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Introduction

In pancreas transplantation (PT), the high incidence of

corticosteroid (CS)-related side-effects, especially cardio-

vascular events, negatively affect long-term transplant out-

comes and has motivated the introduction of CS-sparing

immunosuppressive protocols. Novel and more potent

monoclonal antibodies at induction and immunosuppres-

sants at maintenance have been successful in PT

recipients with low immunological risk. However, CS-

withdrawal has been associated with increased risk of

acute rejection in other PT cohorts, while the rate of

infective complications needs further evaluation.

In islet allo-transplantation (IT), recent CS-free and

calcineurin inhibitors (CNI)-reducing protocols attempted

to avoid the diabetogenic effects of immunosuppression

Keywords

gluco-corticosteroids, immunosuppression,

islet transplantation, pancreas transplantation,

side-effects, toxicity.

Correspondence

Camillo Ricordi MD, Diabetes Research

Institute, L. Miller School of Medicine,

University of Miami, 1450 NW 10th Avenue,

Miami, FL 33136, USA. Tel.: +1 305 243

5275; fax: +1 305 243 4404; e-mail:

ricordi@miami.edu

Received: 29 May 2008

Revision requested: 24 June 2008

Accepted: 14 August 2008

doi:10.1111/j.1432-2277.2008.00761.x

Summary

For reducing the corticosteroid (CS)-related side-effects, especially cardiovascular

events, CS-sparing protocols have become increasingly common in pancreas

transplantation (PT). Lympho-depleting induction antibodies, such as rabbit

anti-thymocyte globulin (rATG) or alemtuzumab, have been widely used in

successful trials. The results of various CS-sparing protocols combining

calcineurin inhibitors (CNI) and mycophenolate or sirolimus, have been mixed

for rejection and survival rates. Most of the studies were uncontrolled trials of

low-risk patients, therefore the grade of evidence is limited. Large-scale

prospective studies with long-term follow up are necessary to assess risks and

benefits of CS-sparing regimens in PT before recommending such strategies as

standard practice. Islet allo-transplantation for patients with brittle type 1

diabetes mellitus, less invasive and safer procedure than PT, has been attempted

since late 1980s, but diabetogenic immunosuppressants at maintenance, mainly

CS and high-dose CNI, prevented satisfactory results (10% insulin-independence

at 1-year post-transplant). Since 2000, CS-free and CNI-reducing protocols,

including more potent induction [daclizumab, OKT3c1(ala-ala) anti-CD3

antibody, rATG] and maintenance (sirolimus, mycophenolate) agents, have

significantly improved short-term outcomes whereas long-term are still

inadequate (from 80% to 20% insulin-independence from 1- to 5-year post-

transplant). Main limitations are allo- and autoimmunity, immunosuppression-

related islet and systemic toxicity and transplant site unsuitability, which

tolerogenic protocols and biotechnological solutions may solve.
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on insulin production and peripheral action. Significant

improvements in islet graft function and survival have

been achieved in IT recipients with brittle type 1 diabetes

mellitus (T1DM) (i.e. poor glycemic control, severe hypo-

glycemia, progressive complications). However, long-term

results are still not satisfactory, and immunosuppression-

related toxicity, immune response, and an unsuitable

implantation site have to be overcome.

In this review, we describe the main clinical trials that

attempted minimization and withdrawal of CS in pan-

creas- and islet transplant settings, summarizing the

results achieved, the complications encountered, and the

major problems identified for resolution, with a more

complete list of all the studies and relative characteristics

shown in Tables 1–5.

Pancreas transplantation

Cardiovascular morbidity and mortality still significantly

limit PT long-term outcomes, the progression of cardio-

vascular complications in part caused by the recipient’s

pre-existing diseases, and in part attributable to the nega-

tive effects of maintenance immunosuppressants, includ-

ing CS, on the relative risk factors. Indeed, 5-year graft

survival rates of more than 23 000 performed in USA in

1998–2003 are 77% for simultaneous pancreas–kidney

(SPK), 57% for pancreas-after-kidney (PAK), and 56%

for pancreas alone (PTA) [1,2].

Many studies in liver and kidney transplants attempted

to withdraw CS, without increasing the risks of rejection

or graft loss, with encouraging results. Subsequently,

newly introduced immunosuppressants have enabled the

reduction of CS at maintenance in PT. In 2004, 25% of

kidney-pancreas recipients were receiving CS-free mainte-

nance, and many studies now include CS-withdrawal,

rapid elimination, or avoidance. However, because of the

lack of large prospective randomized studies proving the

efficacy and safety of CS-sparing protocols and the sup-

posedly higher pancreas immunogenicity with increased

risk of rejection, CS is still part of the immunosuppres-

sion in most PT protocols [2,3].

CS-withdrawal in stable recipients

According to the positive results of sporadic CS-with-

drawal under cyclosporin A (CsA)-based immunosuppres-

sion, a larger number of PT patients were withdrawn

from CS under Tacrolimus (Tac)-based regimen [4,5]

(Table 1).

Corticosteroid was initially withdrawn from selected

recipients who had stable graft function, without rejection

episodes in a retrospective study, showing successful

CS-withdrawal 4–40 months after PT in 46% of stable

recipients, divided in 174 SPK, 20 PAK, and 13 PTA

under Tac and mycophenolate mofetil (MMF) or azathio-

prine (Aza) maintenance [6,7]. Despite comparable graft

and recipient survival with sustained function in stable,

low-risk patients, incidence of rejection was relatively

high (65–80%), probably because of the lack of lympho-

depleting antibody induction.

Simultaneous infusion of donor bone marrow cells

(BMC) increased the chance of CS-withdrawal, with 67%

of the recipients who received BMC being CS-free 3 years

post-transplant as compared with 45% of those who did

not [8].

Withdrawal of CS has been attempted in 12 SPK and

two PTA recipients who had significant side-effects, but

they were resumed in four patients because of acute

rejection or intolerance to full-dose of MMF [9].

