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Metabolic dysfunction-associated steatotic liver disease (MASLD) is a metabolic

disorder marked by excessive accumulation of lipids within the liver. If

untreated, this condition can progress to metabolic dysfunction-associated

steatohepatitis (MASH), fibrosis, cirrhosis, and ultimately, hepatocellular

carcinoma (HCC). Given the liver’s pivotal role in glucose and fatty acid

metabolism, disruptions in these processes are commonly observed in

MASLD. Ketone bodies, crucial energy metabolites primarily produced in the

liver, are also closely related to the progression of MASLD. Recent studies have

demonstrated that disrupted ketogenesis not only accompanies MASLD, but

may also play a causal role in its development and progression. Moreover,

activation of the ketogenic pathway has been suggested as a promising strategy

for reducing excessive hepatic fat accumulation. This review focuses on the

regulation of ketogenesis in MASLD, emphasizing the significance of dietary and

pharmacological interventions as potential therapeutic approaches to treat fatty

liver disease.
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Introduction

Metabolic dysfunction-associated steatotic liver disease (MASLD), formerly known as

non-alcoholic fatty liver disease (NAFLD), is a prevalent chronic liver disease [1, 2],

globally affecting human health with an estimated prevalence of 32% [3]. This condition is

characterized by increased fat accumulation within the liver, compromising its function.

The prolonged accumulation of hepatic fat in MASLD can lead to severe conditions, such

as metabolic dysfunction-associated steatohepatitis (MASH), cirrhosis, and

hepatocellular carcinoma (HCC). This progression is driven by lipotoxicity, leading to

increased hepatic oxidative stress and the development of MASH [4]. Concurrently,

increases in free fatty acid uptake and oxidative stress activate resident liver macrophages,

which promote inflammation through various signaling pathways, including Toll-like

receptor (TLR) 4-mediated production of pro-inflammatory cytokines [5, 6]. As the liver

attempts to repair itself amid heightened inflammation, fibrosis emerges, characterized by

the accumulation of extracellular matrix proteins, tissue scarring and immune cell
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infiltration [7, 8]. This persistent tissue scarring and immune

activity eventually culminate into cirrhosis, marked by

hepatocyte apoptosis [9] and impaired regenerative capacity

[10]. Additionally, the elevated pro-inflammatory cytokine

TNF has been associated with tumor promotion, as it

stimulates hepatocyte proliferation, which can trigger the

development of HCC [11]. As MASLD and its pathological

progression arise from complex interactions of various factors

affecting a broad spectrum of individuals, numerous studies have

focused on elucidating the mechanisms driving the progression

of this disease and developing effective therapeutic strategies.

Nevertheless, current treatment approaches for fatty liver

disease, aside from lifestyle modifications such as weight

management, dietary interventions, and exercise, are relatively

limited. Insulin sensitizers, lipid-lowering medications, and

antioxidants have been tested, but have not proven effective.

Notably, drugs used for type 2 diabetes, such as metformin and

sodium-glucose cotransporter-2 inhibitors (SGLT2i), have shown

efficacy in treating fatty liver disease [12–14]. It remains unclear,

though, whether the beneficial effects of these drugs on fatty liver

disease are due to direct targeting of the liver function or are

indirectly achieved through improved glucose homeostasis.

Recently, the U.S. Food and Drug Administration approved

resmetirom (Rezdiffra), a thyroid hormone receptor β (THRβ)
agonist, as the first drug to directly target the liver for the treatment

of MASH and moderate-to-advanced hepatic fibrosis. However,

only 20%–30% of patients have shown improvement in key liver

pathology indicators, and the long-term safety of resmetirom has

not yet been assessed in clinical trials [15]. Therefore, the need to

identify novel therapeutic targets for treating fatty liver disease

remains a pressing and unmet challenge.

Dysregulated ketone body metabolism in
fatty liver disease

Metabolic remodelling is a molecular and cellular hallmark in

fatty liver diseases, which includes alterations in de novo lipogenesis,

hepatic very-low-density lipoprotein secretion and lipoprotein

metabolism, and gluconeogenesis [16]. Another notable change is

the dysregulation of ketone body metabolism. In the early stage of

fatty liver disease like simple steatosis, an increase in plasma ketone

bodies is often observed as a result of the liver converting excessive

fatty acids into ketone bodies to alleviate metabolic stress [17, 18].

