
ORIGINAL ARTICLE

Analysis of independent microarray datasets of renal
biopsies identifies a robust transcript signature of acute
allograft rejection
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Introduction

Despite clinical application of potent new immuno-sup-

pressive and -regulatory drugs in numerous combina-

tions, acute allograft rejection (AR) remains a common

and serious post-transplantation complication [1]. It is

also a risk factor for late graft dysfunction [2], a relent-

lessly progressive process characterized histologically by a

gradual increase in interstitial fibrosis and tubular atrophy

[3]. A very powerful predictive factor in adults and chil-

dren is the number of acute rejection episodes that can-

not be treated successfully. Strategies to detect and treat

AR as early as possible and prior to the occurrence of

irreversible structural lesions would increase graft sur-

vival.

However, current monitoring and diagnostic modalities

are ill-suited to the diagnosis of acute rejection at an early

stage. Procedures to diagnose allograft rejection generally

depend upon laboratory parameters like serum creatinine

or proteinuria, and histologic assessment of graft biopsies
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Summary

Transcriptomics could contribute significantly to the early and specific diagno-

sis of rejection episodes by defining ‘molecular Banff’ signatures. Recently, the

description of pathogenesis-based transcript sets offered a new opportunity for

objective and quantitative diagnosis. Generating high-quality transcript panels

is thus critical to define high-performance diagnostic classifier. In this study, a

comparative analysis was performed across four different microarray datasets of

heterogeneous sample collections from two published clinical datasets and two

own datasets including biopsies for clinical indication, and samples from non-

human primates. We characterized a common transcriptional profile of 70

genes, defined as acute rejection transcript set (ARTS). ARTS expression is sig-

nificantly up-regulated in all AR samples as compared with stable allografts or

healthy kidneys, and strongly correlates with the severity of Banff AR types.

Similarly, ARTS were tested as a classifier in a large collection of 143 indepen-

dent biopsies recently published by the University of Alberta. Results demon-

strate that the ‘in silico’ approach applied in this study is able to identify a

robust and reliable molecular signature for AR, supporting a specific and sensi-

tive molecular diagnostic approach for renal transplant monitoring.
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(i.e. interstitial inflammation and tubulitis), which are

not very specific and are often found in stable patients

[4]. There is a need for more specific and objective diag-

nostic tools that are also able to provide mechanistic

information on the underlying pathologic events.

Gene-expression profiling might provide criteria to

refine the histology-based Banff classification [5] of renal

allograft pathology as marker transcripts should be detect-

able very early after the pathologic process starts, preced-

ing the occurrence of histologically visible lesions [6].

Furthermore, the early molecular status might have a

prognostic impact on AR and renal function prediction.

Over the last 6 years, high-density cDNA and oligonu-

cleotide microarrays have been used to classify and pre-

dict allograft rejection [7]. Recently, Mueller et al. [8]

developed a new analysis concept using pathogenesis-

based transcript sets (PBTs) defined in a mouse model, to

translate microarray results into measurement of biologic

processes in human renal transplant biopsies. The study

suggests that the use of PBTs for diagnostic purpose is

likely to become a robust and reliable new quantitative

tool for assessing rejection and inflammation. The PBTs

used in that study were mainly defined in mouse models

and confirmed in human cell culture. The definition of

new transcripts sets directly based on human biopsies

data may provide a possible refinement and/or enhance-

ment of this methodology.

Then, we decided to perform a new gene-expression

study on 47 renal biopsies for clinical indication from an

unselected cohort of 45 patients (Table 1). Histological

biopsy grading according to Banff ¢97 [5] revealed differ-

ent types and grades of AR and chronic allograft

nephropathy (CAN). We focused on the analysis of AR,

and extended the analysis of the AR biopsies from our

collection by a comparative analysis across three addi-

tional datasets, including heterogeneous clinical sample

collections from two published studies [9,10] and samples

from an AR renal allograft nonhuman primate (NHP)

model [11,12]. Such a comparative analysis of large-scale

transcriptomic datasets has been demonstrated previously

as a powerful approach in the analysis of multiple cancer

studies [13]. This strategy allowed us to identify a consis-

tent gene signature for AR. The ability of this signature to

identify AR accurately was evaluated in each of the four

independent datasets and further validated in 143 biopsies

from the recent Edmonton study [8].

