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Introduction

The problem areas that lead to failure of transplanted

organs are frequently divided into the early complications

of ischemia reperfusion injury (IRI), acute and chronic

rejection. The vast majority of therapeutic effort has been

aimed at preventing the T-cell response that leads to

acute rejection; a panoply of immunosuppressive agents

has been developed to achieve this goal in a more specific

and less toxic manner. Neither the problems associated

with IRI nor those with chronic rejection have been suc-

cessfully overcome.

While so far tested virtually only in nonhuman sub-

jects, heme oxygenase-1 (HO-1), appears to be remark-

able in the breath of the pathological processes that it can

overcome in transplantation. HO-1 not only is a marker

of stress/injury but has, similarly as other chaperones (e.g.

HSP 60, HSP 70) [1,2] several beneficial modalities asso-

ciated with it. HO-1 itself is the sole major mechanism by

which excess heme is degraded. Eliminating the excess

heme suppresses generation of oxidative radicals and

thereby limits the damage associated with those radicals.

Degradation of heme by HO-1 yields multiple products:

carbon monoxide (CO), Fe++ that leads to the very rapid

up-regulation of ferritin, and biliverdin, which is rapidly

converted to bilirubin by biliverdin reductase [3]. Each of

these products of heme degradation has their own

actions. In aggregate, HO-1 and the products of degrada-

tion are strongly antioxidant, inhibit cell death, apoptosis,

and aberrant proliferation [4–7]. Several groups have

addressed the question whether the end products of heme

catabolism would, at least in part, account for the effects

of HO-1 induction; they do, with respect to IRI, acute

and chronic rejection [8–23]. We hypothesize that it is by

these multiple differing therapeutic actions that HO-1 in

toto can productively interfere with the many pathologi-

cal processes that are involved in transplantation.

We emphasize in this brief review the enormous activ-

ity that is ongoing in multiple laboratories studying the

expression and/or induction of HO-1 in different stages

of transplantation, including brain death, IRI, acute rejec-

tion and chronic allograft changes (Fig. 1). Furthermore,

human data on gene polymorphisms and the role of

HO-1 in islet transplantation, xenotransplantation and

graft versus host disease (GVHD) (that involve different

pathomechanisms) will be reviewed. Finally, strategies

Keywords

allograft rejection, heme oxygenase-1,

ischemia reperfusion injury, islet

transplantation, tolerance, transplantation.

Correspondence
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Summary

Heme oxygenase-1 (HO-1) is the rate-limiting enzyme in heme catabolism that

converts heme to Fe++, carbon monoxide and biliverdin. HO-1 acts anti-

inflammatory and modulates apoptosis in many pathological conditions. In

transplantation, HO-1 is overexpressed in organs during brain death, when

undergoing ischemic damage and rejection. However, intentionally induced, it

ameliorates pathological processes like ischemia reperfusion injury, allograft,

xenograft or islet rejection, facilitates donor specific tolerance and alleviates

chronic allograft changes. We herein consistently summarize the huge amount

of data on HO-1 and transplantation that have been generated in multiple lab-

oratories during the last 15 years and suggest possible clinical implications and

applications for the near future.
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how to apply the enormous knowledge on HO-1 in trans-

plantation (that was generated experimentally) to humans

are discussed.

Brain death

The majority of organs transplanted are derived from

brain dead organ donors. Brain death is associated with

upregulation of cytokines, adhesion molecules, endothe-

lial antigens, and leukocyte infiltration [24] and its con-

sequences are critical for the quality of organs [25].

Experimentally, an early increase in HO-1 expression is

observed in rat kidneys during brain death [26] that is

further promoted in marginal donors [27]. HO-1

mRNA expression (assessed before organ harvest) is

threefold higher in kidneys from brain dead human

donors when compared with living donor kidneys,

which usually do have favorable outcome with respect

to early and late graft function [27,28]. Under the cir-

cumstances of brain death, HO-1 upregulation seems to

be a part of the ‘‘stress response’’ (oxyradicals, cytokine

storm and unspecific immune response). However,

when HO-1 intentionally is induced in brain dead

donors with cobalt protoporphyrin (CoPP), survival of

rat kidney allografts is significantly increased whereas

zinc protoporphyrin (ZnPP), an inhibitor of HO-1

activity, decreases survival rates [29]. In humans, an

approach to reduce inflammation in the brain dead

donor via HO-1 induction may be promising but has

not been tested yet.

