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Introduction

Optimized graft viability and quality under conditions of

prolonged ischemia represent the primary goals of organ

preservation. With the current increased utilization of

more marginal donor organs, alternative preservation and

perfusion concepts have regained interest. Organs with an

increased sensitivity to injury such as those procured

from donation after cardiac death (DCD) or extended cri-

teria donation (ECD) donors may particularly benefit

from optimized organ preservation. Furthermore, recent

evidence has linked organ injury and quality at the time

of transplantation with the activation of innate and adap-

tive immune responses [1]. Indeed, marginal organ grafts

have been associated with increased rates of delayed graft

function (DGF) and acute rejection rates [2,3].

To date, the predominant organ preservation method

used by most centers is static cold storage (CS) [4].

Principles of CS preservation are based on the suppres-

sion of metabolism by hypothermia. By flushing the

organ, blood is removed and replaced with an appropri-

ate preservation solution. The concept of machine perfu-
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Summary

Most organs are currently preserved by cold storage (CS) prior to transplanta-

tion. However, as more so called marginal donor organs are utilized, machine

perfusion has regained clinical interest. Recent studies have demonstrated

advantages of pulsatile perfusion over CS preservation for kidney transplanta-

tion. However, it remains unclear whether there is a significant benefit of one

preservation method over the other in general, or, whether the utilization of

particular preservation approaches needs to be linked to organ characteristics.

Proposed protective mechanisms of pulsatile perfusion remain largely obscure.

It can be speculated that pulsatile perfusion may not only provide nutrition

and facilitate the elimination of toxins but also trigger protective mechanisms

leading to the amelioration of innate immune responses. Those aspects may be

of particular relevance when utilizing grafts with suboptimal quality which may

have an increased vulnerability to ischemia/reperfusion injury and compro-

mised repair mechanisms. This review aims to enunciate the principles of

organ perfusion and preservation as they relate to indication, aspects of organ

protection and to highlight future developments.

Transplant International ISSN 0934-0874

ª 2010 The Authors

Journal compilation ª 2010 European Society for Organ Transplantation 23 (2010) 561–570 561



sion (MP) which had already been developed prior to the

routine utilization of CS preservation provides an

attractive alternative method. Principles of MP are based

on a controlled continuous or pulsatile circulation of a

perfusate that eliminates toxic metabolic products, pro-

vides critical nutrients and oxygen. In theory, MP may

protect, at least in part, from injuries related to ischemia/

reperfusion, thus providing an improved graft quality.

History of organ preservation

The first recorded attempt of perfusing an isolated organ

has been reported as early as 1849 by Loebel [5]. In the

1930s, Alex Carrel cultivated and perfused organs with

the help of small pumps in collaboration with the aviator

Charles Lindbergh [6]. This concept was continued and

refined by Folkert Belzer et al. in the early 1960s [7] with

work on hypothermic perfusion techniques for the preser-

vation of kidneys. Initially, whole blood had been utilized

as a perfusate. Further research demonstrated that micro-

filtered cryoprecipitated plasma (CPP) allowed longer

preservation times. By 1967, the combination of continu-

ous perfusion and hypothermic storage brought organ

preservation to a new level: using oxygenated CPP and

pulsatile perfusion, canine kidneys were successfully pre-

served for 72 h as described by Belzer et al. in their

landmark publication [8]. Unfortunately, the clinically

available pumping devices at that time were extremely

user-unfriendly and difficult to transport.

By 1971, a miniature portable preservation pump had

been developed facilitating clinical utilization. This device

had been utilized clinically for several years as the Mini-

Belzer unit and the majority of kidneys in the 1970s were

preserved by MP. However, large-scale studies comparing

MP and CS failed to prove the advantage for kidneys

preserved by MP [9–12]. Of note, more potent immuno-

suppressants had been introduced into the clinic during

this time, leading to an improved transplant outcome. By

the mid 1980s, the majority of kidneys were preserved by

CS. Collins and co-workers were the first to develop a

simple, yet effective CS solution for organ preservation in

1969 [13]. Further research supported by the Eurotrans-

plant Foundation led to the modified Euro-Collins solu-

tion (EC) in 1976. In the 1980s, Belzer et al. developed

the University of Wisconsin solution (UW). Thereafter,

UW gradually replaced EC as the preservation of choice

supported by several studies demonstrating improved

organ viability under conditions of prolonged cold

ischemia when organs were preserved with UW [14,15].

