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Introduction

T cells play a major role in acute allograft rejection. NF-jB

is a critical transcription factor for T-cell activation, prolif-

eration and survival [1]. Regulation of NF-jB activation is

determined by the interaction between the NF-jB dimers

and their inhibitors, members of the IjB family. Phos-

phorylation of the IjBs induces their degradation in an

ubiquitin-proteasome-dependent manner. Overexpression

of a non phosphorylatable form of the inhibitor IjBa in T

cells leads to decreased NF-jB activity, therefore impairing

NF-jB-mediated T-cell proliferation, IL-2 and IFN-c pro-

duction, and cell survival [2–4]. The latter is mostly

because of the inability of NF-jB-impaired T cells to upre-

gulate the prosurvival factors Bcl-xL and c-FLIP [5]. In

contrast, Th2 responses remain unaffected in NF-jB-

impaired T cells [3]. Mice overexpressing the non degrad-

able form of IjBa selectively in their T cells (IjBaDN-Tg

mice) do not develop Th1-mediated diseases, such as colla-

gen-induced arthritis, and are also incapable of mounting

an anti-parasite response against Toxoplasma gondii [6,7].

We have previously observed that cardiac allografts are

permanently accepted in IjBaDN-Tg mice, although

these animals retain the capacity to reject nonvascularized

skin allografts [8]. Cardiac allograft rejection in IjBaDN-

Tg mice could be restored by the overexpression in

T cells of the pro-survival factor Bcl-xL [9]. This result

suggested that cardiac alloantigens were promoting

apoptosis of alloreactive NF-jB-impaired T cells, while

skin allografts could surmount the NF-jB deficiency and

trigger T-cell activation. Indeed, we have found that

donor Langerhans cells from the skin can significantly

activate NF-jB-impaired T cells and are sufficient to

drive acute rejection of heart allografts in IjBaDN-Tg

mice [10]. However, the mechanism of NF-jB-impaired

T-cell apoptosis following cardiac transplantation

remained to be established.

T cells can undergo apoptosis following interactions

between Fas (CD95) and FasL, TNF and TNFR1, or

DR5 and TRAIL [11]. Fas mediates its effects through

the activation of caspases 3 and 9, and Fas-dependent

apoptosis can be prevented by expression of cFLIP [12].
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Summary

The transcription factor NF-jB is critical for T-cell activation and survival.

We have shown that mice expressing a T-cell-restricted NF-jB superrepressor

(IjBaDN-Tg) permanently accept heart but not skin allografts. Overexpression

of the prosurvival factor Bcl-xL in T cells restored heart rejection, suggesting

that graft acceptance in IjBaDN-Tg mice was attributable to deletion of allo-

reactive T cells. In vitro, the increased death of IjBaDN-Tg T cells upon

TCR stimulation when compared with wildtype T cells was mostly because of

Fas/FasL interaction. Similarly, Fas played a key role in cardiac allograft accep-

tance by IjBaDN-Tg mice as both genetic and antibody-mediated inhibition

of Fas-signaling restored cardiac allograft rejection. Rejection correlated with

graft infiltration by T cells and splenic production of IFN-c upon allostimula-

tion. These results indicate that T-cell inhibition of NF-jB results in cardiac

allograft acceptance because of increased susceptibility to Fas-mediated cell

death.
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T-cell receptor (TCR) stimulation results in proliferation

and death of normal T cells, but susceptibility to TCR-

mediated apoptosis is significantly increased in IjBaDN-

Tg T cells [5]. This is likely because of the fact that Fas

engagement results in activation of both death-inducing

caspases and death-protecting NF-jB, such that Fas-

mediated NF-jB activity limits Fas-dependent apoptosis

[13]. Expression of a non functional form of Fas in

IjBaDN-Tg T cells (Lpr/ IjBaDN) has been reported

to protect IjBaDN-Tg T cells from TCR-mediated

apoptosis in vitro [5]. These results prompted us to

hypothesize that cardiac allograft acceptance in IjBaDN-

Tg mice may be caused by unopposed Fas-mediated

T-cell death among NF-jB-impaired T cells. Our results

indicate that pharmacologic or genetic inhibition of Fas

restored the capacity of IjBaDN-Tg mice to reject

cardiac allografts, promoted cardiac allograft infiltration

by CD4+ and CD8+ T cells and resulted in donor-

specific IFN-c production. Therefore, Fas-mediated cell

death of alloreactive T cells is necessary for cardiac allo-

graft acceptance in mice with impaired NF-jB signaling

in T cells. These data point to T-cell-intrinsic NF-jB

and Fas as potential therapeutic targets to promote

transplantation tolerance.