However, as MASLD advances to more severe stages like MASH,

levels of plasma ketone bodies in patients decrease [19]. This decline

is attributed to impaired ketogenesis, a process of synthesizing

water-soluble ketone bodies, such as β-hydroxybutyrate (BHB),

acetoacetate (AcAc), and acetone, primarily in the liver, as

fasting-induced ketosis is significantly reduced in humans with

MASLD [20, 21]. In addition, the rate of ketogenesis, specifically

the production of BHB and not AcAc, is negatively associated with

the degree of hepatic triglyceride content [20]. Impaired ketogenesis

in severe MASLD has also been consistently observed in both

preclinical mouse models and humans [22, 23].

Ketone bodies are primarily generated in the liver during

glucose-deprived conditions. Acetyl-CoA, mainly derived from

fatty acids through beta-oxidation, undergoes a series of enzymatic

reactions within the mitochondria. These reactions involve

acetoacetyl-CoA thiolase (ACAT1), 3-hydroxy-3 methyglutaryl-

CoA synthase 2 (HMGCS2) and HMG-CoA lyase (HMGCL),

generating AcAc as a primary ketone body metabolite. AcAc is

then further converted to BHB by β-hydroxybutyrate
dehydrogenase (BDH1) [24–26]. Among these critical enzymes

in the ketogenic pathways, HMGCS2 is notably implicated in

dysregulated ketogenesis in fatty liver disease. Inmice with high-fat

diet (HFD)-induced MASLD, the fasting-induced increases in

HMGCS2 transcript and protein are largely abolished [22].

Similarly, HMGCS2 expression is suppressed with more

advanced steatotic stages, such as cirrhosis and HCC [27, 28].

Importantly, dysregulated ketogenesis is not simply an outcome

but plays a causal role in the development of fatty liver disease. In

infants, deficiencies in HMGCS2 or HMGCL lead to hepatomegaly

and hepatic steatosis [29–31]. Consistently, postnatal mice lacking

Hmgcs2 gene spontaneously develop fatty liver disease [22, 32]. The

impaired hepatic ketogenic conduit by Hmgcs2 ablation causes

excessive accumulation of acetyl-CoA [32, 33]. This, in turn,

enhances de novo lipogenesis, hepatic glucose production, and

acetylation of mitochondrial proteins, which collectively

contribute to steatosis and metabolic dysfunctions in the liver. In

addition, altered hepatic ketogenesis and ketone body metabolism

contribute to the progression of fatty liver disease by modulating

inflammation and fibrosis. For instance, ketogenic insufficiency

induced by antisense oligonucleotide (ASO)-mediated Hmgcs2

knockdown in HFD-fed adult mice results in not only elevated

hepatic triacylglycerol concentrations but also inflammation and

injury with macrophage accumulation in the liver, characteristics of

MASH [34–36]. Also, disturbance in hepatocyte-macrophage

ketone body communication, specifically via AcAc (not BHB),

leads to hepatic fibrosis by activating hepatic stellate cells [37].

Furthermore, hepatic deletion of monocarboxylate transporter 1

(MCT1, encoded by Slc16a1), one of themain transporters of ketone

bodies [38], exacerbates hepatic steatosis in female mice [39],

although it is unclear whether this aggravation of the fatty liver

is mediated by impaired ketone body transport. Disruptions in key

regulators of ketogenesis, including hormones such as insulin and

glucagon and transcriptional regulators like PPARα and

mTORC1 [40], also contribute to the development of fatty liver

disease. For example, PPARα knockout mice, which exhibit

impaired ketogenesis with decreased ketogenic enzymes,

Hmgcs2 and Bdh1, develop hepatic steatosis [41–43].

Additionally, mTORC1, which suppresses Hmgcs2 expression

and ketogenesis by inhibiting the transcriptional activity of

PPARα [44], is frequently activated in fatty liver disease [45].

Collectively, these findings underscore the critical role of ketone

body metabolism in MASLD development and progression.
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Investigations into key enzymes and regulators, such as HMGCS2,

BDH1, PPARα, and mTORC1, highlight the intricate interplay

between ketone body metabolism and fatty liver disease.

