 4.65 (3.7–5.2) 0.447

Bicarbonate (mmol/L) 26.66 (2.02) 26.69 (2.41) 0.927

Total protein (g/L) 72.54 (3.81) 71.87 (3.9) 0.364

Heart function NT-proBNP 26.15 (15.35–44.5) 27.05 (13.57–39.33) 0.842

Liver function Albumin (g/L) 44 (2.83) 44.33 (2.5) 0.519

ALT (U/L) 24 (19–32) 20.5 (16–28) 0.067

AST (U/L) 19 (15–23) 17 (14–20.25) 0.152

GGT (U/L) 32 (23.5–73.5) 16.5 (12.75–20) 0.001*

Hormones TSH (mIU/L) 1.37 (0.94–2.08) 1.33 (0.9–1.86) 0.902

Free thyroxine (pmol/L) 13.6 (12.6–14.34) 12.95 (11.84–13.67) 0.015

Free triiodothyronine (pmol/L) 4.2 (3.9–4.56) 4.35 (4.02–4.53) 0.411

Data are presented as mean (SD), median (IQR) and number for parametric, non-parametric, and nominal variables respectively. The difference between mean/median was evaluated

using independent t-test/Mann-Whitney U test as appropriate. Chi-square test was used for nominal variable. *Bolded P-value indicates significant difference between the two studied

groups. Abbreviations: BMI, body mass index; HbA1C, glycosylated hemoglobin; HOMA-IR, homeostatic model assessment of insulin resistance; HDL, high-density lipoprotein; LDL,

low-density lipoprotein; ALT, alanine transaminase; AST, aspartate aminotransferase; GGT, gamma-glutamyl transferase; TSH, thyroid stimulating hormone; NT-proBNP, N-terminal

pro b-type natriuretic peptide.
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FIGURE 1
(A) scores and (B) loading plots from OPLS-DA between poor and good response. The model shows a good separation between the study
groups with R2Y = 85.2% and Q2 = 49.1%. (C) A scatterplot of VIP score of the top 30 metabolites showing which metabolites are most useful in
distinguishing between responders’ groups. (*) indicates a compound that has not been officially confirmed based on a standard but that Metabolon
is confident in its identity. GGP, Glycolysis, Gluconeogenesis, and Pyruvate metabolism; FA, Fatty Acid metabolism; FMG, Fructose, Mannose
and Galactose metabolism.
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FIGURE 2
(A)Heatmap representing the abundance of FDR significantmetabolites between poor and good responders from the linear regression analysis.
Red/Blue correspond to more/less abundance, respectively. (B) Bubble plot depicting the enriched pathways from the functional enrichment
analysis using Wilcoxon sum of ranks test. Percentage reflects the number of significantly different metabolites divided by total number of
metabolites from that pathway.
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Expectedly, good responders showed significant higher levels

of 1,5-anhydroglucitol (1,5-AG), while poor responders showed

higher levels of glucose, mannose, fructose, and fructosyl-lysine.

These metabolites reflect the level of glycemia, and the regulated/

dysregulated glucose metabolism in each response category [19].

Good responders exhibited significantly elevated levels of

C-peptide, indicative of the effective functioning of pancreatic

β-cells. Higher C-peptide levels have been associated with a better

response to certain antidiabetics like metformin, sulfonylureas,

and thiazolidinediones [20]. Poor responders showed higher

TABLE 2 Top metabolites differentiating good responders from poor responders.

Metabolites Sub-pathway Superpathway Estimate SE p-value FDR

1,5-anhydroglucitol (1,5-AG) Glycolysis, Gluconeogenesis, and Pyruvate
Metabolism

Carbohydrate 1.408 0.128 3.29 × 10−20 2.76 ×
10−17

Mannose Fructose, Mannose and Galactose Metabolism Carbohydrate −1.276 0.147 1.41 × 10−14 5.90 ×
10−12

Glucose Glycolysis, Gluconeogenesis, and Pyruvate
Metabolism

Carbohydrate −1.229 0.158 2.07 × 10−12 5.80 ×
10−10

Fructose Fructose, Mannose and Galactose Metabolism Carbohydrate −1.024 0.165 6.24 × 10−9 1.31E-06

Pyroglutamine* Glutamate Metabolism Amino Acid 0.831 0.153 2.77 × 10−7 4.65 × 10−5

Methyl glucopyranoside (alpha + beta) Food Component/Plant Xenobiotics 1.163 0.218 6.14 × 10−7 8.59 × 10−5