Because CS-withdrawal was unsuccessful in both PTA

recipients, they were excluded from the following

prospective randomized study that evaluated a total of

55 stable PT recipients (29 SPK, 26 PAK) with full doses

of immunosuppressants randomized to standard mainte-

nance (Tac, MMF, and CS) or CS-withdrawal from 6 to

36 months after transplantation. After 6 months, no

patient death, graft loss or increased incidence of

rejection was observed [10].

Scheduled rapid CS elimination

In kidney transplant recipients, rapid CS elimination

using antibody induction has been associated with better

outcome than late CS-withdrawal [11,12].

Accordingly, rapid CS elimination has been tested in

PT recipients to reduce CS-related side-effects while aim-

ing at lower acute and chronic rejection rates (Table 2).

A group of 40 SPK recipients who received only 6 days of

CS was compared with a historical group that received

full CS maintenance [13]. Rabbit anti-thymocyte globulin

(rATG), Tac, 6-day CS, and either MMF or sirolimus

(SRL) were given to the CS elimination group, while

equine anti-thymocyte globulin (eATG) or anti-IL2recep-

tor (anti-IL2R) monoclonal antibodies (daclizumab or ba-

siliximab) together with Tac, MMF and CS were given to

the historical group. Rejection-free survival rate at 1-year

in the CS elimination group was significantly higher as

compared with the historical group (97.5% vs. 80.2%,

P = 0.034), with the former group showing a greater inci-

dence of leukopenia.

Elimination of CS 1 week post-transplant has also been

tested in two studies on a total of 44 SPK transplant

recipients, where CS was converted to SRL in addition to

Tac and MMF maintenance, after receiving rATG induc-

tion [14,15]. While early rejection rates were lower at

6 months (pancreas 2.3% vs. kidney 4.6%), a higher
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incidence of infections was seen. Indeed, two early deaths

were attributed to uncontrollable sepsis; one cytomegal-

oviral (CMV) infection, two infections by polyomavirus

(BK), and one post-transplant lymphoproliferative disor-

der (PTLD) were also observed.

CS-avoidance

As even a short-term course (1 year) of CS can induce

osteoporosis, cataract, and increase cardiovascular risk

[16], a recent study in kidney transplant recipients

Table 2. Scheduled rapid CS-withdrawal in pancreas transplantation.

Author

No. patients/tx

type Induction

Maintenance

(after CS w/d)

Time of

CS w/d % CS-free Survival/follow up

Acute

rejection

Adverse

events/comments

Kaufman

et al. [13]

40 SPK vs. 86

historical control

rATG versus

eATG or

anti-IL2R

Tac/MMF or

Tac/SRL versus

Tac/MMF/CS

6 days NR Pt: 100% vs. 97%

K: 100% vs. 93%

P: 100% vs. 92%

at 1 year

MMF: 5%

SRL: 0%

Control: 20%

Leukopenia, no

difference

in HbA1c

Freise

et al. [14,15]

44 SPK rATG Tac/MMF/SRL 7 days NR Pt: 96%

K: 93%

P: 89% at 1 year

K: 5%

P: 2% at

6 months

CMV: 2%

BK: 9%

PTLD: 2%

Axelrod

et al. [44]

100 SPK (CS) vs.

100 SPK (CS-free)

eATG or anti-

IL2R versus

rATG or

alemtuzumab

Tac/MMF

or Tac/SRL

CS versus

CS-free

maintenance

NR Pt: 96% vs. 96%

K: 93% vs. 92%

P: 90% vs. 92%

at 2 years

14% (CS)

4% (CS-free)

at 1 year

CMV: 17% (CS)

vs. 9% (CS-free)

Hanaway

et al. [45]

13 SPK, 6 PAK

1 P after islet Tx

rATG Tac/MMF 6 days SPK: 85%

PAK: 100%

Pt: 100%

K: 100%

P: 95% at 7 months

SPK: 8%

PAK: 14%

NR

Fridell

et al. [46]

19 PAK (CS w/d)

vs. 10 PAK (CS)

rATG Tac/SRL 5 days 100% Pt: 94%

K: 94%

P: 89% at 1 year

NR CMV: 5%

Kaufman

et al. [23]

88 SPK Alemtuzumab

versus rATG

Tac/SRL 3 days 95% Pt: 91% vs. 92%

K: 91% vs. 86%

P: 92% vs. 97%

at 3 years

8% vs. 5%

at 2 years

CMV: 6% vs. 19%

BK: 4% vs. 13%

PTLD: 0% vs. 3%

Margreiter

et al. [33]

241 SPK rATG Tac/MMF

versus

Tac/SRL

Short-term NR Pt: 98% vs. 98%

K: 97% vs. 98%,

87% vs. 81% at

6 months

28% vs. 33% High GFR in MMF

Aoun

et al. [21]

24 SPK rATG Tac/MMF 4 days 59% Pt: 100%

K: 100%

P: 96% at 1 year

K: 4%

P: 8% at

6 months

Leukopenia: 42%

CMV: 17%

BK: 4%

Gallon

et al. [32]

59 SPK rATG Tac/MMF

versus

Tac/SRL

3 days MMF: 91%

vs. SRL:

92%

Pt: 95% vs. 89%

K: 91% vs. 71%

P: 100% vs. 100%

at 6 years

MMF: 18%

SRL: 27%

Leukopenia:

30% vs. 10%

CMV: 5% vs. 11%

BK: 0% vs. 2%

PTLD: 5% vs. 5%

Rajab

et al. [22]

77 SPK, 19 PAK,

1 PTA vs. 124

historical control

rATG versus

anti-IL2R

CsA-me/SRL

versus CsA-

me/MMF/CS

5 days NR Pt: 94% vs. 95%

K: 96% vs. 98%

P: 95% vs. 88%

at 1 year

9% vs. 28% No difference in

glucose,

creatinine,

weight gain,

or lipids

Vessal

et al. [35]

11 PTA, 6 PAK,

5 SPLK vs. 32

historical control

rATG Tac/MMF 21 days 59% Pt: 100% vs. 94%

P: 96% vs. 81%

at 1 year

27% vs. 38%

at 1 year

CMV: 14% vs 25%

BK: 9% vs. 19%

Muthusamy

et al. [47]

70 SPK/PAK/PTA Alemtuzumab Tac/MMF NR 86% Pt: 96%

K: 93%

P: 87% at 1–26

months

27% CMV: 7%

BK: 3%

Farney

et al. [24]

17 SPK, 4 PAK Alemtuzumab

versus rATG

Tac/MMF 6 days NR Pt: 100% vs. 100%

K: 100% vs. 80%

P: 94% vs. 100%,

median 6 months

25% vs. 20% NR

For abbreviations see Table 1.
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compared CS-avoidance to CS-withdrawal at 1 week

post-transplant, showing a higher incidence of biopsy-

proven acute rejection in the CS-avoidance group [17].