Materials and methods

Animals

Six- to 8-week-old C57Bl/6 (B6, H-2b) and BALB/c

(H-2d), mice were purchased from the Jackson Laborato-

ries (Bar Harbor, ME, USA). Mice transgenic for a T-cell-

restricted IjBa super-repressor, IjBaDN-Tg mice, were

obtained from Mark Boothby (Vanderbilt University, TE)

and backcrossed to the B6 background for over 10 gener-

ations [2]. Mice deficient in Fas-signaling, Lpr (B6 back-

ground), were backcrossed to IjBaDN-Tg mice. Animals

were housed in individually ventilated cages in a specific

pathogen-free animal facility. Groups of transplanted

mice were injected i.p with 500 lg on day 0 and 250 lg

on days 2, 4 and 8 of either of anti-FasL (clone MFL4) or

rat IgG (Jakcson immunresearch Laboratories Inc., West

Grove, PA, USA). Experiments were performed in

agreement with our Institutional Animal Care and Use

Committee and according to the NIH guidelines for

animal use.

Antibodies

The antibodies anti-CD3 (clone 145-2C11), anti-CD28

(clone PV-1), anti-FasL (clone MFL4), anti-TNF (clone

MP6-XT22) and anti-TRAIL (clone N2B2) were purified

from supernatants of hybridomas following elution on a

protein G column.

Cell death assays

Wildtype (WT) or IjBaDN-Tg splenocytes were stimu-

lated in the presence of 1 lg/ml of anti-CD3 mAb for 24,

48 or 72 h in the presence or absence of 10 lg/ml each of

anti-FasL, anti-TNF, anti-TRAIL, a combination of these

or rat or hamster IgG. Cell death was determined by

DAPI inclusion by flow cytometry.

Cytokine production assay

Splenocytes from WT or IjBaDN-Tg mice were stimu-

lated with soluble anti-CD3 mAb (1 lg/ml, clone

145-2C11). For IFN-c ELISA, supernatants were harvested

on day 5 post stimulation, and analysed by ELISA

using Ab pairs, as instructed by the manufacturer (BD

PharMingen, San Jose, CA, USA).

Cardiac allograft

Abdominal heterotopic cardiac transplantation was per-

formed using a technique adapted from that originally

described by Corry et al. [14]. Briefly, cardiac allografts

were transplanted in the abdominal cavity by anastomo-

sing the aorta and pulmonary artery of the graft end-

to-side to the recipient’s aorta and vena cava, respectively.

The day of rejection was defined as the last day of a

detectable heartbeat.

IFN-c ELISPOTs

Splenocytes (106/well) from mice transplanted 21 days

earlier with BALB/c hearts and treated with rat IgG or

anti-FasL mAb were stimulated with irradiated (2000

rads) B6 or BALB/c splenocytes (4 · 105/well) and incu-

bated for 18 h in a 7% CO2 incubator. The ELISPOT

assay was conducted according to the instructions of the

manufacturer (BD Biosciences, BD Pharmingen, San Jose,

CA, USA), and the numbers of IFN-c-producing spots

per well were calculated using the ImmunoSpot Analyzer

(CTL Analyzers LLC, Cleveland, OH, USA).

Immunohistochemistry

Grafts were removed at different time-points following

transplantation, embedded with OCT (Tissue-Tek Miles

Inc, Elkhart, IN, USA), and immediately frozen in liquid

nitrogen. The samples were sliced into 6-lm-thick

sections at )20 �C and stained with anti-CD8 rat IgG

supernatant (neat) or anti-CD4 purified rat IgG antibody

as previously described [8]. Slides were evaluated under

light microscopy by a pathologist blinded to the clinical

rejection status of the heart. The number of CD4+ and
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CD8+ cells was counted in three to four randomly chosen

high-powered visual fields per section (·400 magnifica-

tions, approximately 254 mm2).

Statistical analysis

Cardiac graft mean survival time (MST), standard devia-

tion, and P-values were calculated using Kaplan–Meier/

log-rank test methods. Comparisons of means were

performed using the Student’s t-test or the Tukey’s test

for multiple comparisons, as appropriate.