Several experimental approaches have been made to

induce HO-1 in the (nonbrain dead) donor to improve

outcome with respect to early and long-term graft func-

tion. Induction of HO-1 in the donor is beneficial, ame-

liorating IRI [30–46], reducing chronic allograft changes

[47] and inducing tolerance to islet allografts [19].

Ischemia and reperfusion

Hypoxia and the lack of nutrients resulting form ischemia

is a limiting factor for organ function after transplanta-

tion. Damage is paradoxically aggravated upon reperfu-

sion. Deteriorated early graft function is the consequence,

caused by oxidative stress, apoptosis and a nonspecific

immune response that (in an allogenic setting) subse-

quently activates the specific immune system [48].

Prevention and treatment of IRI in solid organ transplan-

tation is among the most important issues to address to

improve short- and long-term outcomes. HO-1 does have

a dual function in this context (i) by preventing oxidative

stress because of its antioxidant and antiapoptotic proper-

ties and (ii) via suppression of the immune response

through anti-inflammatory mechanisms.

Cold ischemia

One would assume, that during cold ischemia time

(CIT), defined as the time period from cold perfusion at

the harvest until reperfusion in the recipient, no dramatic

changes on a RNA/protein level could be expected, as

organs are constantly kept at 4 �C to slow down metabo-

lism. However, some interesting facts with respect to HO-1

expression during CIT have been reported.

In human cadaveric kidney grafts, high HO-1 protein

expression at the end of CIT is associated with inferior

outcome [49]. Similar observations were made in human

livers derived from deceased donors: high levels of HO-1

RNA at the end of CIT were associated with inferior out-

come. [50]. Whether this increase in HO-1 expression has

occurred already in the (brain dead) donor or during CIT

has not been studied. HO-1 expression at the end of CIT

definitely is an indicator of the severity of organ damage.

Currently, after harvest during CIT organs are either

preserved at 4 �C with preservations solutions or, more

recently, subjected to continuous hypothermic perfusion

[51]. This interval may be used to manipulate the graft

pharmacologically or via gene transfer. Experimentally,

ex vivo HO-1 gene transfer during CIT to kidneys [52]

and livers [13] ameliorates IRI and prevents allograft

rejection [14].

Reperfusion

As described above, organs expressing high levels of HO-1

at the end of CIT do have inferior outcome, but upregula-

tion during reperfusion seems beneficial [50].

During reperfusion, an oxidative burst is mediated via

oxyradicals, cytokines, adhesion molecules and an early,

unspecific immune response [48]. As mentioned above,

donor treatment by the means of pharmacological HO-1

induction or gene transfer improves IRI in various models

[30–46]. Further evidence indicates a prominent role of

HO-1 in transplant associated IRI: intragraft IL-13 over-

expression leads to minimization of IRI in rat livers, what

is reversed by suppression HO-1 activity using tin-proto-

porphyrin (SnPP), an inhibitor of HO-1 activation [53].

Amelioration of hepatic IRI via co-stimulation blockade

with anti-CD154 mAb correlates with HO-1 expression.

The effect on IRI seems to be dependent on HO-1 as

CD154 KO mice (that do barely develop evidence for IRI)

have increased hepatic HO-1 expression, however, when

these mice are treated with SnPP, the protective effect is

abolished [54]. Two mechanisms have been identified and

have to be separated in the context of IRI: (i) improve-

ment of early graft viability because of a decrease in tissue

damage and/or (ii) suppression of the innate immune

response.
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Similar to CoPP, hyperthermia preconditioned kidney

(and liver) grafts are protected from IRI by upregulation

of heat shock proteins, such as HO-1, via suppression of

apoptosis [2,55,56]. Preconditioning in several experimen-

tal settings has been efficient in ameliorating IRI, still it is

not conclusive, whether this may be applicable for

humans as well [57,58]. The mechanism is not fully

understood, however, expression of ‘‘protective’’ genes

such as HO-1 because of a stress response seems to be

relevant for the preconditioning effect [59]. An easy

approach to precondition, an organ for transplantation

would be heating the donor up to 43 �C. Heat shock pre-

conditioning by subjecting rats after cardiac death to

whole body hyperthermia dramatically improved isograft

survival in a model of kidney transplantation, presumably

via induction of HO-1 (amongst other heat shock pro-

teins) [2], as in an isogeneic liver transplantation model

in rats, tin protoporphyrin, an inhibitor of HO-1 activa-

tion, the heat-preconditioning effect was abolished [60].