Meanwhile, Bretschneider from Germany introduced the

Histidin–Tryptophan–Ketoglutarate (HTK) solution in

1980. HTK was initially designed as a cardioplegic solu-

tion for open-heart surgery. However, the solution had

also shown beneficial effects in the preservation of

abdominal organs [16,17].

Comparative analysis of preservation solutions

University of Wisconsin solution

The proper osmotic concentration of UW is obtained by

the combination of metabolically inert substrates such as

lactobionate and raffinose. Hydroxy-Ethyl Starch (HES) is

added as a colloid and ATP precursors (adenosine) and

oxygen radical scavengers (glutathione and allopurinol)

are used as important supplements.

Cold storage with UW provides satisfactory short- and

long-term preservation outcomes [14]. Drawbacks include

its high viscosity which prolongs the duration of perfu-

sion while compromising the microcirculation [18]. UW’s

high potassium levels may cause vasoconstriction and

may contribute to the hyper-aggregation of HES [19,20].

Washout-solutions such as Carolina Rinse mitigate this

problem [21,22], however, are currently only rarely uti-

lized clinically. Importantly, UW is currently the most

widely used CS preservation solution. Two different types

of UW solution are utilized for MP and for CS. In UW-G

utilized for MP, lactobionate is replaced by gluconate

while the higher potassium level of the conventional UW

is reduced to achieve a consistency with an extracellular

solution [23,24].

Histidin–Tryptophan–Ketoglutarate

Histidin–Tryptophan–Ketoglutarate solution was intro-

duced in 1980 by Bretschneider and was originally

designed as a cardioplegic solution [25]. Key characteris-

tics and theoretical advantages as compared with UW

consist of effective buffering by histidine, membrane sta-

bilization by the aminoacid tryptophan, and the supply of

ketoglutarate for anaerobic metabolism. HTK has a low

viscosity, which may allow for an improved microperfu-

sion [4,26]. Low pressure perfusion and high volume (not

less than 6 l) have been recommended when utilizing

HTK.

Eurotransplant conducted a multi-center randomized

prospective trial in renal transplantation comparing UW

and HTK at the beginning of the 1990s. This trial remains

so far the only prospective comparison of those two per-

fusion solutions and showed no significant difference for

DGF and 3-year graft survival [27]. Interpretation of

those data, however, needs to consider that the quality of

organs currently utilized for transplantation has changed

as more ECD and DCD organs are transplanted today.

More recent studies have not consistently demonstrated

an advantage of one perfusion solution over the other

[28–30] and in general it had been felt until recently that
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UW and HTK have comparable preservation capacities if

preservation times do not exceed 24 h.

Economic aspects have been of importance when com-

paring the utilization of HTK and UW. HTK is less

expensive than UW on a per liter basis; however, increased

volumes are required [26]. A single-center analysis

revealed overall higher costs when UW was used although

HTK perfusion required higher perfusion volumes [31].

In a most recent retrospective multi-center study, Stew-

art et al. analysed the United Network for Organ Sharing

(UNOS) database and compared deceased donor kidney

transplants preserved either with HTK or UW solution

[32]. HTK preservation was independently associated with

a 20% increased risk of graft loss in this study. The same

group has also recently reported compromised graft sur-

vival following liver and pancreas preservation with HTK

[33,34]. It is important to point out that those studies

have not been adjusted for suboptimal (less than the rec-

ommended 6 l) HTK perfusion volumes.

Celsior

In 1994, Celsior was developed initially only for its appli-

cation in heart transplantation [35]. This solution com-

bines the osmotic efficacy of UW (lactobionate,

mannitol) and the potent buffering ability of HTK (histi-

dine). After demonstrating favorable effects in heart trans-

plantation, utilization of the solution had also been

proposed for abdominal organs [36]. To study the effects

in kidney preservation, few groups from Europe com-

pared Celsior with UW and demonstrated similar rates of

DGF and graft survival [37–40].