Results

TNF, TRAIL and Fas participate in AICD of IjBaDN-Tg

T cells in vitro

TCR stimulation induces T cells to enter the cell cycle,

produce cytokines and ultimately undergo apoptosis [15].

The transcription factor NF-jB plays a critical role in these

events and particularly in cell survival, by triggering the

upregulation of the pro-survival proteins IAP1/IAP2, XIAP

[16] Bcl-2, Bcl-xL, and survivin [16–19]. Consistent with

the importance of NF-jB in cell survival, TCR stimulation

of IjBaDN-Tg splenocytes in vitro resulted in increased

death of both CD4+ and CD8+ T cells when compared

with WT T cells, as determined by DAPI-staining by flow

cytometry (Fig. 1). Reduced survival of IjBaDN-Tg T cells

was likely because of apoptosis as analysis of cell cycle pro-

gression by intracellular propidium-iodide-staining

revealed an increased percentage of sub-diploid cells

compared with wildtype T cells (data not shown). To

determine the mechanism of cell death in IjBaDN T cells,

WT and IjBaDN-Tg splenocytes were stimulated for

3 days in the presence of blocking antibodies to FasL,

TNF, or TRAIL. As shown in Fig. 2, single blockade of

Fas/FasL interactions resulted in a significant reduction of

TCR-induced apoptosis in WT CD4+ T cells and blockade

of TNF or TRAIL did not have additional effects. In con-

trast, IjBaDN-Tg CD4+ T cells were not or weakly signifi-

cantly protected from apoptosis by blockade of Fas/FasL

engagement alone. However, concomitant blockade of

FasL with that of TNF and TRAIL significantly reduced

TCR-induced cell death of NF-jB-impaired CD4+ T cells

to levels similar to those observed in WT T cells, whereas

no protection from cell death occurred in the absence of

FasL blockade (Fig. 2). Similar data were obtained with

CD8+ T cells (data not shown). This result suggests that

Fas, TNF and TRAIL all contribute to apoptosis of NF-jB-

impaired T cells following TCR stimulation, although the

role of Fas may be more important as Fas engagement can

still trigger apoptosis when both TNF and TRAIL pathways

are blocked. Thus, Fas may play a dominant role in apop-

tosis of NF-jB-impaired T cells in vitro, but TNF and

TRAIL also participate.

The defect in Th1 differentiation by IjBaDN-Tg T cells

is in part Fas-dependent

Nuclear factor jB (NF-jB) is required for the differentia-

tion of naı̈ve T cells into IFN-c-producing Th1 cells [3],

and IFN-c expression usually correlates with cardiac allo-

graft rejection. In order to address whether Fas-mediated

signals were preventing the generation of IFN-c-produc-

ing IjBaDN T cells, WT or IjBaDN-Tg CD4+ T cells

were stimulated and allowed to differentiate for 4 days in

the presence of anti-FasL mAb or control IgG prior to

restimulation with PMA and ionomycin. Upon restimula-

tion, IjBaDN T cells that had differentiated in the pres-

ence of anti-FasL were able to produce more IFN-c
compared with IgG-treated control cells, although at

lower levels than anti-FasL-treated wildtype T cells

(Fig. 3). This result suggests that NF-jB-impaired T cells

can progress through the type 1 differentiation pathway

when Fas-mediated signals are blocked.

Cardiac allograft acceptance in IjBaDN-Tg mice

is Fas-dependent

We have previously reported that IjBaDN mice accept

cardiac allograft on long-term basis [8]. We proposed

that graft acceptance was likely because of deletion of

alloreactive T cells, as cardiac allograft rejection was

restored in IjBaDN mice that also expressed the anti-

apoptotic protein Bcl-xL in T cells [9]. In order to test

whether IjBaDN alloreactive cells were deleted through a

Fas-mediated mechanism in vivo, we transplanted BALB/c

(H2d) hearts into B6 (H2b) WT, IjBaDN or IjBaDNxLpr

recipient mice. Whereas all IjBaDN mice accepted the
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Figure 1 NF-jB-impaired T cells have increased susceptibility to apop-

tosis post T-cell receptor stimulation. Wildtype or IjBaDN-Tg spleno-

cytes were stimulated with 1 lg/ml of soluble anti-CD3 mAb, and
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allogeneic hearts on long-term basis, IjBaDNxLpr mice