For evaluation of CS-avoidance in SPK transplantation,

one trial combined a 10-day course of rATG with cyclo-

sporine microemulsion (CsA-me) and MMF in the

absence of CS (Table 3), demonstrating an unexpectedly

low incidence of acute rejection (7%) and comparable

patient and graft survival rates, but relatively high inci-

dence of infections [18]. A prospective comparison study

was later performed by the same group on 50 SPK recipi-

ents equally having CS-avoidance or CS-withdrawal after

3 months, in combination with rATG, CsA-me, and

MMF [19]. Incidence of acute rejection was 4% in both

groups. At 1 year, no statistically significant difference

was observed in recipients or kidney and pancreas surviv-

als; moreover, at 1 and 2 years post-transplant, recipients

in the CS-avoidance group had significantly higher serum

creatinine levels as compared with recipients in the

CS-withdrawal group.

CS-withdrawal after lympho-depleting induction

The use of lympho-depleting antibody induction remains

higher in PT (80% in 2005) as compared with any other

organ transplant setting regardless of the maintenance

[1,2]. Alemtuzumab and rATG have been widely used in

recent CS-withdrawal or -avoidance protocols, while anti-

IL2R antibody induction or even no-drugs regimens are

less utilized.

A small prospective randomized study (50 patients)

showed significant reduction in acute rejection rate in the

SPK recipients treated with rATG induction and CsA/Aza

maintenance as compared with recipients receiving no

induction and same maintenance (36% vs. 76% at 1 year,

P < 0.01) [20]; unfortunately the incidence of infections

Table 4. CNI-free or CNI monotherapy with alemtuzumab induction in pancreas transplantation.

Author

No. patients/tx

type Induction

Maintenance

(after CS w/d)

Time of

CS w/d Survival/follow up Acute rejection

Adverse

events/comments

Gruessner

et al. [26]

21 SPK, 23 PAK,

31 PAK vs. 266

historical control

Alemtuzumab plus

rATG x1 versus

rATG (control)

Alemtuzumab/MMF

versus Tac/MMF

(control)

No CS Pt: 90% (SPK), 91%

(PAK), 97% (PTA)

K: 81% (SPK)

P: 81% (SPK), 91%

(PAK), 71% (PTA)

at 6 months

SPK: 41% vs. 14%

PAK: 14% vs. 10%

PTA: 19% vs. 26%

CMV : 9% vs. 5%

PTLD: 0% vs. 2%

Higher GFR at 6 months

Kaufman

et al. [34]

54 SPK vs. 50 SPK

historical control

Alemtuzumab MMF/SRL versus

Tac/SRL (control)

3 days Pt: 92% vs. 96%

K: 90% vs. 94%

P: 91% vs. 92%

at 1 year

21% vs. 6% 30% of CNI-free

converted to Tac

during 1 year lower

serum creatinine if

remain CNI-free

Thai

et al. [25]

30 SPK

20 PAK

10 PTA

Alemtuzumab Tac 2 days Pt: 94%

K: 87%

P: 89% at 22 months

30% CMV: 12%

HHV6: 2%

PTLD: 2%

Histoplasmosis: 2%

Cryptococcal

meningitis: 2%

For abbreviations see Table 1.

Table 3. CS-avoidance in pancreas transplantation.

Author

No. patients/tx

type Induction

Maintenance

(after CS w/d)

Time of

CS w/d % CS-free Survival/follow up Acute rejection

Adverse events/

comments

Cantarovich

et al. [18]

28 SPK rATG CsA-me/MMF No CS 89% Pt: 96%

K: 96%

P: 75% at 4–24

months

K: 7% CMV: 29%

HSV: 14%

PTLD: 4%

Cantarovich

et al. [19]

25 SPK (CS w/d)

vs. 25 SPK

(no CS)

rATG CsA-me/MMF 3 months vs.

no CS

78% Pt: 96% vs. 92%

K: 96% vs. 88%

P: 76% vs.80%

at 3 years

4% (CS w/d)

4% (no CS)

CMV: 4%

Higher serum

creatinine in no

CS at 1 and 2 years

For abbreviations see Table 1.
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seemed to be higher and leukopenia more common in

the induction group. rATG has also been used with other

maintenance combinations with similar lower rejection

rates [13,14,21,22].

More recently, a growing trend to use alemtuzumab

induction is noted. In one retrospective study, 50 SPK

recipients who received alemtuzumab induction were

compared to 38 SPK recipients who had rATG instead;

both groups received Tac and SRL maintenance. After

3 years, patient and graft survival rates did not signifi-

cantly differ between groups and rejection rates were

nearly equivalent, with viral infections significantly

lower in the alemtuzumab group [23]. These two lym-

pho-depleting agents were later compared in a prospec-

tive randomized study in kidney and pancreas

transplant recipients showing similar safety and efficacy

[24].