IGL-1

Institute-George-Lopez (IGL-1), a rather new preservation

solution, was developed by a group in France. It com-

bines the advantageous effects of UW and Celsior. Poly-

ethylene glycol binds to cell and tissue surfaces, thus

stabilizing the underlying surface from cell interactions. A

modification of the inherent immunogenicity of the

donor tissue as a consequence of ischemia/reperfusion

injury has been suggested when utilizing IGL [41]. Badet

et al. [42] demonstrated a reduction in DGF as compared

with kidneys preserved with UW. However, a recently

published multi-center study showed no significant differ-

ence in DGF when IGL-1 was compared with UW [43].

Polysol

Polysol has been recently introduced with the goal of

facilitating the successful transplantation of ischemically

damaged organs. Therefore, many components such as

amino acids, vitamins, potent buffers and antioxidants

have been added to support metabolism under hypother-

mic conditions [44]. The solution has also been tested

during MP [44,45]. A study by Schreinemachers et al.

[46] demonstrated a superior graft survival as compared

with UW in a porcine renal autotransplantation model.

Further reports by the same group showed beneficial

effects of Polysol also in kidneys damaged by warm ische-

mia [47]. While current reports on Polysol seem promis-

ing, more clinical data are necessary to demonstrate

efficacy and benefits.

Clearly, prospective clinical studies reflecting the current

utilization of marginal organs are necessary to determine

the superiority of one CS preservation solution over others.

Until then, UW solution will continue to be used by the

majority of transplant centers for organ preservation.

Machine perfusion

Principles and mechanisms

The principle of MP is based on preserving the organ in

a ‘better environment’. Hypothermic machine perfusion

(HMP) slows down metabolism, thus reducing oxygen

requirements and ATP depletion. Circulation of the per-

fusate is achieved by a device that generates either a con-

tinuous or a pulsatile flow. MP provides, at least in

theory, a continuous supply of nutrients with or without

oxygen while toxic substrates and free radicals produced

during CS can be eliminated. MP may also decrease vaso-

spasm and provide additional parameters such as flow

and resistance to evaluate organ viability. Furthermore,

MP may provide an opportunity to improve organ qual-

ity by using pharmacologic and gene transfer therapies in

real time [48]. Moreover, MP maintains the hemodynam-

ic stimulation on the vasculature of the organ, which

plays a critical role in vascular function under normal

physiologic conditions. Notably, this potential benefit of

MP remains poorly understood.

Less-than-optimal organs are currently increasingly

used in order to meet the rising demand for organ trans-

plantation. Those grafts have usually a compromised

quality and are more prone to an ischemic insult. As a

result, primary nonfunction and DGF occur at higher

rates with the use of these less-than-optimal organs

[2,3,49]. Moreover, DGF is associated with an increased

frequency of acute rejections and a poorer long-term out-

come. More recent retrospective clinical data have sug-

gested superior outcomes following MP, particularly

when utilizing organs with inferior quality [48,50,51].

While advantages of MP have been recognized by

recent clinical studies, mechanisms involved remain

unclear. Notably, pulsatile flow has been associated

with the expression of flow-dependent, vasoprotective

Yuan et al. Machine perfusion or cold storage

ª 2010 The Authors

Journal compilation ª 2010 European Society for Organ Transplantation 23 (2010) 561–570 563



endothelial genes [52,53]. In particular, the expression of

one of these genes, Kruppel-like factor 2 (KLF2) may play

a critical role in protecting the endothelium, potentially

through the inhibition of pro-inflammatory responses,

thus curtailing the activation of the innate immune sys-

tem [54–56]. Moreover, flow-mediated KLF2-dependent

programs are also critical for the production of vasodila-

tors, specifically endothelial-derived nitric oxide, and the

expression of anti-thrombogenic genes (e.g. thrombo-

modulin) (Fig. 1) [56].

Interestingly, there has been some controversy over the

impact of distinct types of flow generated by the devices:

Two studies from Japan showed comparable outcomes

with either pulsatile or continuous perfusion [57,58].

However, studies by others demonstrated improved

microcirculation and organ function when pulsatile perfu-

sion was utilized [59–61]. Further studies in this area are

critical as it is now known that different types of flow (in

particular shear stress) exert distinct effects on vascular

endothelial gene expression and function.

Clinical and experimental studies

Several experimental and clinical studies have compared

MP with CS preservation [9,62–66]. Early studies

reported no significant differences in DGF or graft sur-

vival when comparing MP and CS preservation. However,

it is important to recognize that those studies have been

retrospective, had not been randomized and reflected a

heterogenic patient population.