Patients and methods

Patients and samples for microarray studies

All patients at Hôpital Tenon, Paris, France, undergoing a

renal allograft biopsy because of clinical indication

(between February 2003 and September 2004) were

included in the study. In addition, a few patients from

Hôpital Bicêtre, Paris, and Hôpital Pellegrin, Bordeaux,

France, were recruited. Seventy-five renal core biopsies

were obtained by a 16-gauge biopsy needle. About 2/3 of

the respective biopsy was processed for histopathology

and the remaining was collected immediately in RNAlater

(Ambion, Austin, TX, USA). Two independent patholo-

Table 1. Demographic and clinical characteristics of the five groups of the Paris biopsies for clinical indications according to histologic analysis.

Parameter AR CAN + AR Borderline NR CAN

No. biopsies 8 7 3 7 22

No. patients* 8 6 2 7 22

Recipient age (years) 43.9 ± 10.9 41.7 ± 7.6 34.6 ± 10.2 43.1 ± 8.7� 46.9 ± 12.2�

Recipient gender (n, % male) 6 (75%) 2 (33%) 1 (50%) 6 (86%) 15 (68.2%)

Donor age (years) 36.3 ± 8.3� 39.0 ± 19.8 46.5 ± 0.7 45.2 ± 15.4 43.4 ± 17.1�

No. HLA mismatches 2.8 ± 1.6� 2.7 ± 2.1� 3.5 ± 0.7 1.8 ± 1.5� 2.9 ± 1.3�

No. historic AR episodes (% patients with ‡1) 75 83.3 100 14.3 36.4

Time of biopsy (months post-Tx) 28.1 ± 51.1 52.1 ± 48.3 3.4 ± 4.9 25.1 ± 51.4 83.2 ± 64.8

No. patients with CNI toxicity (histology) 1 0 0 1 3

No. patients on a CNI-free regimen 1 0 0 0 2

Serum creatinine (lmol/l) 253.0 ± 109.3 461.1 ± 317.3 223.0 ± 40.7� 160.0 ± 44.4 281.6 ± 204.6

GFR MDRD-calculated (ml/min/1.73 m2) 33.2 ± 18.3� 19.2 ± 15.0 31.5 ± 2.6 43.0 ± 15.5 27.6 ± 13.5�

CAN, chronic allograft nephropathy; AR, acute rejection; NR, no rejection (but clinically not stable); GFR, glomerular filtration rate; Tx, transplanta-

tion.

All patients were on standard CNI triple regimen: 68% cyclosporine and 32% tacrolimus-based, mainly combined with mycophenolate and corti-

costeroids.

Ethnicity: 60% Caucasian, 18% African, 22% other origin.

Included are all samples used for signature generation (see Table S1 for individual data).

*Five patients had two sequential biopsies.

�Some values unknown.
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gists classified the biopsies according to Banff ¢97 catego-

ries (see Table S1) [5]. Table 1 displays a summary of

demographic and clinical characteristics of the five sample

groups for all biopsies finally included in microarray anal-

yses after filtering with stringent quality controls of total

RNA and GeneChip raw data, leading to exclusion of

36% of samples. Nineteen control samples originated

from nephrectomy specimens of patients with normal

kidney function suffering from solid renal cancer, using

nonaffected cortex at maximal distance. Thirteen samples

matched all quality criteria.

