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T lymphocytes are major players in immune responses

following allotransplantation and in autoimmunity. T-cell

activation is triggered by specific antigen recognition and

reinforced by the engagement of costimulatory molecules

that regulate T-cell differentiation into either pathogenic

effector cells or anti-inflammatory regulatory cells.

Among the series of costimulatory molecules identified

these last decades, costimulation through the CD28/B7/

CTLA-4 pathways helps determine this balance after ini-

tial antigen exposure. The current paradigm holds that

constitutively expressed CD28 binds CD80/86 to provide

a co-stimulatory signal that is important for sustaining

T-cell activation, proliferation and a pro-inflammatory

response [1]. CD28 enhances also the secretion and tran-

scription/stability of interleukin (IL)-2 mRNA, which is

necessary for effector T-cell and regulatory T-cell (Treg)

expansion [2]. However, as Treg do not produce IL-2,

they are dependent on IL-2 secretion by bystander acti-

vated T cells [3]. In addition, although CD28 signals are

critical for Treg homeostasis and thymic generation [4],

CD28 engagement by CD80/86 molecules inhibits Treg

suppressive activity [5,6]. CTLA-4, the other CD80/86

ligand, delivers anti-proliferative signals to T cells [7],

triggers indoleamine 2,3-dioxygenase (IDO) [8] produc-

tion in antigen-presenting cells (APCs) and is essential for

the suppressive function of Tregs [9] and the induction

of tolerance to allografts [10,11]. Targeting the CD28-

CD80/86 pathway in patients with CD80/86 antagonists

(Abatacept, Belatacept, CD80/86 antagonists) is a promis-

ing alternative to current immunosuppressive treatments

in autoimmunity [12,13] and renal transplantation [14].

However, CD80/86-specific blocking strategies inhibit

CTLA-4 signals crucial to the function of Tregs, as well as

CD80-mediated signal that have a role in the induction

of adaptive Tregs [15]. Moreover, the recent discovery of

the inhibitory interaction between PDL-1 and CD80 in

mouse [16] and human [17] cells further suggests that

immunointervention aimed at blocking ligand access to

CD80 might deprive the system of significant physiologi-

cal regulatory pathways. However, neither CD28-mediated
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Summary

Progress from the last decade in the understanding of T-cell activation has led

to new immunotherapeutic strategies for the treatment of immunological dis-

eases. Since the discovery of costimulatory molecules in the 1980s, the field of

T-cell costimulation blockade has literally exploded and now spanned ‘from

bench to bedside’. Such alternative therapies result in more selective effects spe-

cializing their action on Ag-experienced T lymphocytes. This can potentially

prevent the progression of autoimmune diseases, allograft rejection and may

even induce immune tolerance. In the 1990s, the CD28/B7/CTLA-4 pathway

was identified as a crucial regulator of T-cell activation and tolerance induc-

tion. Here, we have summarized our current understanding of this complex

costimulatory pathway involving co-stimulatory and co-inhibitory molecules

and the way we can manipulate these molecules to inhibit, stimulate or kill tar-

get cells in experimental preclinical models as well as in clinical trials. We have

also reviewed the role of costimulation in the biology of CD4+ CD25+ Foxp3+

regulatory T cells.
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nor CD80/86-mediated strategies modify the inhibitory

PDL-1/PD-1 pathway. In this review, we have revisited

arguments that a more specific costimulation blockade

that preserves regulatory signals is an effective strategy for

modulating immune responses by preventing the matura-

tion of pathogenic effectors while preserving the function

of Tregs. One such proposed costimulation blockade is

that of CD28 (see Fig. 1).