Targeting ketone body metabolism to
treat fatty liver disease

Ketone bodies primarily serve as alternative energy fuels in

extrahepatic tissues - such as the heart, skeletal muscle, and brain -

during various developmental and physiological conditions,

including neonatal development, pregnancy, starvation, and

exercise. Importantly, the multifaceted roles of ketone bodies in

metabolic health have been extensively studied. They mediate

cellular signaling via G-protein receptors (i.e., GPR41,

GPR43 and GPR109A) and epigenetic gene regulation through

post-translational modifications (PTMs), including histone

modifications, such as lysine acetoacetylation and β-
hydroxybytyrylation [46–48]. These mechanisms collectively exert

anti-inflammatory, antioxidative and antifibrotic effects [49–53].

It is noteworthy that elevations in ketogenesis and the

administration of ketone bodies can provide significant benefits

against the development and progression of fatty liver disease,

underscoring the substantial health implications of ketone bodies

(Figure 1). Specifically, activating ketogenesis through Hmgcs2

overexpression improves HFD-induced MASLD in mice and

reduces lipid accumulation in HepG2 cells [22]. Concurrently,

Bdh1 overexpression in the liver ameliorates hepatic fibrosis,

inflammation and apoptosis in db/db mice [54]. In addition, the

exogenous administration of AcAc reduces hepatic fibrosis in mice

fed a fibrogenic diet [37], while BHB supplementation lessens liver

injury and exerts anti-inflammatory effects through the down-

regulation of the NLRP3 inflammasome [55–57]. Similarly,

dietary supplementation with ketone esters decreases MASLD

and inflammation, along with a reduction in the expression of

profibrotic and proinflammatory genes, such as Col1a1 and Pdgfb

[58, 59]. These findings emphasize the potential therapeutic avenues

for addressingMASLD and its progression by targeting ketone body

metabolism. There is growing interest in utilizing dietary and

pharmacological interventions to enhance ketogenesis for treating

hepatic steatosis and its progression, as detailed further below.

Dietary interventions
As ketogenesis has emerged as a potent target for MASLD

treatment, dietary interventions that influence ketone body

metabolism, such as nutritional interventions and fasting

regimens, offer promising approaches for managing MASLD.

Indeed, besides various positive effects on health and lifespan,

nutritional interventions have demonstrated promising

therapeutic impacts on MASLD with decreased hepatic

triglyceride content in mice and reduced body fat and

inflammation markers in humans [60, 61]. Notably,

nutritional interventions, such as caloric restriction (10%–40%

reduction) and ketogenic diets, effectively elevate blood ketone

body levels and enhance their transport and utilization in both

rodents and humans [62–65]. Specifically, caloric restriction,

which entails a significant reduction in daily calorie intake,

has been shown to decrease hepatic fat content [66], thereby

reversing hepatic steatosis in obese rodents with metabolic

diseases [60]. In MASLD patients, caloric restriction leads to

reductions in fatty liver index and ALT values [67], indicating

potential therapeutic benefits. Furthermore, the ketogenic diet,

characterized by limited carbohydrate intake, stimulates the

mobilization of fatty acids, leading to weight loss in humans

and mice. It also effectively increases their blood ketone body

levels while improving plasma glucose and triglycerides as well as

insulin sensitivity in MASLD patients. A low-carbohydrate

ketogenic diet significantly reduces intrahepatic triglyceride

levels by 43.8% and alleviates hepatic inflammation and

fibrosis in MASLD patients [65, 68, 69]. Consistently,

ketogenic diets decrease the expression of genes involved in

fatty acid synthesis while upregulating those involved in fatty

acid oxidation [70–73]. These beneficial effects of ketogenic diets

in the liver are mediated through hepatic fibroblast growth factor

21 (FGF21) as a regulator of the ketotic state [74, 75]. Together,

these findings suggest that nutritional interventions are effective

strategies for treating MASLD by promoting ketone body

metabolism. However, some studies have noted that a

ketogenic diet may induce hepatic steatosis, increase

inflammation, and promote cellular senescence in mice [64,

76, 77]. Such discrepancies among different studies may

potentially be attributed to variations in dietary composition,

particularly the fat content, as well as differences in diet duration

and the ages of subjects or participants. This underscores the

need to carefully evaluate the potential adverse effects of

ketogenic diets and understand their underlying mechanisms.

Fasting interventions, such as intermittent fasting and time-

restricted feeding, which involve alternating periods of fasting

and refeeding [78, 79], are effective in promoting cyclic

ketogenesis, thereby potentially improving MASLD [80, 81].