Because of the perceived potency of alemtuzumab, few

trials attempted to further reduce maintenance immuno-

suppression (Table 4). A single dose of alemtuzumab was

used to sustain PT recipients receiving Tac alone mainte-

nance, that included 2 days of CS but no anti-metabolites

[25]. Patient and graft survivals were similar to those of

other studies using CNI and anti-metabolites mainte-

nance, although higher incidences of acute rejections and

infections, including two deaths from sepsis were

reported. Later, four doses of alemtuzumab and one dose

of rATG were given to SPK and PTA recipients receiving

MMF maintenance inclusive of alemtuzumab (max 10

doses in the first year) to maintain lymphocyte count

<200/mm3, but without CNI and CS [26]. Despite

comparable short-term patient and graft survival rates,

incidence of acute rejection was significantly higher in

CNI- and CS-free SPK patients; moreover, a trend toward

higher estimated glomerular filtration rate (eGFR) after

6 months was noted. When combined with CNI/MMF or

CNI/SRL alemtuzumab seems to induce a lower T-cell-

mediated rejection rate; however, recent studies suggest

that it may not prevent antibody-mediated rejection

[27,28].

CS-withdrawal and maintenance therapy

To date, the largest randomized, prospective study com-

paring Tac and CsA-me maintenance was conducted by

the Euro-SPK study group [29–31]. Eleven transplant

centers compared the two CNI with rATG induction and

MMF maintenance in 205 SPK recipients. The number of

patients who successfully withdrew from CS was higher in

the Tac group compared with the CsA-me group (52%

vs. 36%, respectively). While patient and kidney survival

rates after 3 years were similar, pancreas survival was

superior in the Tac group (89% vs. 72%, P = 0.002), with

fewer patients as compared with the CsA-me group devel-

oping moderate or severe kidney or pancreas rejection.

A small prospective randomized study compared MMF

and SRL in combination with rATG induction and Tac

maintenance [13]. Both groups showed excellent patient

and graft survival rates along with low rejection rate. Kid-

ney and pancreas allograft function was not significantly

different. Incidence of lower gastrointestinal symptoms

was higher in the MMF than SRL group, but mean leuko-

cytes count was similarly low in both groups. A study

that followed from the same groups showed better kidney

graft survival in the Tac/MMF group than in the Tac/SRL

group (91% vs. 71%, respectively, P = 0.09) [32]. Con-

trary to the expectation of poor kidney graft function in

the Tac/SRL group, the slope of eGFR of the two groups

did not show significantly different results, hypothesizing

that younger donor kidneys used in PT are less suscepti-

ble to the synergistic nephrotoxicity of Tac and SRL. A

larger prospective randomized study of 241 PT recipients

comparing the same immunosuppression by the Euro-

SPK group demonstrated a lower eGFR in the Tac/SRL

group as compared with the Tac/MMF group [33]. Fewer

severe biopsy-proven rejection episodes were also

observed in the Tac/SRL group, while more wound-

repairing problems and hyperlipidemia occurred.

Sirolimus has also been used in combination with

rATG and CsA-me [22]. While the control group in this

study received basiliximab instead of rATG induction, the

CsA-me/SRL group showed significantly lower incidence

of acute rejection than the CsA-me/MMF/CS group (9%

vs. 28% at 1 year, P < 0.01).

Calcineurin inhibitor-free maintenance therapy associ-

ated with rapid CS elimination has been further evaluated

in 54 SPK recipients treated with MMF/SRL and in 50

SPK recipients treated with Tac/SRL; both received

alemtuzumab induction. While there was no significant

difference in graft survival rates, the incidence of acute

rejection was higher in the CNI-free group (21% vs. 6%,

P < 0.05), with the 29.7% of recipients in CNI-free

cohort being converted to Tac during the first year of

follow up [34] (Table 4).

CS-withdrawal in solitary pancreas transplantation

Although a previous study failed to successfully withdraw

CS from PTA recipients [9], a more recent trial demon-

strated similar rejection episodes and graft and recipient

survival rates between the CS-withdrawal group and the

CS-maintenance group [35]. CS was discontinued 21 days

post-transplant in 11 PTA, 6 PAK, and 5 simultaneous

deceased-donor pancreas and living-donor kidney trans-

plant recipients with low immunologic risk, using rATG

induction and Tac plus MMF maintenance. However,
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during the first year post-transplant, CS was resumed in

41% of the patients in the CS-withdrawal group because

of acute rejection or intolerance to MMF. This study also

demonstrated trends toward lower infections in the CS-

withdrawal group (CMV 14% vs. 25% and BK 9% vs.

19%, respectively).

Effects of CS minimization and withdrawal

Post-transplant diabetes mellitus (PTDM) develops in

2–50% of all solid organ transplants, depending on the

immunosuppression used [36], with 15% of kidney, liver,

heart and lung transplant recipients developing PTDM

with the current regimens [37]. Glucose intolerance might

occur after PT because of the diabetogenic effects of CS

and CNI. One recent study reported 19% of PTDM on

144 PT recipients after 3 years receiving CS/CNI mainte-

nance, whereas another trial on 31 SPK CS-treated recipi-

ents showed comparable glucose levels than CS-free

patients [38,39]. Low-dose CS maintenance might not

impair insulin-mediated glucose disposal, although higher

insulin levels are required to maintain glucose tolerance

with associated higher triglyceride levels.

Favorable trends on some cardiovascular risk factors,

such as blood pressure and total cholesterol levels, were

noted in some studies, while others showed a parallel

reduction of high-density lipoprotein cholesterol levels

after CS-withdrawal in CsA-based kidney and SPK trans-

plant recipients [5,9,10,40,41]. Reduction of CS-related

side-effects and cardiovascular events are yet to be dem-

onstrated in larger scale prospective studies.

Conclusions

Several studies have shown that CS can be withdrawn in

PT, without apparently increasing the risk of acute rejec-

tion, but most of them are uncontrolled trials in low-

risk patients with small numbers of participants and rel-

atively short-term follow up. The benefits of CS on

long-term graft function have to be weighed against the

short and long-term complication of CS use, mainly car-

diovascular events and glucose control in diabetic

patients [42]. Large-scale prospective randomized studies

with long-term follow up are necessary to assess risks

and benefits of CS-free immunosuppressive regimens in

PT before recommending such strategies as standard

practice.