successfully rejected cardiac allografts, although with

delayed kinetics compared with WT mice (Fig. 4). To

exclude that rejection in IjBaDNxLpr mice was because

of enhanced immune responses or autoimmunity trig-

gered by the genetic absence in Fas-signaling, IjBaDN

mice were treated with blocking anti-FasL mAb at the

time of cardiac transplantation. As shown in Fig. 5a, anti-

FasL treatment, but not administration of an irrelevant

IgG, triggered the rejection of cardiac allografts by

IjBaDN mice, similarly to untreated WT mice, although
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Figure 2 Blockade of Fas, TNF and

TRAIL reduces T-cell receptor (TCR)-

induced cell death of NF-jB-impaired T

cells. Wildtype and IjBaDN-Tg spleno-

cytes were stimulated in the presence of

1 lg/ml of soluble anti-CD3 mAb, in the

presence or absence of anti-FasL, anti-

TNF, or anti-TRAIL mAbs (10 lg/ml

each). Three days later cell death was

assessed by DAPI incorporation in CD4+

cells. Two independent experiments are

shown. *P < 0.05; **P < 0.01;

***P < 0.001 when compared with the

untreated samples in each plot.
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with slightly slower kinetics. In contrast, blockade of TNF

was less effective and blockade of TRAIL showed no effect

(data not shown). The anti-FasL-facilitated rejection cor-

related with a massive recruitment of CD4+ and CD8+ T

cells into the allogeneic hearts (Fig. 5b), as also with an

increase in the number of IFN-c+ cells upon restimula-

tion of splenocytes with donor APCs (Fig. 6). These

results suggest that cardiac allograft acceptance in

IjBaDN-Tg mice is attributable to apoptosis of alloreac-

tive T cells in a Fas-dependent manner, which prevents

development of IFN-c-producing type 1 T cells.

Discussion

We have previously shown that mice with a selective

impairment in T-cell-intrinsic NF-jB activity accept

cardiac allografts on long-term basis and develop donor-

specific tolerance [8]. We had argued that lack of allograft

rejection was likely because of deletion of alloreactive T

cells because over-expression of the anti-apoptotic mole-

cule Bcl-xL in T cells restored rejection of heart allografts

[9]. However, the mechanism by which NF-jB-impaired

alloreactive T cells underwent apoptosis following cardiac

transplantation remained to be demonstrated. Our cur-

rent results suggest that apoptosis of NF-jB-impaired T

cells in transplanted mice is Fas-dependent.

The importance of T-cell death as a mechanism to

enable transplantation tolerance has long been recognized.

This was first demonstrated by Sir Peter Medawar who

showed that neonatal exposure to donor alloantigens can

result in clonal deletion of alloreactive T cells and perma-

nent acceptance of skin allografts [20]. Death of alloreac-

tive T cells can also be achieved using myeloablation and

bone marrow reconstitution to create chimerism and

transplantation tolerance [21]. Conversely, mice with

defects in the ability of T cells to undergo apoptosis, have

been shown to be resistant to the induction of tolerance

via costimulation-targeting therapies or rapamycin [22],

although not in all models [23].

The role of Fas in mediating apoptosis of antigen-

specific T cells was first identified following discovery of
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expression of FasL by parenchymal cells from immune-

privileged sites such as the anterior chamber of the eye or

the testes [24]. Several groups have attempted to mimic

this physiologic situation for therapeutic purposes, by

genetically engineering tissues to express FasL and thus

destroy infiltrating T cells that express active Fas. In pan-

creatic islets, this was counterproductive as it resulted in

b-cell destruction by fratricide because b cells also express

Fas [25]. However, this approach has proven more

successful upon transplantation of FasL-transduced allo-

geneic chondrocytes in pigs [26] or using injection of

donor splenocytes engineered to express FasL in a model

of cardiac transplantation in rats [27]. Another recent

approach has been to generate killer artificial APCs, using

beads coated with anti-Fas antibody together with

HLA-A2-Ig dimers. These beads result in the deletion of

HLA-A2-specific human T cells in a Fas-dependent man-

ner [28]. Our results indicate that selective inactivation of

T-cell-intrinsic NF-jB also facilitates Fas-dependent

apoptosis of alloreactive T cells.