Microarray hybridization

Total RNA was extracted using RNeasy according to the

manufacturer’s protocol (Qiagen, Hilden, Germany),

quantified by ND-1000 spectrophotometer (NanoDrop

Technologies, Wilmington, DE, USA), and quality-con-

trolled by Bioanalyzer 2100 (Agilent Technologies, Santa

Clara, CA, USA). Only biopsies resulting in high-quality

total RNA were further analyzed. Fifty nanograms of total

RNA were subjected to Affymetrix 2-cycle cDNA amplifi-

cation, labeling, and hybridization to Human Genome

U133 Plus 2.0 arrays containing 54 120 probe sets repre-

senting >47 000 different transcripts (Affymetrix, Santa

Clara, CA, USA). The resulting Affymetrix raw data (CEL

files) are available in the Gene-expression Omnibus

microarray data repository (GEO) under GSE9493

(http://www.ncbi.nlm.nih.gov/geo) and are referred to in

this study as Paris dataset.

Further microarray datasets

Nonhuman primate samples

Cynomolgus monkey (Macaca fascicularis) kidney

allografts and controls were collected at necropsy from a

life-supporting AR model [12] with histopathologic

assessment of rejection (Table 2). Total RNA from renal

cortex was extracted as described above but processed

without amplification using Affymetrix standard protocol

and HG-U133A Gene Chips.

Publicly available clinical datasets

Two public microarray datasets were downloaded from

GEO. One analysis (Stanford) performed on a customized

cDNA-spotted two channel microarray platform, is avail-

able under the accession number GSE343 [9]. Another

analysis (Cleveland) performed on the Affymetrix HG-

U95A version 2 oligonucleotide platform is available

under the accession number GSE1563 [10]. These two

public datasets were compared with above mentioned

NHP and clinical ‘Paris’ datasets. Finally, this comparative

analysis includes a total number of 36 AR, three border-

line, 32 nonrejecting and 34 nontransplanted control

samples (Table 2). We used the Edmonton study [8] as a

validation dataset. CEL files were downloaded from

http://transplants.med.ualberta.ca.

It is important to mention that two different GeneChip

platforms generated the data in this comparative analysis,

the oligonucleotide-based Affymetrix technology and the

cDNA-spotted Stanford microarray.

Data analysis

Generation of microarray-derived data

A single weighted mean expression level for each gene

along with a P-value indicating reliable transcript detec-

tion was derived using the Microarray Suite 5.0 software

(MAS5; Affymetrix). Data were scaled for each array (tar-

get intensity of 150). For further analysis, the cell inten-

sity (CEL) files were subjected to the Robust Multichip

Analysis normalization. Several quality control measures

on each array were assessed, including review of the

scanned image for significant artifacts, background and

noise measurements that differ significantly from other

chips, average of present and absent calls. Furthermore,

arrays failing two out of the three following criteria were

excluded from the study: the 3¢–5¢ ratio of the intensities

for glyceraldehyde-3-phosphate dehydrogenase (ratio £ 4),

average of calls (‡40% of present calls), and scaling factor

(‡2 or £0.5).

Class comparison

Analysis of the microarray raw data was performed using

GeneSpring GX7.3 (Agilent Technologies). Genes differen-

tially expressed among different sample classes were iden-

tified using a one-way anova (P £ 0.05), with or without

a false discovery rate £5% (Benjamini and Hochberg

FDR) and additional cutoff based on twofold change

Table 2. Synopsis of gene-expression datasets and samples used for

bioinformatic comparative analyses.

Samples

dataset AR

CAN

+ AR Borderline CAN CAV NR Control Reference

Paris 8 7 3 22 7 13 This paper�

Stanford* 15 – – – 15 – [9]

Cleveland* 7 – – – 10 9 [10]

NHP 6 – – – 8 – 12 This paper

Total 36 7 3 22 8 32 34

NHP, nonhuman primate; CAV, chronic allograft vasculopathy.

*Number of datasets as available in GEO; no distinction possible from

GEO annotation between the eight controls and seven nonrejecting

samples in the Stanford dataset.

�The Paris dataset is available in GEO under accession number

GSE9493.
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between groups. The differential expression of 20 individ-

ual genes was confirmed by inventoried quantitative real-

time PCR assays (Applied Biosystems, Foster City, CA,

USA) (see Figure S1).