Mannonate* Food Component/Plant Xenobiotics −0.793 0.152 7.48 × 10−7 8.97 × 10−5

6-bromotryptophan Tryptophan Metabolism Amino Acid 0.879 0.184 4.92 × 10−6 5.17 × 10−4

Palmitoylcholine Acyl Choline Lipid 0.884 0.187 5.69 × 10−6 5.31 × 10−4

Linoleoylcholine* Acyl Choline Lipid 0.862 0.184 7.07 × 10−6 5.94 × 10−4

Gluconate Food Component/Plant Xenobiotics −0.695 0.156 1.83 × 10−5 1.39 × 10−3

Methylsuccinoylcarnitine Leucine, Isoleucine and Valine Metabolism Amino Acid −0.790 0.182 2.85 × 10−5 2.00 × 10−3

3-Methoxytyrosine Tyrosine Metabolism Amino Acid 0.814 0.189 3.34 × 10−5 2.16 × 10−3

Ethyl beta-glucopyranoside Food Component/Plant Xenobiotics 0.787 0.184 3.76 × 10−5 2.26 × 10−3

3-methyl-2-oxobutyrate Leucine, Isoleucine and Valine Metabolism Amino Acid −0.749 0.180 5.58 × 10−5 2.83 × 10−3

Arachidonoylcholine Acyl Choline Lipid 0.775 0.186 5.78 × 10−5 2.83 × 10−3

Choline Phospholipid Metabolism Lipid 0.729 0.176 5.84 × 10−5 2.83 × 10−3

Methionine Methionine, Cysteine, SAM and Taurine
Metabolism

Amino Acid 0.693 0.167 6.07 × 10−5 2.83 × 10−3

Gamma-glutamylglutamine Gamma-glutamyl Amino Acid Peptide 0.784 0.190 6.40 × 10−5 2.83 × 10−3

Glycerol 3-phosphate Glycerolipid Metabolism Lipid 0.755 0.193 1.52 × 10−4 6.38 × 10−3

3-hydroxybutyrate/2-
hydroxyisobutyrate

Glutathione Metabolism Amino Acid −0.714 0.184 1.62 × 10−4 6.49 × 10−3

Fructosyl-lysine Lysine Metabolism Amino Acid −0.678 0.182 2.94 × 10−4 1.09 × 10−2

N-methyl proline Urea cycle; Arginine and Proline Metabolism Amino Acid 0.767 0.206 2.97 × 10−4 1.09 × 10−2

Gamma-glutamyl tyrosine Gamma-glutamyl Amino Acid Peptide 0.588 0.170 7.27 × 10−4 2.54 × 10−2

Androsterone glucuronide Androgenic Steroids Lipid 0.598 0.174 7.89 × 10−4 2.65 × 10−2

11beta-hydroxyandrosterone
glucuronide

Androgenic Steroids Lipid 0.555 0.168 1.24 × 10−3 3.93 × 10−2

Alpha-hydroxyisovalerate Leucine, Isoleucine and Valine Metabolism Amino Acid −0.588 0.179 1.26 × 10−3 3.93 × 10−2

2-hydroxy-3-methylvalerate Leucine, Isoleucine and Valine Metabolism Amino Acid −0.573 0.175 1.32 × 10−3 3.95 × 10−2

Gamma-glutamyl methionine Gamma-glutamyl Amino Acid Peptide 0.592 0.184 1.59 × 10−3 4.60 × 10−2
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levels of GGT; the increased concentrations of this enzyme has

been associated with a poor glycemic control [21].

Remarkably, the good response group was associated with a

reduction in branched-chain ketoacids (BCKA), and branched-

chain alpha-hydroxy acids (BCHA) which are intermediates

formed during the catabolism of branched chain amino acid

(BCAA) [22]. These intermediates were associated with

metabolic disorders [23], and recently have been shown to

contribute to pathologic cardiac hypertrophy [24]. Given that

the cardiovascular safety of sulfonylureas is still a topic of debate

[25], it is important in future studies to consider the potential role

of BCKA and BCHA in this context. BCKAs have also been

shown to chronically suppress the serine/threonine kinase 2

(akt2) [26]. Strikingly, the activity of akt2 is essential for the

proper functioning, survival, and adaptive growth of β-cells [27,
28]. Moreover, Sirtuin 4 (SIRT4) which plays a crucial role in the

regulation of BCAA catabolism, is expressed in islets of

Langerhans, and has been shown to control insulin secretion

[29, 30]. This suggests a potential link between BCKA and BCHA

with insulin secretion in the context of SU treatment, and opens

up exciting new avenues for investigating their potential role in

the health of β-cells.
Our emerging results showed an increase of many

acylcholines in the sulfonylurea responsive group, supported

by an FDR significant enriched metabolic pathway. Data on

the biological activity of acylcholines remain very limited.