Islet transplantation

Type 1 diabetes mellitus is an autoimmune disease of

infants and young adults leading to selective destruction

of insulin-producing beta-cells within the pancreatic islets

[48]. The consequent insulin deficiency causes hyperglyce-

mia with acute (e.g. ketoacidosis) and chronic complica-

tions (e.g. neuropathy, retinopathy, nephropathy),

dyslipidemia and accelerated atherosclerosis, with

increased cardiovascular morbidity and mortality, and

poorer quality of life [49,50].

Exogenous insulin is the standard therapy with tailored

diet and physical exercise. Novel insulin formulations and

infusion-pump technologies have significantly improved

glycemic control while reducing complications [42,50,51].

Unfortunately, 20% of patients can not achieve good and

stable metabolic control or avoid hypoglycemia and com-

plications because of the concomitant alteration of the

‘contra-regulatory system’ [52]. In addition, intensive

treatment is associated with severe hypoglycemia episodes

and increased cardiovascular events [53–56].

Islet allo-transplantation is an attractive treatment

capable of restoring a relatively physiological ‘glucose

sensing’ and insulin secretion in patients with brittle

T1DM, and is a lesser invasive procedure with fewer com-

plications, in terms of related morbidity and mortality,

when compared with PT. Current indications include

patients with negative stimulated C-peptide (£0.3 ng/ml)

and imminent or end-stage renal disease who will receive

or already has had a kidney transplant (SIK or IAK), to

protect graft’s longevity. In addition, IT alone (ITA)

transplantation is a valid option for patients with normal

or minimally-altered renal function and frequent, acute

and severe metabolic complications (life-threatening

hypoglycemia, ketoacidosis, and hyperglycemia); and/or

incapacitating physical and emotional problems with

insulin therapy; and/or failure of insulin management to

prevent complications [57–60].

Criteria for multi-organ, deceased donor management

and methods for pancreas procurement and preservation

have been defined [61–63]. An automated method for

mechanically enhanced digestion of the organ, using col-

lagen-lytic enzymes to extract islets, and semi-automated

purification techniques using continuous density gradients

to divide endocrine from exocrine cells, are used [64–67].

Beta-cell content and function is then assessed to define

product’s suitability prior to transplant [68]. IT is per-

formed by gravity infusion into the portal vein through

percutaneous trans-hepatic approach, under fluoroscopic

and ultrasound guidance, with local anesthesia (Fig. 1)

[69,70].

Historical protocols

Initial clinical trials of IT in T1DM patients started in late

1980s, mainly as simultaneous islet-kidney transplantation

(SIK) and islet-after-kidney transplantation (IAK), or

combined with other solid organ transplants (Table 5).

Steroids withdrawal in pancreas and islet transplantation Mineo et al.

ª 2008 The Authors

26 Journal compilation ª 2008 European Society for Organ Transplantation 22 (2009) 20–37



Table 5. Clinical islet allo-transplantation trials (adapted from Marzorati et al. [59]).

Author Transplant T1DM Patients no. IEQ/kg Induction Mantainance Graft function Graft duration (c-pept)

Mintz et al. [151] IAK Yes 4 na None CsA na na

Scharp et al. [152] IAK Yes 1 na MALG CsA ins ind 22 days

Tzakis et al. [71] LIT No 9 na None Tac 44% ins ind 48–186 days 100%

Scharp et al. [153] ITA

IAK

IAK

Yes 3

3

3

6319

6161

13 916

MALG Pdn, Aza, CsA

Pdn, Aza, CsA

Pdn, Aza ± CsA

Reduced ins req 2 weeks

2 weeks–10 months

>30, >150,

>180 days

Ricordi et al. [72] LIA

SIK

Yes 10

9

na None Tac, Pdn 100% c-pept 5–19 months (6)

>19 months (1)

Socci et al. [154] SIK

IAK

Yes 2

4

na rATG

rATG (2)

Pdn, CsA, Aza

Pdn, CsA, Aza

Reduced ins req >3 months (3)

Gores et al. [155] OLTx & ICTx No 6 3030 None Tac, MP 100% ins ind >8 months

Mazzaferro et al. [156] ILT No 1 na None CsA ins ind na

Hering et al. [74] IAK Yes 1 6140 rATG, Pdn Pdn Reduced ins req >6 months

Ricordi et al. [157] LIA + BMC No 2 7631; 5851 None Tac, Pdn Reduced ins req na

Lenisa et al. [158] SIK

IAK

Yes 7

14

350 000 (tot) rATG CsA, rATG Reduced ins req >6 months 68%

12–48 months 52%

Rilo et al. [159] LIA

SIK

LIA

LIA + BMC

SIK + BMC

Yes 11

11

4

1

6

na None Tac

Tac, Pdn

Tac, Pdn

Tac, Pdn

Tac, Pdn

55% ins ind

None

None

None

Reduced ins req

2–6 months

54 months

1–49 months

14 months

17 months

Ricordi et al. [160] OLTx & ICTx No 6 3030 None Tac, Pdn na >12 months 67%

Alejandro et al. [73] SIK

IAK

Yes 7

1

9092–21 185 OKT3 MP, Aza,CsA Reduced ins req >12 months 80%

>6 years 25%

Secchi et al. [75] SIK

IAK

Yes 8

13

9433 rATG

rATG

Pdn, CsA, Aza

Pdn, CsA, Aza

45% ins ind

50% ins req

>4 months (8)

Tibell et al. [76] SIK

IAK

Yes 2

1

>5700

8800

FATG

FATG

CsA, MMF, Pdn

CsA, MMF, Pdn

ins ind 6 months

8 weeks

Keymeulen et al. [161] IAK Yes 7 2100–5300 ±rATG Pdn, CsA, Aza 28% ins ind >12 months 43%

Bretzel et al. [78] SIK

IAK

Yes 12

12

5414

8732

FATG

FATG

Pdn, CsA, Aza

Pdn, CsA ± Aza

Reduced ins req >3 months 100%

>3 months 83%

Oberholzer et al. [77] ILT

SIK

IAK

Yes 1

8

4

5625

3162–9555

3763–8800

rATG

Bas (after

1997)