Functional analysis of expression data

Gene regulatory networks were generated using MetaCore

analytical suite version 4.2 build 8168 (GeneGo, St Joseph,

MI, USA). MetaCore is a web-based suite for functional

analysis of experimental data in the context of manually

curated human protein interactions, canonic pathways,

and knowledge-based ontologies of cellular processes, dis-

eases, and toxicology. The database includes over 160 000

human protein interactions and metabolic reactions. The

70 genes from the ARTS were subjected to enrichment

analysis in GO biologic processes (Table 4). Both enrich-

ment analysis and calculation of statistical significance of

networks are based on P-values, which are defined as the

probability of a given number of genes from the input list

to match a certain number of genes in the ontology’s

folder, or the probability of the network’s assembly from a

random set of nodes (genes) the same size as the input

list. The ARTS genes were further used to build networks

using the Analyze networks (transcription regulation)

algorithm that generate sub-networks centered on tran-

scription factors (Fig. 1). The sub-networks were scored

and prioritized based on relative enrichment with the data

from input list and saturation with ‘canonic pathways’

using P-values and z-scores as statistical metrics. Legend

describing symbols in the network could be found at

http://www.genego.com/metacore.php.

Score-based classification

To assess the validity of this study’s ARTS gene list, we

applied it in the context of a recent report [8] propos-

ing the use of PBT-based scores for the evaluation of

ongoing biologic processes during renal allograft rejec-

tion. In brief, gene expression was defined as fold

change versus controls. Gene expression within the

ARTS list was summarized as a score by calculating the

geometric mean of fold changes across all probe sets in

the ARTS list. Using linear discriminant analysis, a score

classifier was built based on histopathology and on the

retrospective diagnosis of episodes. Two classes were

defined in each case as described [8]: rejection (T-cell-

mediated, antibody-mediated, mixed) and nonrejection

(all other cases). Classifier accuracy (proportion of sam-

ples correctly classified), sensitivity, specificity and posi-

tive and negative predictive values were estimated based

using leave-one-out cross-validation (LOOCV) and 10-

fold cross-validation.

Results

Patient demographics

All patients included in the Paris dataset gave written

informed consent, and the local ethical commission

approved the study. In the present analysis, we focused

on transcriptomic profiles of biopsies for clinical indica-

tion from patients with AR (n = 8), AR on top of CAN

(n = 7) or borderline cases (n = 3) compared with 13

biopsies from nephrectomized nontransplanted control

patients representing normal healthy kidney cortex.

NMI
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HLA-G
NMI

CD53 CCL5
Lysozyme C

ITGB2

GBP1

PSMB9
STAT1 IRF1 STAT1
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IRF1 network(a) (b) PU.1 network

Figure 1 Transcription Regulatory network analysis indicates importance of IRF1 and PU.1 in acute rejection. Protein interaction networks were

generated with the 70 genes identifies by the comparative analysis. Cluster a and b are the most significant networks with a respective P-value of

4.5 · 10)34 and 1.1 · 10)26. The networks show that the input genes (blue circles) were transcriptionally regulated via IRF1 and PU.1. Colors of

the lines indicate inhibition (red), activation (green), and no clear link (gray). Remaining details of network are as described in Methods.
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Comparative analysis

The Stanford- and Cleveland datasets were re-analyzed

and compared with the results obtained from the Paris

collection. This comparative analysis was extended to

include gene-expression profiles from a NHP model of

acute renal allograft rejection using the Affymetrix HG-

U133A GeneChip. Table 2 summarizes the total number

of samples included in the final comparative analysis.

As recently described in a multicenter study of micro-

array performance [14], we decided to select genes differ-

entially expressed between AR and control samples

satisfying a fold change >2 and a t-test or anova

P-value < 0.05 in each individual dataset (see supplement

files for method details). This strategy identifies 790

probesets in Stanford, 1420 probesets in Cleveland, 2182

probesets in Paris and 2636 probesets in the NHP dataset,

which are significantly dysregulated in AR. These four

independent probeset lists were then intersected. Table 3

shows the successive overlaps between the NHP and the

three human datasets. This strategy revealed a common

transcriptional profile of 70 genes represented by 116 Af-

fymetrix probe sets that are systematically up-regulated in

all the AR samples compared with controls or nonrejected

kidneys (Table S2). This gene set is further defined as

ARTS.