Various intermittent fasting (IF) regimens, such as time-

restricted feeding, alternate-day fasting, 2:1 IF, and 5:2 IF,

have been shown to improve steatosis by downregulation of

PPARγ, a transcription factor implicated in triglyceride

homeostasis and activation of fatty acid oxidation via PPARα,
in high-fat-fructose induced MASH rat models [82] and HFD-

induced MASLD mice [81, 83–85]. Notably, IF also activates the

hepatic autophagy-lysosome pathway, reducing hepatic lipid

accumulation [84] while diminishing hepatic inflammation

and fibrosis through decreased expression of IL-6 and TNFα,
thereby mitigating MASH progression [81, 83, 84]. Furthermore,

IF has proven effective in humans, reducing intrahepatic

triglyceride content by 8.3% [86]. Collectively, these studies

highlight that nutritional and fasting interventions can serve

as effective therapeutic approaches for MASLD via activating

ketogenesis.
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Pharmacological interventions
Several pharmacological candidates have shown potential for

improving fatty liver disease outcomes by affecting ketone body

metabolism. These include Metformin, PPARα agonist

(Fibrates), ACC (Acetyl-CoA carboxylase) inhibitors and

sodium-glucose cotransporter 2 (SGLT2) inhibitors [14, 87, 88].

Metformin (1, 1-dimethylbiguanide hydrochloride) has

demonstrated potential in inhibiting the progression of

MASLD. Clinical studies have indicated that metformin

treatment in patients with MASLD improves liver function with

reductions in hepatic fat accumulation and inflammation [89, 90].

By decreasing hepatic gluconeogenesis, metformin leads to

reduced blood glucose levels, which in turn suppresses the

activation of lipogenic pathways and promotes hepatic

ketogenesis in rat liver [91]. It has also been shown that

metformin induces fasting-mimicking metabolic modification,

including ketogenesis, in humans [92]. However, the specific

molecular mechanism by which metformin affects hepatic

ketogenesis remains unclear, and it is unknown whether the

metabolic therapeutic effects of metformin are mediated

through ketone bodies.

PPARα agonists, such as fibrates, play a crucial role in

regulating hepatic lipid metabolism. They have been shown to

upregulate the expression of genes involved in fatty liver

oxidation and lipoprotein metabolism, potentially contributing

to increased ketogenesis [93, 94]. By enhancing these processes,

fibrates could improve liver function and reduce hepatic fat

accumulation in patients with fatty liver disease. Although

fenofibrate has demonstrated efficacy in improving indicators

of metabolic syndrome, blood sugar levels, and hepatic function

tests in clinical investigations, it has not yielded significant

improvement in liver histology, including steatosis score,

inflammation grade, and fibrosis stage. To address these

limitations, selective PPARα modulators like Pemafibrate have

been developed, which offer improved efficacy and safety

profiles. Specifically, Pemafibrate has been shown to

ameliorate markers of liver inflammation and fibrosis in

patients with MASLD [95, 96].

Acetyl-CoA carboxylase (ACC) is a pivotal enzyme in fatty

acid synthesis, catalyzing the conversion of acetyl-CoA to

malonyl-CoA, a crucial step in hepatic de novo lipogenesis.

Owing to its central role in lipid metabolism, ACC has

emerged as a promising target for therapeutic intervention in

fatty liver disease. Numerous studies have demonstrated that

inhibition of ACC can effectively reduce fatty acid synthesis and,

consequently, decrease hepatic lipid accumulation [97]. For

example, Firsocostat (GS-0976), a liver-targeted small

molecule allosteric inhibitor of ACC1/2, improves MASH in

both preclinical and clinical studies [98]. Additionally, another

ACC1/2 inhibitor PF-05221304, either alone or in combination

FIGURE 1
Summary of ketogenesis mechanisms in relation to dietary and pharmacological interventions. This schematic illustrates the key enzymes and
pathways involved in ketogenesis and how they are modulated by dietary and pharmacological interventions. It highlights the impact of these
interventions on the ketogenic pathway, leading to increased production of ketone bodies, which are crucial for managing MASLD. Activated
ketogenesis helps reduce liver fat accumulation and inhibit fatty liver disease progression factors, such as inflammation, fibrosis, and oxidative
stress. Solid arrows indicate the direction of regulatory effect, while dotted arrows represent effects that are known but not fully understood. The
schematic was created with BioRender.com.
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with a DGAT2 (diacylglycerol O-acyltransferase 2) inhibitor,