However, in clinical reality it seems more suitable to pre-

condition by applying a brief period of ischemia prior to

cold perfusion [61]. Ischemic preconditioning improves

outcome in a rat model of reduced size orthotopic liver

transplantation, also attributed to the induction of HO-1

[62].

Acute rejection and tolerance

The first report describing expression of HO-1 in

allografts showed increased mRNA levels of HO-1 and

HO-1 protein, mainly in infiltrating macrophages, in rat

kidneys that were rejected [63]. Microarray analysis, com-

paring syngeneic with allogeneic rat heart transplants

revealed specific gene expression profiles, HO-1 being

upregulated 23-fold when compared with the nonrejecting

controls [64]. HO-1 mRNA levels and protein expression

are also markedly induced in an allogeneic rat model of

lung transplantation (later confirmed in humans) [65–

67], what also has been observed in human kidneys and

hearts being rejected [68,69]. HO-1 expression was not

only found in organs being rejected but also in organs

that were tolerized indefinitely, as observed in a mouse

model of tolerance induction using donor specific trans-

fusions (DST) and co-stimulation blockade [70]. More-

over, HO-1 serves as a marker of (T-cell mediated) injury

as well as an indicator of beneficial effects.

With respect to the immune response to alloantigens

two functions of HO-1 induction should be separated. (i)

HO-1 induction affects the recipient’s cellular response.

(ii) HO-1 induction protects the graft itself.

(i) In pregnant mice, upregulation of HO-1 inhibits

induced abortion [71]. These effects have been attributed

to the generation of regulatory T cells [72]. In allogenic

rodent transplant models, HO-1 induction prolongs allo-

graft survival modifying the host’s immune response by

inhibition of T-cell-mediated cytotoxicity and NK-cell

activity [73], reducing the amount of donor derived den-

dritic cells in the graft and the lymph nodes, accompa-

nied by reduced frequencies of allospecific CD4+ T cells

and a decreased infiltrate of macrophages [74]. In a mur-

ine heart transplant model, HO-1 induction combined

with DST promotes donor specific tolerance to allografts

via generation of Tregs [75]. In a model of allograft toler-

ance using co-stimulatory blockade plus DST, it seems

that it is mainly the promotion of Treg generation in the

recipient, as HO-1 KO donor derived allografts trans-

planted to wild-type recipients were tolerized in the same

manner as their wild-type controls. By contrast, when

wild-type hearts were transplanted to HO-1 KO mice, tol-

erance induction was not possible. [75]. Which mecha-

nisms make it impossible, in this setting, to become

tolerant to alloantigens is still not known, presumably not

the lack of regulatory T cells, as Treg development, main-

tenance and function are not affected in HO-1 deficient

mice [76]. It has recently been shown in HO-1 null mice

that the lack of HO-1 in antigen presenting cells is

responsible for the lack of Treg-mediated suppression of

the allospecific immune response [77]. Finally, the appli-

cation of myeloid derived suppressor cells affects T-cell

responses in allotransplantation and prolongs skin allo-

graft survival producing large amounts of IL-10 and HO-1.

When HO-1 is blocked, T-cell suppression and IL-10 pro-

duction is abolished [78].

(ii) The observations that led to the identification of

HO-1 as an important gene in transplantation were

mainly made in organs that were tolerized, thus the

hypothesis that HO-1 protects the graft itself was born. In

a model of allogenic thyroid graft transplantation under

anti-CD4-mAb treatment, overexpression of HO-1 was

found in the nonrejected grafts, however, when HO-1 was

inhibited by ZnPP, the thyroid glands were rejected [79].

Adenovirus-mediated transfer of HO-1 to rat liver allo-

grafts alone resulted in decreased rejection via an increase

in IL-4, IL-10 and a decrease in IL-2 and IFN-c expres-

sion [13,80]. Administration of AdHO-1 to cardiac allo-

grafts or to the recipient mediates prolongation of

allograft survival [81].