Biomedical relevance of ARTS

These 70 genes were uploaded into MetaCore and ana-

lyzed for biologic processes over-represented. Table 4

shows that ARTS genes are mainly associated to antigen

presenting cells, T-cell activation as well as the interferon

(IFN)-c pathways. In addition, we performed a transcrip-

tion regulation analysis to identify sub-networks of genes

centered on transcription factors. The MetaCore algo-

rithm selected IRF1, PU.1, STATs and NF-jB as the tran-

scription factors that regulate most significantly the genes

represented in the ARTS. A visualization of those net-

works is presented in Fig. 1. STAT1 and IRF1 are key

transcription factors of the IFN-c pathway, while PU.1 is

a specific transcription factor involved in the differentia-

tion or activation of macrophages or B cells. These results

show that genes selected by a bioinformatics approach are

biologically relevant and related to the pathogenesis of

acute rejection.

The ARTS correlates with the Banff-based severity of AR

First, we evaluated the ability of the 70 genes from the

ARTS to discriminate AR from nonrejected (or nontrans-

planted control) samples in the four independent datasets.

A principal component analysis was applied as a visuali-

zation method across the four independent experiments

to illustrate the relative position of each group among

each other (Fig. 2). ARTS expression profile is able to

associate each sample to its clinical diagnosis in all dataset

tested, except the Paris dataset. In this study, one AR and

three borderline samples displayed a very similar expres-

sion profile than the control biopsies, showing discrep-

ancy with the pathologic diagnosis. Similar results were

obtained with unsupervised hierarchical clustering meth-

ods (data not shown).

We then used PBT-based scores method for evaluation

of AR in clinical diagnostic samples from the Paris dataset.

To increase the number of samples per group, we included

seven additional AR samples with additional histologic

signs of CAN (AR + CAN). Figure 3 shows that the ARTS

scores correlate with the Banff score of AR in the Paris

dataset. We observed that the Banff score is positively asso-

ciated with the ARTS scores and that the 70 genes from the

ARTS show a gradual increasing expression across the dif-

ferent Banff scores, from the absence of signal in the con-

trol group towards a strong expression in AR score II.

Consistency testing of the transcript sets

In order to evaluate the robustness and biomedical rele-

vance of ARTS, we used 143 biopsy microarray data from

Edmonton [8] as an independent confirmation set. We

first calculated the correlations with histologic lesions and

clinical diagnosis. Figure 4 shows that ARTS scores corre-

late with the lesion intensity (or extent) of interstitial

inflammation, tubulitis and vasculitis in a very similar

way to the PBTs used in Mueller et al. [8]. Then, we

Table 4. GO enrichment analysis identifies relevant biologic processes

for acute rejection.

Biologic processes max[)log(P)]*

Immune_antigen presentation 43.037

Immune_phagosome 27.466

Interferon gamma signaling 15.046

Immune_TCR signaling 10.002

Cell adhesion 7.922

Chemotaxis 7.315

*Biologic processes were ranked according to P-values.

Table 3. Intersections of acute rejection signatures among four data-

sets.

Stanford Cleveland Paris NHP

Stanford 790 289 236 341

Stanford/Cleveland 138 190

Stanford/Cleveland/Paris 116
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tested the diagnostic performances of the ARTS scores.

The classifier was built on the same 143 biopsies to deter-

mine accuracy in the prediction of histopathology and

clinical episode (Table 5). Statistics were calculated with

LOOCV and a more stringent 10-fold cross-validation

method. Both approaches returned very similar results,

indicating the robustness of error estimates. Consistent

with our previous results, classification of clinical episode

with ARTS display similar performance as the PBTs clas-

sifier described [8], with an accuracy of 77% vs. 81%

respectively (Table 5).