significantly reduces hepatic steatosis in patients with MASLD

[99]. Furthermore, it has been shown that a small molecule IMA-

1, which interrupts the arachidonate 12-lipoxygenase (ALOX12)-

ACC1 interaction, decreases hepatic lipid accumulation and

lowers inflammation and fibrosis in mice and macaques,

addressing multiple key features of MASH [100]. Notably, a

single oral dose of MK-4074, a liver-specific ACC1/2 inhibitor,

increases plasma ketone bodies in mice and humans within 8 h

[101], suggesting its strong ketogenic potential. Similarly, the

observation that Firsocostat can increase BHB in non-hepatic

cells further supports the conserved ketogenic action of ACC

inhibition [102]. However, the implications of ketone bodies in

ACC inhibitor-mediated hepatic protection have not

been explored.

Another class of drugs that have shown promise in the context

of ketogenesis and MASLD is the SGLT2 inhibitors, commonly

used in the treatment of type 2 diabetes [103]. These drugs increase

urinary excretion of glucose by the kidney, thereby reducing blood

glucose levels. Beyond their primary use, SGLT2 inhibitors offer

therapeutic benefits for MASLD by modulating key metabolic

pathways. They promote lipolysis, stimulate mitochondrial

biogenesis and autophagy, and reduce lipogenesis, oxidative

stress, and fibrogenesis [104, 105]. Meta-analyses have also

shown that SGLT2 inhibitors can reduce hepatic enzymes (e.g.,

ALT and AST), hepatic fat contents, and Fibrosis-4 (FIB-4) levels,

suggesting they alleviate MASLD and its progression to MASH

[106]. Notably, it is well known that treatment with

SGLT2 inhibitors is associated with higher plasma ketone body

levels in patients [104, 105]. While the exact mechanism linking

SGLT2 inhibitors and ketogenesis is not fully understood [107], it

has been suggested that ametabolic shift from glucose to fatty acids

induced by SGLT2 inhibitors underlies ketogenesis [104].

Nevertheless, it remains unclear whether the salutary actions of

SGLT2 inhibitors against MASLD are mediated by promoting

ketogenesis or through SGLT2-independent actions, as observed in

the failing heart [108]. Future studies are required to uncover the

therapeutic mechanism of SGLT2 inhibitors for MASLD.

Additionally, Pimozide, which blocks skeletal muscle ketone

oxidation, increases plasma ketone bodies and improves

hyperglycemia [109], yet its effects on fatty liver disease

remain unknown. Rapamycin, which inhibits mTORC1, the

negative modulator of hepatic ketogenesis, also increases

plasma ketone bodies [44]. However, due to its intricate

actions in global metabolism and crosstalk with several

pathways [110], targeting the mTOR pathway to treat fatty

liver disease presents challenges. It is noteworthy that these

pharmacological agents appear to promote ketogenesis

indirectly, including through transcriptional activation and

modulation of metabolic fluxes. The development of drug

candidates that directly target ketogenic enzymes and their

roles in treating fatty liver disease hold significant interest.

Discussion

In this review, we aim to summarize the current

understanding of the potential role of ketogenesis as a critical

player in the treatment of fatty liver disease, utilizing both dietary

and drug interventions (Figure 1). The contributions of

ketogenesis and ketone bodies in MASLD treatment are

promising, yet further investigation is warranted to determine

the extent to which the beneficial effects result from ketogenesis

itself [22], the use of ketone bodies as fuel, or the cellular actions

of ketone bodies as signalingmolecules, or a combination of these

processes [49]. In addition, careful consideration of several

factors is required when evaluating treatment options that

promote ketogenesis. For instance, ketoacidosis, a life-

threatening complication of diabetes, has been reported as a

potential side effect of both SGLT2 inhibitors [111] and

ketogenic diets [112], though the underlying mechanisms are

not fully understood. Furthermore, variations in the effects of

ketogenic diets and intermittent fasting due to differences in sex

and age have been observed [113, 114], as these factors are also

known to impact ketone body metabolism [115]. Consequently,

further investigation is essential to safely and effectively leverage

ketone body metabolism for the treatment of fatty liver disease.
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