Pdn, CsA, Aza

CsA, MMF, Pdn

(after 1998)

85% ins ind 3–63 months

Pattou et al. [162] IAK Yes 1 10 000 FATG, Pdn CsA, Pdn, Aza, FATG Reduced ins req >1 month

Shapiro et al. [83] ITA Yes 7 11 547 Dac Sir, Tac 100% ins ind >12 months 67%

Tibell et al. [163] SIK

IAK

Yes 5

2

5700–13 500 FATG (2),

Bas (3)

FATG (1),

Bas (1)

CsA, MMF, Pdn

CsA, MMF, Pdn

Reduced ins req >12 months 30%

Benhamou et al. [164] IAK Yes 10 9030 Bas, MP CsA, MMF, Tac (2) 20% ins ind >10 months 50%

Hirshberg et al. [165] ITA Yes 6 >10 000 Dac Sir, Tac 50% ins ind >22 months 83%

Hering et al. [87] ITA Yes 6 >10 300 OKT3c1

(Ala-Ala)

Sir, Tac 67% ins ind >12 months 83%

Frank et al. [166] ITA

IAK

Yes 9

4

15 475 Dac Sir, Tac 100% ins ind >26 months 57%

>26 months 20%

Goss et al. [167] ITA Yes 10 >10 000 Dac Sir, Tac 50% ins ind >18 months 90%

Lehmann et al. [168] SIK Yes 9 16 172 Dac Sir, Tac 84% ins ind >12 months 89%

Pileggi et al. [89] IT + HSC

IT + HSC

SIK

IAK

Yes 3

2

1

7

8629

7981–10 669

2464

9092–21 185

Dac

rATG

Dac

OKT3

Tac, MMF, MP,

CsA, MMF

Tac, MMF, MP

CsA, Aza, MP

Reduced ins req pnf, 45 days,

>12 months

130 days (1)

>24 months

>14 years 25%

Hering et al. [88] ITA Yes 8 7271 rATG, Dac,

Eta

Sir, MMF, Tac 100% ins ind >12 months 62%

Froud et al. [85] ITA Yes 16 13 552 Dac, Inf Sir, Tac 100% ins ind >26 months 80%

Kempf et al. [169] ITA, SIK,

IAK

Yes 22 >10 000 Dac, Bas Sir,Tac; Eve,

CsA

83% ins ind >12 months 100%
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Immunosuppressive regimens used were those of the

kidney transplant setting, based on CS (prednisolone or

methylprednisolone), Aza and/or CsA, with polyclonal

antibodies (animal-derived ATG) as induction in few

trials. Islets were injected into the liver circulation during

the main surgery or by transient percutaneous intra-

portal catheter [57].

The first successes were registered in early 1990s in islet

cluster allograft, using the recently introduced Tac, a new

CNI with superior immunosuppressive effects and fewer

side-effects than CsA [71–73]. In late 1990s, a more selec-

tive lympho-depleting induction was attempted using ba-

siliximab, an anti-IL2R chimeric monoclonal antibody, to

reduce acute rejection episodes. Similarly, the anti-CD3

OKT3 was tested but soon abandoned because of severe

cytokine release. Moreover, a de novo purine synthesis

inhibitor MMF, pro-drug of Mycophenolate Acid, became

available for maintenance therapy, showing equal immu-

nosuppressive efficacy but lower nephrotoxicity than CNI

[74–77].

The overall results of these clinical trials were not satis-

factory, with limited islet allograft survival, high rates of

primary islet nonfunction and only transient insulin inde-

pendence, when IT was performed clustered with other

allografts under CS/CNI regimens. Despite detectable

C-peptide with significant reduction of insulin require-

ments and improved metabolic control, 30% of the recip-

ients showed graft function after 1 year, but only 10% of

them were insulin-free. A main obstacle in achieving bet-

ter results was the diabetogenic effect of CS and CNI on

beta-cell function and on insulin sensitivity, with drug-

related increase of lipids levels also associated with allo-

graft injury [78,79].

Corticosteroid induces hyperglycemia mainly by reduc-

ing insulin-mediated glucose uptake and utilization in

peripheral tissues with insulin resistance, while the issue

of direct beta-cells toxicity through inhibition of insulin

production and secretion is still controversial, probably

depending on dose and time of exposure. Secondary dysl-

ipidemia is characterized by increased total and LDL-cho-

lesterol and triglycerides with reduced HDL-cholesterol

[80,81].

Calcineurin inhibitors frequently cause hyperglycemia

and hyperlipidemia. High-dose Tac (trough levels > 6 ng/

Table 5. continued

Author Transplant T1DM Patients no. IEQ/kg Induction Mantainance Graft function Graft duration (c-pept)

Ryan et al. [91] ITA Yes 65 11 910 Dac, Inf; Alem Sir, Tac 100% ins ind >60 months 80%

Warnock et al. [170] ITA Yes 10 13 806 rATG, Dac Sir, Tac, MMF 100% ins ind 6–21 months 100%

Toso et al. [171] IAK Yes 8 12 530 Dac Sir, Tac 71% ins ind >12 months

O’Connell et al. [172] ITA Yes 6 17 958 Dac Sir, Tac 50% ins ind >18 months 83%

Shapiro et al. [90] ITA Yes 23 13 473 Dac Sir, Tac 58% ins ind >24 months 70%

Ghofaili et al. [119] ITA Yes 11 14 312 Dac Tac, MMF, Sir

(1); Exen

73% ins ind 4–30 months 100%

Badet et al. [173] ITA Yes 10 11 089 Dac Sir, Tac 80% ins ind >24 months 80%

Maffi et al. [112] ITA Yes 19 11 477 Dac Sir, Tac, MMF

(6), CsA

65% ins ind >24 months 33%

Gillard et al. [174] ITA Yes 5

5

4700

6400

rATG Sir

Sir, Tac

40% reduced

ins req

60% ins ind

>30 months 40%

>24 months 60%

Kaplan et al. [175] ITA Yes 1 450 000 (tot) Dac, Eta Tac, MMF, Sir

then Dac

ins ind >20 months

Gerber PA et al. [176] SIK Yes 13 345 000 (tot) Dac Sir, Tac 31% ins ind >48 months 40%