Discussion

This work identifies a consistent molecular signature for

renal acute allograft rejection in biopsies. Gene expression

of the signature genes was compared with Banff histo-

pathologic diagnosis. Several previous studies have

successfully applied a transcriptomic approach to charac-

terize acute rejection in kidney biopsies. However, the

heterogeneity of microarray platforms and various data

analysis methods complicates the identification of robust

and consistent signatures across experiments as well as
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the relatively low numbers of available samples per center.

This study takes advantage of previously published tran-

script profiling data sets of renal biopsies from acute

rejecting patients, to propose a comparative analysis

together with the newly generated Paris microarray data-

set. This new investigation of the data revealed a unique

expression pattern of 70 genes, consistently overexpressed

in AR across three independent datasets. In addition, this

panel of genes was overexpressed in the context of a

monkey model of acute renal allograft rejection that clo-

sely resembles the clinical situation.

The set of genes generated based on an ‘in silico’

approach appears to be relevant to the pathogenesis of

AR. Most of the genes constituting the ARTS are associ-

ated to antigen presenting cells (e.g. HCK, CD52, CD163,

RUNX3, MHCs), cytotoxic T lymphocytes (CTLs; e.g.

CD8, granzyme A, LCK, LCP1, RAC2), or IFN-c
responses (GBP1, CCL5, CXCL9, IFI30, ISG20, STAT1,

PSMB-8, -9, -10, WARS). The relationship between the

ARTS and IFN-c signaling is further supported by a func-

tional transcriptional analysis using MetaCore, which

identifies the most significant regulatory networks cen-

tered on STAT1 and IRF1. In this respect, the ARTS

genes present similarities with the IFN-c (GRITs) and T

cells (CATs) PBTs previously defined in a mouse model

of kidney acute rejection [15]. For instance, 23 human

ARTS genes were found present in the GRITs gene list.

Surprisingly, we identified the IL-10 receptor alpha

strongly associated with AR severity. This observation

may support a recent study showing that AR was almost

fivefold more likely in patients homozygous for a particu-

lar IL-10 polymorphism [16]. This striking result might

have some important implication for the prognosis of

AR.

The ARTS is able to discriminate AR from control in

Stanford, Cleveland and the NHP datasets. In addition,

the ARTS is strongly correlated with the Banff type of

rejection in the Paris dataset. From a clinical perspective,

it is important to know that the ARTS data set clearly dif-

ferentiates between controls and AR type IA. Therefore,

the ARTS may allow a very sensitive detection of AR,

which could improve the diagnostic of biopsies and

related patient treatment. For instance, Fig. 2d shows that

one AR type IA samples display a similar profile as con-

trol samples, despite an intra-graft cellular infiltrate

detected by histology. In this particular case, the patient

was subjected to two consecutive biopsies. The first

biopsy was diagnosed as borderline, suspicious changes,

and the patient received a stronger immunosuppressive

treatment. Two months later, the second biopsy was diag-

nosed as AR IA. However, our gene-expression analysis

identified this biopsy as normal. We could hypothesize in

this study that the increase in immunosuppressive treat-

ment down-regulated the activity of the immune infiltrate

and the expression of the genes associated with the IFN-c
pathway or T-cell activation. This observation suggests

that ARTS reflect treatment efficacy more quickly or in a

more sensitive way than histology. Because the ARTS

consists of a limited number of genes, a PCR-based

approach, which shows similar performance than the

microarray technology in our hands (Fig. S1) and in the

literature [17], could be considered for confirmatory

investigations and development of a diagnostic tool.

In a manner very similar to that of CATs and GRITs,

the ARTS scores correlate to interstitial inflammation and

tubulitis lesions in the Edmonton collection of samples

and demonstrate equivalent classifier performance. ARTS

might be more sensitive for distinguishing i0 versus i1

lesions, but did not discriminate t1 versus t2 lesions or v1

versus v2 lesions. Hence, these results support previous

findings and conclusions from Mueller et al. [8], suggest-

ing that microarray results could be used as independent

and reproducible measures to provide an objective alter-

native to the potential weak points of the current classifi-

cation system. Taken together, our data show that ARTS,

CATs or GRITs could be used as sensitive means to mon-

itor the immune system activation and inflammation dur-

ing organ transplantation.