More recent studies have been better powered, reflect

an updated presentation of current clinical organ quality

and represent recent advancement in immunosuppres-

sion. In 2003, a meta-analysis and systematic review of

the current literature by Wight et al. [67] demonstrated a

20% reduction in DGF when HMP was utilized. Schold

et al. [48] reported on the effects of organ perfusion with

an analysis of the Scientific Registry of Transplant Recipi-

ents in the United States. The authors reported that MP

led to an increased utilization of ECD kidneys and a

lower incidence of DGF. However, this study was unable

to demonstrate improved long-term graft survival. More

recently, Matsuoka et al. [50] reported that MP reduced

the incidence of DGF and enhanced the utilization of

ECD kidneys. The authors also stated that decreasing

rates of DGF may lead to lower overall costs, a conclusion

which supports a concept of comparable cost-effectiveness

when utilizing pulsatile or CS preservation previously also

supported by others [68]. Most recently, Moers et al. have

published the first multi-center, prospective, randomized

high-volume clinical study comparing machine- and CS

perfusion. This study randomly assigned one kidney from

336 consecutive deceased donors to HMP and the contra-

lateral kidney to static CS preservation. Recipients were

followed for over a period of 1 year. The study showed a

significant risk reduction for delayed graft failure in the

HMP group (20.8% with HMP vs. 26.5% with CS). One-

year graft survival had significantly improved if kidneys

were preserved by MP (94% vs. 90%) [69]. As this study

had originally not been sufficiently powered for a

Support of oxygen and nutrition

Elimination of toxins

Machine perfusion Decrease of vasospasm

Endothelial vasoprotection:
Sustained expression of 
flow-dependent genes

Potential therapeutic 
interventions:

Addition of pharmacological 
agents or gene therapy

Figure 1 Protective mechanisms of pulsatile perfusion remain largely unknown. In theory, toxins are eliminated while nutrients are supplied. Pro-

tective endothelial genes expressed during pulsatile perfusion may play a role. Future research may explore additional therapeutic interventions

when utilizing machine perfusion.
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subgroup analysis, the same group presented an updated

analysis at the American Transplant Congress (ATC) in

Boston (2009) in which they extended the volume of

marginal kidneys. In this updated analysis, the authors

communicated improved transplant outcomes and

reduced rates of DGF also in kidneys from donors after

cardiac death (DCD) preserved by pulsatile MP. However,

improvements at this time were not significantly better in

a subgroup analysis of kidneys from elderly (>65 years)

donors. Very short ischemic times in this trial may have

mitigated beneficial effects of MP in kidneys from elderly

donors.

Overall, the recently published data suggest an advan-

tage for HMP over static CS (Table 1). Therefore, it is

expected that MP will receive a wider clinical awareness

and application in the near future.

Future perspective and challenges

Pulsatile perfusion offers the opportunity for alternative

preservation approaches such as normothermic machine

perfusion (NMP). This concept has already been reported

in 1976 by Fuller et al. [70]. During NMP, an organ is

perfused and preserved at, or, close to body temperature

(37 �C). This preservation method yields several advanta-

ges as compared with HMP. In theory, normothermic

perfusion at body temperature allows the organ to main-

tain a physiologic metabolism, thus minimizing the accu-

mulation of toxic substrates and free radical formation. It

has been suggested that NMP may be particularly relevant

in organs with extensive warm ischemic injuries. In ani-

mal experiments, canine kidneys were successfully trans-

planted after 2 h of warm ischemia and 18 h of NMP

with significantly improved recovery of renal function.

Notably, all kidneys of this trial procured by static CS

demonstrated primary nonfunction [71].

In a recent clinical study, Valero et al. demonstrated

that NMP reduced primary graft dysfunction of kidneys

from DCD. Over a 12-year period, 44 DCD kidneys were

perfused by NMP using a cardiopulmonary bypass fol-

lowed by body core-cooling prior to organ procurement.

The results showed a significant reduction in primary

nonfunction and DGF in comparison to conventional

preservation techniques [72]. NMP may also allow a

more advanced assessment of organ viability during pres-

ervation which, at least in theory, may improve transplant

outcome [73].