Recently, they are discovered as endogenous modulators of

the acetylcholine signaling system through the inhibition of

the enzyme acetylcholinesterase [31]. Interestingly,

sulfonylureas have been shown to inhibit acetylcholinesterase

activity [4]. Acetylcholine is crucial for pancreatic beta cell

function. It stimulates insulin secretion by acting on

M3 muscarinic receptors on beta-cells [32], and thus

increasing the concentration of cytoplasmic free calcium [33].

Considering that the M3muscarinic receptors serve as promising

targets for innovative antidiabetic medications, acylcholines

could present novel opportunities in this context.

Interestingly, good responders to sulfonylureas exhibited

higher levels of many gamma-glutamyl amino acids. These

metabolites are dipeptides consisting of a C-terminal amino

acid having a gamma-glutamyl residue attached at the N

alpha-position. In recent years, gamma-glutamyl amino acids

have caught researchers’ attention due to their ability to

allosterically activate the calcium-sensing receptor (CaSR)

[34]. CaSR is expressed in β-cells, and plays an important role

in regulating its function by influencing expression and function

of potassium and voltage-dependent calcium channels, and by

controlling cell adhesion, coupling, and communication [35–37].

Further research is required to clarify the role of gamma-

glutamyl amino acids in glucose homeostasis.

Our emerging results also showed that sphingomyelins

metabolic pathway was nominally enriched in the responsive

group. In fact, Sphingomyelins play a significant role in the

function of pancreatic beta cells. They are involved in regulating

beta-cell excitability and insulin exocytosis [38]. Griess et al.

demonstrated that a β-cell-specific ablation of ceramide synthase

2, the enzyme necessary for generation of very-long-chain

sphingolipids, selectively reduces insulin content and impairs

insulin secretion [39]. Khan et al. reported that a downregulated

sphingolipid impairs pancreatic β cell function [40]. Several

phospholipids, particularly sphingomyelins, were shown to be

significantly lower in the serum of children who later progress to

T1DM [41]. Additionally, a beta-cell-specific antibody has been

found to target unique sphingomyelin patches on the surface of

live cells [42]. Interestingly, a deficiency in the enzyme

sphingomyelin synthase 1 leads to a reduction in

KCNQ1 expression, and the phospho-head group in

sphingomyelin is essential for the proper gating of certain

voltage-dependent K+ channels [43]. Sphingomyelins are also

shown to be associated with ATP-binding cassette (ABC)

proteins, and ABCA7 deficiency impairs sphingomyelin

synthesis [44]. A review stipulated that lower sphingomyelin

may be associated with higher risks of coronary heart disease and

T2D [30]. We hypothesize that elevated sphingomyelin could

indicate an improved β cell function reflecting a good response to
sulfonylureas, which might be associated with a lower risk of

heart disease.

Univariate analysis showed the association of gut-microbiota

metabolites, namely, ethyl glucopyranoside, methyl

glucopyranoside, mannonate and gluconate, with the response

to sulfonylureas. While no study has yet explored the direct

impact of sulfonylureas on the gut microbiota, recent research

indicates that sulfonylureas may indeed have some interaction

with the gut microbiota [45]. Research also highlights the role of

gut microbiota-derived metabolites in influencing β-cell function
by playing a crucial role in protecting β-cell and promoting

insulin secretion [46]. Interestingly, ethyl and methyl

glucopyranoside associated in our study with the good

responders to sulfonylureas, were identified to be associated

with better microbiome diversity and a healthier status [47].

While a review concluded the lack of an alteration in the gut

microbiota by sulfonylureas [48], it is important to note that the

interaction between sulfonylureas and gut microbiota may not be

TABLE 3 Results from functional enrichment analysis based on
metabolite ranks by p-value using the Fisher’s exact test.

Enriched pathways p-value FDR

Acyl Choline 0.000 0.024

Leucine, Isoleucine and Valine Metabolism 0.003 0.162

Glycolysis, Gluconeogenesis, and Pyruvate Metabolism 0.007 0.225

Fructose, Mannose and Galactose Metabolism 0.011 0.239

Gamma-glutamyl Amino Acid 0.017 0.248

Sphingomyelins 0.018 0.248
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bidirectional. Our hypothesis suggests that a dysbiosis in the gut

microbiota might be linked to a poor response to sulfonylureas.