Some studies have suggested that HO-1-mediated

effect(s) are not solely ‘‘organ protecting’’ effects or

effects on the host’s immune response, but both. When

HO-1 deficient mice are used either as a donor or recipi-

ent, acute allograft rejection of tracheal transplants is

much more pronounced [82]. Using HO-1 transgenic

mice, local and systemic (recipient) overexpression of

HO-1 determine the fate of an organ in an allogeneic set-

ting [83].
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Chronic rejection

Chronic allograft dysfunction is the limiting factor in

long-term allograft survival. Structural changes caused by

acute organ damage and chronic immunological stimuli

(e.g. neointimal hyperplasia and glomerular changes) are

responsible for organ loss. In human heart allografts,

increased HO-1 mRNA expression 1 week after trans-

plantation was associated with the development of

(chronic) transplant coronary artery disease (TCAD),

whereas no difference was found comparing pretrans-

plant samples from hearts developing TCAD to non-

TCAD hearts [84].

Donor HO-1 adenoviral transfection or recipient treat-

ment during the perioperative period with CoPP or

hemin mediates protection from transplant arteriosclero-

sis in a mouse model of heart transplantation [47,70]

with lower levels of TGF-b, TNF and macrophage migra-

tion inhibitory factor [85]. AdHO-1 gene transfer to rat

aortas results in amelioration of chronic rejection by a

significant reduction in leukocyte infiltration and a

decreasing number of vascular smooth muscle cells in the

(neo-)intima [14,86], minimizes apoptosis and reduces

NF-jB levels [87]. In a rat model of chronic renal allo-

graft rejection even with only a short treatment of CoPP

in the perioperative period cortical scarring, vascular

hyalinization, intimal hyperplasia, and glomerular sclero-

sis is decreased [88]. So far, no study has answered the

question, whether it is the reduction of IRI alone (via

HO-1 induction during the perioperative period) that

protects from chronic allograft changes or long-term HO-

1 induction (gene transfer, pharmacological HO-1 induc-

tion for a longer time period) is additive, clearly this issue

has to be addressed.

Gene polymorphisms

Expression of the HO-1 gene is modulated by two func-

tional polymorphisms in the promotor: a (GT)n length

polymorphism and a single nucleotide polymorphism

(SNP). The HO-1 (GT)n repeat resides in a regulatory

sequence with a short (GT)n allele (S-allele) associated

with enhanced transcriptional activity [89]. Additionally,

the A()413)T SNP has been identified as a variation with

higher promotor activity of the A-allele [90].

Donor and recipient HO-1 (GT)n polymorphism may

have an influence on long-term graft function: kidneys

retrieved from organ donors that were carriers of one or

two S-alleles (greater up-regulation of HO-1) had signifi-

cantly lower serum creatinine at 1, 2 and 3 years after

transplantation and better survival when compared with

kidneys from donors without a S-allele [91–93], further

recipients carrying at least one S-allele had better long-

term results [93]. By contrast, no such beneficial effects

were seen in two different studies [94,95]. In human

heart transplantation, recipients of an (at least one)

Figure 1 The four crucial (and intercon-

nected) problems to overcome in organ/

tissue transplantation and their relation

to heme oxygenase-1 (HO-1): inflamma-

tion/organ activation caused by brain

death, ischemia reperfusion injury,

acute and chronic rejection. HO-1 is

overexpressed under these conditions,

however, when HO-1 is intentionally

induced, all four pathologies are amelio-

rated via two major mechanisms:

(i) anti-inflammatory/tolerogenic by

affecting the immune system directly

and (ii) ‘‘organ-protecting’’ by alleviating

symptoms of organ damage via anti-

oxidant and antiapoptotic properties.
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ª 2010 The Authors

1074 Transplant International ª 2010 European Society for Organ Transplantation 23 (2010) 1071–1081



S-allele carrying donor allograft showed a similar inci-

dence of chronic allograft vasculopathy as recipients of a

non-S-allele carrying graft [96].