However, potential drawbacks of this approach should

be considered. For instance, the specificity of such gene

signatures might be questioned and their ability to dis-

criminate between rejection and other causes of immune

activation such as infection or recurrence of an underly-

ing inflammatory disease remains to be established. The
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next step in the definition of a diagnostic approach would

probably require the definition of additional tissue-spe-

cific marker-genes or sets as suggested by a recent report

of gene-expression study of heart rejection in the context

of Chagas infection [18]. In addition, this study is

restricted to marker definition of acute cell-mediated

rejection (ACR), but markers of antibody-mediated rejec-

tion (AMR) are clearly underrepresented in this study

and should be further investigated in trials with system-

atic parallel C4d immunostaining to obtain a fully differ-

ential molecular diagnosis, as pathologic findings in renal

allograft biopsies show sometimes mixed lesions of ACR

and AMR in especially aggressive cases [19].

In conclusion, this study identifies a systematic set of

genes for which intra-graft expression levels correlated

with renal acute allograft rejection. This relationship is

platform- and clinical center-independent and demon-

strates a robust consistency with animal models of kid-

ney acute allograft rejection as well as high relevance

with the pathophysiology of organ rejection. This ‘in sil-

ico’ approach demonstrates the ability of the PBTs scor-

ing method to support a diagnostic approach and

suggest an improvement of sensitivity and accuracy of

ambiguous classifications such as borderline. Finally,

this work is in accordance with the latest Banff ¢07 [20]

recommendations and should help to promote a consen-
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Figure 4 Association between ARTS scores and histopathologic lesion diagnosis in the Edmonton dataset. ARTS scores were calculated for each

sample and compared with the degree of interstitial infiltrate (i-score) (a), tubulitis (t-score) (b), or intimal arteritis (v-score) (c). Numerical values

represented in this study are the average ARTS scores of each histopathologic scores (0–3) (log 2 values ± SD). The P-values were calculated by

t-test. *<0.05, **<0.01. ns = non-significant.

Table 5. Classifier statistic from cross-validation methods.

Variable to

predict

Cross-

validation Accuracy Sensitivity Specificity PPV NPV

Histopathology LOOCV 68.1 66.7 68.8 46.4 83.5

Histopathology 10-fold CV 68.1 66.7 68.8 46.4 83.5

Clinical episode LOOCV 77.0 76.2 77.2 38.1 94.6

Clinical episode 10-fold CV 77.8 76.2 78.1 39.0 94.7

LOOCV, leave-one-out cross-validation; CV, cross-validation; PPV, posi-

tive predictive value; NPV, negative predictive value.
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sus on the optimal molecular diagnosis and follow-up of

renal AR.
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16. Grinyó J, Vanrenterghem Y, Nashan B, et al. Association

of four DNA polymorphisms with acute rejection after

kidney transplantation. Transpl Int 2008; 21: 879.

Saint-Mezard et al. Acute rejection transcript signature in renal allografts

ª 2008 The Authors

Journal compilation ª 2008 European Society for Organ Transplantation 22 (2009) 293–302 301



17. Allanach K, Mengel M, Einecke G, et al. Comparing

microarray versus RT-PCR assessment of renal allograft

biopsies: similar performance despite different dynamic

ranges. Am J Transplant 2008; 8: 1006.

18. Morgun A, Shulzhenko N, Perez-Diez A, et al. Molecular

profiling improves diagnoses of rejection and infection in

transplanted organs. Circ Res 2006; 98: 74.

19. Al-Aly Z, Reddivari V, Moiz A, et al. Renal allograft

biopsies in the era of C4d staining: the need for change

in the Banff classification system. Transpl Int 2008; 21:

268.

20. Solez K, Colvin RB, Racusen LV, et al. Banff 07 classifica-

tion of renal allograft pathology: updates and future direc-

tions. Am J Transplant 2008; 8: 753.

Acute rejection transcript signature in renal allografts Saint-Mezard et al.

ª 2008 The Authors

302 Journal compilation ª 2008 European Society for Organ Transplantation 22 (2009) 293–302