Univariate analysis also showed the association of

pyroglutamine, methionine, and 3-metoxytyrosine with the

good response group. Indeed, pyroglutamine (also called 5-

oxoproline) is involved in glutathione metabolism, which

plays a role in maintaining redox homeostasis in pancreatic β-
cells [49]. Methionine is known to regulate insulin secretion from

pancreatic β-cells [50], and methionine accumulation in the

pancreas has been reported to represent β-cell function [51].

The metabolite 3-metoxytyrosine is a product in the metabolism

of dopamine, the latter has been reported to regulate pancreatic

insulin secretion via adrenergic and dopaminergic receptors [52].

However, the data on the function of 3-metoxytyrosine remains

very scarce, and much work still needs to be done to elucidate its

exact functions and significance.

Strikingly, our results showed a significant association

between a novel metabolite, namely, 6-bromotryptophan with

the good response group especially in males. 6-bromotryptophan

is a metabolite derived from the bromination of tryptophan.

While it is believed that 6-bromotryptophan is a microbiome-

derived metabolite, its formation and the localization of this

reaction are not well understood. It is accepted that 6-

bromotryptophan has a strong relationship with fat

distribution [53], and recently, it has been associated with

lower risk for chronic kidney progression in multiple studies

[54]. Taking into consideration that low urinary chloride

concentration was associated with a higher risk for CKD

progression [55], our results are corroborated with the

significant difference (p < 0.001) in chloride levels between

good and poor responders. The BROMO clinical trial

(NCT05971524) is currently underway to investigate the

safety, pharmacokinetics, and efficacy of dietary supplement of

6-bromotryptophan in individuals with metabolic syndrome.

Interestingly, the same clinical trial claims that 6-

bromotryptophan was positively associated with C-peptide

and preserved β-cell function. Relatedly, a study on the

therapeutic applications of a 6-bromotryptophan-containing

conotoxin demonstrated its bioactivity on insulin release in

pancreatic β-cell [56]. Indeed, tryptophan is necessary in all

KCNQ subunits to confer drug sensitivity [57]. Moreover, the

variant rs7903146 in TCF7L2 gene has been associated with the

therapeutic response to sulfonylureas. The rs7903146 T-allele

conferred a higher risk for sulfonylurea treatment failure by

impairing β-cell function [58, 59]. Interestingly, serotonin,

synthesized solely from tryptophan, was identified as the top

metabolite being increased in carriers of the rs7903146 risk allele

[60]. It is important to note that an allosteric modulator of β-cell
M3 muscarinic receptors (VU0119498) [61], which stimulates

insulin release and improves glucose homeostasis, has a similar

structure to 6-bromotryptophan. Taken together with the

literature, we present evidence supporting the involvement of

tryptophan metabolism in pancreatic β-cell function. The proxy

metabolite 6-bromotryptophan may serve as an indicator of a

positive response, or even as a candidate for drug development.

Nevertheless, further research is essential to clarify the

connection between 6-bromotryptophan and its related

metabolites, and the response to sulfonylurea treatment.

Conclusion

This study offers the research community with a wealth of

metabolic biomarkers associated with response to sulfonylurea,

notably branched chain amino acid metabolites,

sphingomyelins, acylcholines, gamma glutamyl amino acids,

and the novel metabolite 6-bromotryptophan. The study’s

findings support the development of biomarker-driven

treatment strategies that can lead to more personalized and

effective diabetes management, and we believe these findings

can be translated into clinically relevant metabolic signatures,

enabling further research into personalized therapeutic

approaches.

While the confounding effect of metformin has been

corrected in this study, we acknowledge the presence of some

limitations. One limitation of this study is its cross-sectional

design, which makes it challenging to determine if individuals

with elevated HbA1C levels exhibited a poor response to

sulfonylurea, or had more advanced diabetes prior to starting

treatment. Consequently, certain metabolites may be linked to

the progression or complications of diabetes rather than

treatment response. Moreover, the QBB data lacks baseline

metabolomics information, making it difficult to compare

metabolic profiles before and after treatment. Additionally, the

variability in sulfonylurea dosages across participants, and the

absence of data regarding the duration of treatment, present

another potential limitation. Future research involving

longitudinal studies will thus be warranted to validate our

identified biomarkers.
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