Cure et al. [102] IAK Yes 7 14 779 Dac, Inf or Eta Sir, Tac or

MMF (2);

Aza (1), CsA

(2); Pdn (3)

30% ins ind >36 months 86%

Gangemi et al. [120] ITA Yes 4

6

24 385

11 483

Dac

Dac, Eta

Sir, Tac

Sir, Tac; Exen

100% ins ind >30 months 50%

>21 months 80%

Mineo et al. [89] IT + HSC Yes 6 8611 Dac, Inf Sir, Tac Reduced ins req >15 months 67%

T1DM, type 1 diabetes mellitus; IEQ, islet equivalent; NA, not available; Ins Ind, insulin indipendence; Ins Req, insulin requirement; C-pept, c-peptide positiv-

ity (>0.5 ng/ml); PNF, prymary nonfunction; Tot, total IEQ; in parentesis the number of recipents; IT + BMC, islet transplant + whole bone marrow cells;

IT + HSC, hematopoietic stem cells-islet transplant; ITA, islet transplantation alone; IAK, islet-after-kidney transplantation; ILT, lung-islet transplantation;

LIT, liver-islet transplantation; LIA + BMC, liver-islet transplantation + whole bone marrow; SIK, simultaneous islet-kidney transplantation; rATG, rabbit anti-

thymocyte globulin; Bas, basiliximab; Alem, alemtuzumab/Campath-1H; Dac, daclizumab; Eta, etanercept; FATG, Fresenius anti-thymocyte globuline;

hOKT3c1 (Ala-Ala), humanized anti-CD3 monoclonal antibody; Inf, infliximab; MALG, Minnesota anti-lymphoblast globulin; CsA, cyclosporin A; Eve, ever-

olimus; MMF, mycophenolate mofetil; MP, methylprednisolone; Pdn, prednisolone; Sir, sirolimus; Tac, tacrolimus; AZA, azathioprine; Exen, exenatide (syn-

thetic analog of the glucagon-like peptide-1).
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ml) is more diabetogenic but less deleterious on lipids

metabolism than CsA. Hyperglycemia results from

decreased insulin synthesis and secretion, with histologic

abnormalities, such as: diminished beta-cells density, loss

of secretory granules, cytoplasmatic swelling and vacuoli-

zation, and apoptosis. These alterations are dose-depen-

dent and reversible by drug discontinuation, without

cumulative toxicity on beta-cells. Effects on insulin sensi-

tivity are still debated, various reports suggesting hyperin-

sulinemia with insulin resistance. Dyslipidemia and

accelerated atherosclerosis together with increased vascu-

lar tone and hypertension may also occur [80,82].

Current protocols

In 2000, the introduction of novel immunosuppressive

agents, such as the anti-IL2R humanized monoclonal

antibody daclizumab at induction, and the mTOR inhibi-

tor SRL at maintenance, has allowed for avoidance of CS

and reduction of Tac dose, in specifically-designed ITA

protocols (Table 5).

The Edmonton group reported remarkable results

using a protocol that included daclizumab induction,

with high-dose SRL (trough levels 12–15 ng/ml in the

first 3 months, then 10–12 ng/ml) plus low-dose Tac

maintenance (trough levels 3–6 ng/ml), using multiple

fresh islet infusions. All recipients became insulin-inde-

pendent, with normalized HbA1c and absence of severe

hypoglycemia, 80% of them remaining insulin-free after

1 year [83,84]. Insulin independence was obtained by

infusing collectively a minimum of 5–10 000 IEQ/kg (or

350–700 000 IEQ total), usually from multiple (2–4)

donors.

The Miami group achieved similar results by culturing

the islets for 2 days in supplemented media prior to

transplant, to help beta-cells in recovering from the dam-

age of isolation, increasing islet mass and viability, and to

allow an appropriate administration of induction drugs.

Moreover, the use of anti-inflammatory agents just before

the islet transplant, such as the TNF-a blockers infliximab

and Etanercept, proved to be limiting peri-infusion

inflammation and early beta-cell loss, increasing islet

engraftment and survival [85,86]. In addition, the Minne-

sota group obtained insulin independence from single

donor and suboptimal islet mass using the modified anti-

CD3 humanized monoclonal antibody OKT3c1(ala-ala)

or rabbit-ATG at induction for lympho-depletion [87,88].

Finally, in a few clinical trials, whole donor bone marrow

or hematopoietic stem cells were co-transplanted without

ablative conditioning to induce recipient chimerism and/

or graft tolerance, but no islet allograft survived the

immunosuppression weaning [86,89].

Despite stable, normalized glucose control, prolonged

absence of hypoglycemia, reduction of complications,

improved cardiovascular function and better quality of

life, only 10–20% of recipients remained insulin-free after

5 years, although 80–90% of them exhibited a C-peptide

>0.5 ng/ml with 60% reduction in insulin requirement

[90–95]. Notably, C-peptide seems to exert beneficial

effects on nerve function and blood flow, with myocardial
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vasodilatation and reduced glomerular hyperfiltration and

albuminuria, thus slowing down the progression of

nephropathy [96–98].

Acute complications of islet infusion procedure are rare

(<2–6%), including intra-abdominal bleeding or effu-

sions, peripheral portal vein partial thrombosis and cathe-

ter obliteration by islets [99]. Advanced radiological and

infusion techniques, intra-hepatic catheter-tract coagu-

lants, and peri-procedural anti-thrombotic prophylaxis

have reduced their incidence [69,70,99,100].

The sustained islet graft survival of recent protocols has

unveiled the occurrence of long-term immunosuppres-

sion-related side-effects, including common or opportu-

nistic infections (i.e. urinary and respiratory tracts), or

viral re-activation (i.e. EBV, CMV or HSV), all resolved

after specific treatments. To date, only seven de novo

malignancies have been reported in the over 700

recipients of an IT performed using the current protocols

[90,99–105].