In addition to Fas, other death domain-containing

receptors have been shown to play a role in T-cell apop-

tosis. These include TNFR and TRAIL [29,30]. The

TRAIL/DR5 pathway in particular has recently been iden-

tified as a critical mechanism by which CD4+FoxP3+ reg-

ulatory T cells (Tregs) mediate apoptosis of CD4+

conventional T cells and Tregs failed to enhance survival

of skin allografts in the presence of blocking anti-DR5

antibody [31]. However, blockade of TNF and TRAIL

had little impact on cardiac allograft acceptance by

IjBaDN-Tg mice (data not shown). This may be because

Tregs do not appear to play a role in transplantation

tolerance in IjBaDN-Tg mice, as these mice did not dis-

play increased numbers of Tregs, increased suppressor

function by Tregs or increased susceptibility of conven-

tional T cells to suppression by Tregs [9].

Our results show that blockade of Fas resulted in

increased recovery of IFN-c-producing cells in vitro and

increased frequency of IFN-c-secreting alloreactive

IjBaDN-Tg T cells in vivo. This is consistent with the fact

that Th1 cells that make IFN-c and IL-2 are more suscep-

tible to Fas-mediated apoptosis than Th2 cells that pro-

duce IL-4 [32]. It is interesting to note that IjBaDN-Tg

T cells are known to have defects in Th1 differentiation

[3], clonal expansion and IFN-c gene activation [33].

Our results of recovered IFN-c production by IjBaDN-

Tg T cells upon Fas/FasL blockade suggest that one of the

main reasons why NF-jB-impaired T cells fail to become

Th1 cells in vivo is Fas-signaling. It is noteworthy that

blockade of the Fas/FasL pathway resulted in as much

IFN-c production by IjBaDN-Tg T cells as by isotype

control-treated wildtype cells (see Fig. 3) despite increased

apoptosis of the anti-FasL-treated NF-jB-impaired T cells

compared with the IgG-treated wildtype cells (see Fig. 2).

This may be because of a slight increase in IFN-c produc-

tion on a per cell basis as determined by intracellular

staining (data not shown) or to the ability of the NF-jB-

impaired T cells to differentiate and produce IFN-c prior

to their apoptosis.

Histologic analysis of rejecting cardiac allografts from

IjBaDN-Tg mice treated with anti-FasL mAb revealed

infiltration by both CD4+ and CD8+ T cells suggesting a

role for both T-cell subsets in acute rejection of donor

hearts. Although cardiomyocytes do not express MHC

class II, donor dendritic cells that express class II have

been recently identified in cardiac valves and aortic root

[34]. Furthermore, expression of class II by donor hearts

but not recipient mice is known to be sufficient for rejec-

tion of cardiac allografts by adoptively transferred CD4+

T cells [35]. These data suggest that direct recognition of

alloantigen by a subset of CD4+ T cells can mediate acute

rejection of heart allografts despite low MHC class II

expression. Although CD4+ but not CD8+ T cells are nec-

essary and sufficient for rejection of cardiac allografts,

CD8+ T cells are usually more abundantly found in

rejecting heart transplants and become essential for car-

diac allograft rejection if the function of CD4+ T cells is

impaired such as in CD28-deficient mice [36]. Whether

CD8+ T cells are essential for rejection in anti-FasL-trea-

ted IjBaDN-Tg mice in which T-cell function is also

reduced remains to be demonstrated.

In addition to its role in mediating apoptosis of T cells,

Fas has been shown to play a role in allograft cells’ death.

For instance, expression of both perforin and FasL by

CD8+ T cells was recently shown to be important for the

rejection of islet allografts [37]. However, blockade of

Fas/FasL interactions in our model promoted rather than

prevented rejection of cardiac allografts in IjBaDN-Tg

mice, suggesting that other cytotoxic pathways can medi-

ate destruction of cardiac allografts in the absence of Fas.

This is consistent with a previous report demonstrating

that cardiac allograft acceptance could still occur in gld

mice that lack expression of FasL in all recipient cells and

therefore can not engage Fas on graft cells [38].

In summary, our data show that the mechanism by

which inhibition of T-cell-intrinsic NF-jB activation leads

to tolerance following cardiac transplantation is via

Fas-mediated apoptosis of NF-jB-impaired T cells. Our

results support development of T-cell-specific NF-jB

inhibitors or of T-cell-specific Fas-agonistic drugs for use

in clinical transplantation.
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