Single nucleotide polymorphism analysis in liver trans-

plantation revealed that graft survival at 1 and 5 years

after transplantation is significantly better in recipients

receiving a liver from an A-allele (with a higher HO-1

promotor activity) carrying graft. Those grafts showed

higher RNA expression when compared with grafts carry-

ing a T (and thus low promotor activity) allele. In this

study, HO-1 (GT)n polymorphism did not have any

influence on outcome [97]. No such correlation of donor

SNP and delayed graft function was found in a large

cohort of renal transplantation [98].

These data provide additional evidence that HO-1 is

crucially involved in the complex pathologies of organ

transplantation, but also raise new questions: Is it neces-

sary to adapt immunosuppression in recipients of low

HO-1 expressing organs? Is an organ from a low HO-1

expressing donor a bad organ? Clearly studies with higher

numbers patients have to be conducted. Additionally, the

correlation of HO-1 gene polymorphisms and the efficacy

of immunosuppressants has to be studied, especially as

mammalian target of rapamycin-inhibitors or co-stimula-

tory blockade may require HO-1 [54,75,99], one has to

take into account that there could be a difference in effi-

cacy among low and high HO-1 expressing recipients.

Islet transplantation

Attempts to transplant allogenic Langerhans islets into

patients with Type I diabetes are being conducted since

decades. Outcomes of whole organ transplantation are

still superior and the biggest challenge besides suppressing

the alloimmune response is to better protect the islets

from damage because of harvest, isolation, hypoxia, and

reoxygenation [100].

HO-1 induction in Langerhans islet cells protects from

apoptosis in vitro and improves function in vivo in a

model of marginal mass islet transplantation in rodents

[101]. Transfection of islet cells with TAT/PTD-HO-1

does not interfere with cell function and increases cell

viability in culture [102]. Induction of HO-1 in the donor

only enhances survival of allogeneic islet grafts in a mouse

model [19,103,104]. Furthermore, induction of HO-1 in

the recipient as well as in the islet grafts only prior to

transplantation leads to donor specific hyporesponsiveness

and increased graft survival [105]. In allogeneic islet

transplantation, a protocol combining ‘‘conventional’’

cyclosporine A immunosuppression, HO-1 induction and

surface modification of the islets with polyethylene glycol

resulted in indefinite graft survival [106]. This article is of

special interest, as it shows that HO-1-mediated tolero-

genic effects may not be hampered by a calcineurin inhib-

itor-based immunosuppression.

Xenotransplantation

Xenotransplantation is the field in which the important

role in immunomodulation of HO-1 was discovered in

vivo. HO-1 was shown in various models to be highly

expressed in the endothelium and smooth muscle cells of

accommodated heart xenografts suggesting that HO-1

(amongst others) acts as a protective gene promoting

xenograft survival [107–111]. This has not only been

shown for the heart but also the lung [112]. Using the

decapeptide RDP1258 as HO-1 inducer in combination

with cobra venom factor rat xenograft survival was pro-

longed [113]. In a mouse to rat heart transplant model,

treatment with cobra venom factor and cyclosporine A

resulted in more than 50-day survival of the xenografts,

which highly expressed HO-1. When SnPP, a known

inhibitor of HO-1 activity, was added to the treatment

protocol, the tolerogenic effect was abrogated [114]. Ade-

novirus-mediated overexpression of HO-1 protects endo-

thelial cells from xenoserum-mediated destruction [115].

Induction of HO-1 with hemin significantly prolongs car-

diac xenograft survival, attenuates serum levels of xenoan-

tibody and mitigates CD40 ligand transcription in the

xenograft [116]. Novel concepts of alpha-Gal silencing are

more effective when combined with HO-1 upregulation

[117].

Clearly, xenotransplantation, because of the fear of

virus infections, is far from clinical application, but if fea-

sible, probably HO-1 induction protocols may be used to

alleviate xenograft rejection.

Graft versus host disease

Graft versus host disease is frequently seen after bone

marrow transplantation but also in recipients of solid

organs, treatment thereof is challenging and outcomes are

poor [118]. Induction with CoPP increased survival in a

mouse model of GVHD whereas treatment with ZnPP

accelerated GVHD development [119]. The protective

effects of CoPP-mediated HO-1 induction on survival

and GVHD involve a reduction in the proinflammatory

cytokine milieu rather than affecting allospecific T-cell

stimulation [120].