Sirolimus has contradictory effects on insulin secretion

and action. In skeletal muscle and adipose cells, long-term

exposure seems to reduce insulin-dependent glucose

uptake and insulin sensitivity; in beta-cells, the reduction

of insulin secretion seems to arise only at doses higher than

the ones used in clinical setting, whereas improved basal

and glucose-stimulated insulin secretion, with reduced

beta-cells apoptosis, seem to arise at therapeutic concentra-

tions. Reversible dose-dependent dyslipidemia also occur.

No negative effects of everolimus, a newly introduced

mTOR inhibitor, have been reported on glucose metabo-

lism, while it can induce dyslipidemia [82,106,107].

Mycophenolate mofetil seems to have little detrimental

effects on insulin secretion while lipids metabolism is not

affected. Recently, the new enteric-coated formulation

Mycophenolate Sodium has shown a superior tolerability

profile, and is used when toxicity from the other drugs is

persistent [82,106,108,109].

Nephrotoxicity can be a side-effect of the combined

use of immunosuppressive drugs, especially when previ-

ous alterations in renal function are present (e.g. micro-

albuminuria and reduced eGFR). Tac can induce acute

vasomotor vasculopathy and tubulopathy and/or chronic

fibrotic vasculopathy and interstitial fibrosis. Similarly,

SRL can cause acute renal dysfunction and/or chronic

proteinuria [106,107,110–113].

Furthermore, SRL has demonstrated anti-angiogenic

properties, and together with Tac and MMF, can have

anti-proliferative and anti-differentiating effects on ductal

and islet cells, especially at the high concentrations

reached in the hepatic circulation, that might impair

beta-cells engraftment and revascularization as well as via-

bility and regeneration, preventing both neogenesis and/

or self-replication [114–118].

In case of islet graft dysfunction with rising glucose lev-

els, little doses of insulin are required to maintain meta-

bolic stability. Recently, exenatide, a synthetic analog of

the glucagon-like peptide-1, has been introduced in addi-

tion or even as substitution of insulin therapy. Indeed, it

reduces glycemic levels by decreasing glucagon secretion,

gastro-intestinal empting and glucose absorption and, at

least in experimental models, by improving beta-cells

function and survival, with possible cell regeneration

[119–121].

During the intra-hepatic islet infusions, an instant

blood-mediated inflammatory reaction is responsible for

the destruction of 50–70% of the beta-cells, attributable

to the up-regulation on islets surface after the isolation

mainly of tissue factor that is able to trigger coagulation

and inflammation. Anti-coagulants (i.e. heparin) in the

transplant media and as peri-transplant recipient prophy-

laxis may counteract this reaction [122,123].

A concern, whose clinical impact remains to be deter-

mined, is the risk of recipient allosensitization, especially

when multiple donor infusions are used, and possibly

relates to the lack of HLA matching to avoid recurrent

autoimmunity. Persistence or recurrence of T1DM-spe-

cific autoantibodies has been associated with early islet

graft failure [124]. Allo-sensitization is unusual in IT

recipients under proper immunosuppression and its influ-

ence on islet graft survival remains uncertain, while it

generally occurs if complete immunosuppressive drugs

discontinuation takes place, as after islet graft failure

[125].

Future perspectives

Optimization of strategies to prevent pre- and post-trans-

plant islet loss is currently being tested in different insti-

tutions worldwide, and despite many challenges, results

continue to constantly improve in clinical and experimen-

tal settings (Fig. 1) [126,127].

Ongoing studies aim at identifying alternative, less hos-

tile implantation sites, in combination with biocompatible

devices or immuno-protective islet encapsulation [128–

130]. New protocols including more potent and selective

lympho-depletion, immuno-modulatory and co-stimula-

tory blockade agents, may increase islet graft survival

while avoiding beta-cells toxicity [131–135]. Different

strategies have induced hematopoietic chimerism or oper-

ational tolerance with acceptance of islet grafts in animals

as well as of solid organs in the clinical setting, using

minimal irradiative and/or pharmacological nonmyelo-

ablative conditionings followed by donor hematopoietic

stem cells infusion [136–140]. Different donor- or recipi-

ent-derived cells with immuno-modulatory properties

(i.e. lymphocytes, mesenchimal stem cells, regulatory
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T-cells, tolerogenic dendritic cells) may augment the

chances of long-term graft acceptance [141–143].

Surrogate human- or animal-derived insulin-producing

cells are an attractive option to overcome organs shortage,

providing a renewable source of beta-cells. Hepatic and

pancreatic nonendocrine cells, or adult hematopoietic,

mesenchimal, and embryonic stem cells have been manip-

ulated to obtain cells capable of secreting insulin in

response to physiological concentration of glucose, as well

as xenogeneic islets (i.e. porcine) are being tested, but

present results are still far from clinical applicability

[144–149].

Conclusions

Islet allo-transplantation for brittle T1DM using current

protocols has led to successful engraftment and good

short-term graft function. Improvements in isolation and

transplant procedures have made IT a feasible and mini-

mally invasive therapeutic approach for selected patients.

However, long-term islet graft survival is still low and

several obstacles persist, including immunosuppression-

related beta-cells and systemic toxicity, allo- and auto-

immnune responses and an unfavorable transplantation

site. Results are progressively improving and less noxious

immunosuppressants or tolerogenic protocols, alternative

implantation sites, immuno-protective encapsulation or

biocompatible devices, surrogate or xenogeneic insulin-

producing cells, together with pancreas and islets process-

ing optimization, will overcome the current challenges

[150].

For further information including transplant data and

annual reports:

US Department of Health and Human Services (http://

www.hhs.gov), Organ Procurement and Transplantation

Network (http://www.optn.org), Scientific Registry of

Transplant Recipients (http://www.ustransplant.org),

Health Resources and Services Administration (http://

www.hrsa.gov), and the Collaborative Islet Transplant

Registry (http://www.citregistry.org).
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