The application of pulsatile perfusion for the preserva-

tion of extra-renal organs has not been extensively

explored so far. Liver transplants may require perfusion

of both, portal vein and hepatic artery. In previous exper-

imental studies isolated perfusion of the portal vein or

retrograde perfusion via the hepatic vein yielded compa-

rable outcomes. However, the perfusion via the hepatic

artery alone was less beneficial [74]. Moreover, sinusoidal

endothelial cells and the biliary tract are critical targets of

ischemia/reperfusion [75] and may require modified per-

fusion pressures. Animal models have shown benefits of

oxygenated HMP as compared with CS in liver transplan-

tation [24,76] and Guarrera et al. have shown in a pio-

neering effort, promising clinical results as reported at the

ATC, Boston, 2009.

Early experimental data are also available for pancreas

transplants. Again, organ-specific aspects need consider-

ation as the pancreas is a low-flow organ and therefore

potentially more susceptible to barotrauma during pulsa-

tile perfusion. Cardiac preservation by MP has recently

shown encouraging results in animal experiments. Longer

preservation times, reduction of ischemic injury and

improved early ventricular function upon reperfusion

have been noted [77,78]. However, some groups reported

on edematous swelling associated with high flow rates,

inadequate perfusion pressures and nonoptimally adapted

compositions of the perfusate [79–81]. At this time,

organ-specific aspects need further evaluations to explore

potential benefits of MP in extra-renal organs.

Clearly, future studies will also need to explore protec-

tive mechanisms of pulsatile perfusion in more detail

[82,83]. Protective mechanisms associated with pulsatile

perfusion remain largely obscure. It can be speculated

that pulsatile perfusion may not only perform provision

of nutrition and the elimination of toxins, but as dis-

cussed above, may also sustain physiologic flow-mediated

endothelial vasoprotective programs, which may have a

significant impact on subsequent ischemia-reperfusion

and early innate immune response events.

Conclusion

The analysis presented in this article supports the increas-

ing interest in preserving organs by MP. Following the

general assumption that marginal donor organs are more

prone to injury, most previous clinical studies have tested

the effects of MP in sub-optimal kidney grafts. Those ret-

rospective studies showed improved outcomes and utili-

zation rates when marginal kidneys had been preserved

under conditions of MP. The only prospective large vol-

ume clinical study to date has shown significantly

improved 1-year graft survival and significantly reduced

DGF rates in a study population dominated by standard

criteria donor organ recipients. While this important clin-

ical study has initially not been powered for a subgroup

analysis of ECD and DCD kidneys, more recent presenta-

tions by the same group had extended the inclusion of

those subgroups and demonstrated beneficial effects of

MP for DCD and very recently also for ECD kidneys
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(R. Ploeg, personal communication). While those most

recent data have not been published one could argue that

the allocation policy of the European Senior program

emphasizing on brief ischemic times may have ‘prevented’

more significant beneficial effects of MP on transplant

outcome of ECD kidneys in this trial.

Moving forward, one wants to leave the comparative

analysis of machine and CS preservation with a clinical

recommendation on the superiority of one preservation

period over the other. However, the current analysis of

machine- versus pulsatile perfusion has left us with as

many open questions as novel and important clinical

data. Thus, to expand the availability and to optimize

the quality of organs during pressing times of ever-

increasing demands for transplantation, we feel that the

clinical utilization of pulsatile perfusion should be cur-

rently focusing on marginal donor organs. This

approach will also increase the safety of utilizing mar-

ginal kidneys as MP will allow the measurement of pre-

dictive flow parameters. Costs have recently increased

when utilizing MP and previous studies on economics

and organ preservation may need to be revisited prior

to expanding the utilization of MP to all organs. At the

same time, we need to focus our research efforts in this

field to better understand potential mechanisms involved

in postulated protective effects of MP. Mechanisms of

injury and repair, as a consequence of ischemia remain

only partly understood and aspects of improved organ

quality and transplant outcome need further exploration.

The targeted protection of the vascular endothelium

may play an important role during organ preservation

and endothelial activation/dysfunction may be critical

for the initiation and progression of immune responses.

Understanding these mechanisms of vasoprotection and

its pharmacologic modulation should allow us to

develop new interventional strategies. Benefits of pulsa-

tile perfusion for extra-renal organs are also of clinical

interest and will require further research. A more fre-

quent utilization of pulsatile perfusion will also require

a detailed documentation of mechanical injuries such as

vascular damage associated with the attachment of ves-

sels to the pumping device, which have so far only been

reported anecdotally.
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