Controversial data

While there is a huge amount of data supporting the

hypothesis that HO-1 is one of the most crucial genes

that might help us to defend organs from IRI, acute

rejection and chronic changes, one has to be aware that
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data demonstrating that HO-1 might not be involved in

the effects mentioned above have also been published.

Transgenic rats overexpressing HO-1 in various organs

did not show any alteration in their immune response

nor were they prone to allograft rejection [121]. In a rat

model of lung allotransplantation HO-1 induction

affected signs of IRI but did not alter signs of acute rejec-

tion [122]. Additionally, for most of the studies described

above, one has to take into account that the effects of

upregulation of HO-1 are not formally proven but rather

an association of expression with a given effect and in

some cases, inhibition of HO-1 with SnPP or ZnPP may

represent fairly direct proof to the extent that these sub-

stances are specific.

How will we induce HO-1 in humans?

Many effects of the various treatments in experimental

transplantation (which, in part, are used in humans as

well) are probably mediated via of HO-1, e.g. dopamine

[123], glutamine [124], FK352, an adenosine receptor

antagonist and FK409, an NO releasing molecule

[125,126], co-stimulation blockade [54,75], IL-10 [127]

and IL-13 [53,128] gene transfer, decapeptides RDP1257,

B2702 and RDP1258 [129–131] somatostatin [132],

ginkgo balboa [133], diannexin [134], curcumin [135],

PSGL-1 [136], D4-F, an apoA-1 mimetic peptide [137]

and stem cell transfer [138], other inducers of HO-1 may

follow, which induce HO-1 more specifically.

Two central aspects of HO-1 induction in human

transplantation have to be addressed: (i) whom and when

to treat, the donor, the organ or the recipient; no study

so far has investigated whether there are differences

between certain organs. The vast majority of experimental

studies on IRI suggest donor treatment, promoting HO-1

expression in the graft reducing immunogenicity; to tar-

get the host’s immune system, systemic treatment of the

recipient seems inevitable. (ii) How to induce HO-1

safely: There has been only one published study on the

attempt of specifically inducing HO-1 in humans in allo-

transplantation [139], using two potent inducers of

HO-1, curcumin and quercetin [140,141]. CoPP is used

to induce HO-1 in most rodent models; however, its use

in humans is hampered by the potential side-effects of

porphyrins [142]. The major goal in the near future

should be to identify potent specific pharmacological in-

ducers of HO-1 that can be used safely in the organ

donor as well as in the recipient, and further serious

attempts to safely use HO-1 gene transfer in humans have

to be made. Recently, stable transfection of rat liver allo-

grafts with adenoviral transfer for 3 months has been

demonstrated [143]. A novel approach to use the thera-

peutic potential of HO-1 induction involves the adminis-

tration of cell penetrating protein transduction systems.

Recombinant HO-1 containing a modified transduction

domain applied during cold preservation protects grafts

from IRI in a rat model of heart transplantation [144].

Similarly, a HO-1-TAT fusion protein has been efficiently

transduced to livers during cold ischemia and reduced

apoptosis [145].

Finally, the end products of heme catabolism, CO and

biliverdin/bilirubin have to be considered seriously for

clinical application [5,6].

Conclusion

A considerable amount of data on the protective gene

HO-1 in transplantation has been obtained during the

last 15 years. HO-1 is being overexpressed under condi-

tions of transplant related pathologies, namely IRI, acute

and chronic rejection, brain death, islet transplantation

and xenotransplantation. Treatment thereof by inducing/

overexpressing HO-1 and applying the end products of

heme catabolism has been successful in many experimen-

tal models while it is not yet clear how these findings can

be applied to humans and whether we should treat the

donor, the graft or the recipient. HO-1 induction, CO or

bilirubin/biliverdin treatment (i) of the organ donor to

prevent IRI to reduce the immunogenicity of the graft

and to be able to use ‘‘more marginal’’ grafts and (ii) of

the allograft recipient to prevent symptoms of chronic

rejection and to facilitate allograft tolerance have to be

considered seriously for our patients.
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Öllinger and Pratschke HO-1 in transplantation

ª 2010 The Authors

Transplant International ª 2010 European Society for Organ Transplantation 23 (2010) 1071–1081 1081