Targeting B7

Rodent studies

A first therapeutic strategy aimed at blocking the CD28/

B7/CTLA-4 costimulatory pathway was the development

of antibodies directed against CD80 and CD86 (com-

monly named B7.1 and B7.2) which are the receptors of

CD28 and CTLA-4. Most studies in rodents evaluating

the efficacy of anti-B7 antibodies showed that CD86

blockade was highly immunosuppressive in vitro and

in vivo, whereas CD80 blockade alone produced little

effect, and that a combination of these two antibodies

caused a profound immunosuppression. Anti-B7 anti-

body-induced immunosuppression was effective in rescu-

ing abortion-prone fetuses in sensitive mice by facilitating

a Th2 bias at the maternal-fetal interface [18], in prevent-

ing graft-versus-host disease (GVHD) lethality by inhibit-

ing donor CD4+ or CD8+ T-cell expansion [19], and in

inducing long-term survival of skin and heart allografts

by inhibiting acute cellular rejection [20,21]. However,

chronic rejection was not inhibited after organ transplan-

tation; its prevention necessitated an association with

anti-CD40L antibodies [20,21]. Anti-B7 antibodies failed

to induce tolerance in vivo. However, ex vivo anergic or

regulatory T cells generated in mixed lymphocyte reac-

tions (MLR) in the presence of anti-B7 antibodies were

able to induce tolerance after transfer [22,23]. Anti-B7

antibodies also induce alternatively activated macrophages

in MLR [24]. In autoimmune disease models, the dis-

crepancy between CD80 and CD86 blockade is confusing.

CD86 blockade alone prevented the development of dia-

betes in nonobese diabetic (NOD) mice but increased

disease severity in experimental autoimmune encephalo-

myelitis (EAE). In contrast, anti-CD80 treatment alone

accelerated the development of diabetes in female NOD

mice and brought on diabetes in normally resistant male

NOD mice but reduced EAE pathology [25–27]. The

explanation is that anti-CD80 antibodies prevent CTLA-4

engagement by CD80, which is necessary for Treg func-

tion (see below).

An alternative strategy developed to block CD80/86

was the fusion protein CTLA4-Ig which combined the

extracellular domain of CTLA-4 with the Fc portion of

IgG1. For nearly 20 years, numerous studies described

CTLA4-Ig as a potent inhibitor of CD28, binding to

CD80 and CD86 (with a greater affinity for CD80) and

therefore a potent in vitro and in vivo inhibitor of early

T-lymphocyte activation (cellular cycle, proliferation, dif-

ferentiation and survival). However, although theory and

Figure 1 Costimulatory molecules and biological pathways implicated in the targeting of B7s versus CD28. Solid lines/arrows represent active

signaling pathways after blockade of CD28 or B7. Dotted lines/arrows represent disrupted signaling pathways. APC, antigen-presenting cells; IDO,

indoleamine 2,3-dioxygenase.
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initial in vitro observations concluded that CTLA4-Ig

caused anergy of alloreactive T lymphocytes [28], this was

not confirmed in vivo. In fact, in vivo, CTLA4-Ig induced

a profound immunosuppression, but no T-cell-mediated

regulation [29]. An exception was the induction of IDO

and tolerogenic APC in vivo in rodent models of organ

[30–32] but not bone marrow [33] transplantation. The

induction of IDO could not be reproduced with the

humanized versions of CTLA4-Ig [Abatacept, Belatacept;

Bristol-Myers Squibb (BMS), New York, NY, USA], prob-

ably because the Fc domain was mutated to decrease Fc-

mediated effector function [34,35]. CTLA4-Ig showed

efficacy in vivo mainly by preventing acute long-term

rejection in many transplant models (heart, kidney, skin,

liver, limb and islets) but the ability to induce tolerance

seemed to differ between organs and transplant models

[10,36–41]. CTLA4-Ig also prevented chronic rejection in

heart and kidney transplant models [42–45]. CTLA4-Ig

efficacy was also demonstrated in GVHD [46], EAE [47],

ischemia-reperfusion [48] and, by preventing the humoral

response, in systemic lupus erythematosus [49] experi-

mental models. However, similarly to anti-B7 antibodies,

CTLA4-Ig reduced the number of CD4+ CD25+ Tregs

and accelerated the development of diabetes in NOD

mice [4,50]. Finally, CTLA4-Ig efficacy in transplantation

was abrogated if initial alloreactive T-lymphocyte fre-

quency was artificially raised [51] or under persistent viral

infection [52]. The activity of CTLA4-Ig on memory T

cells depends on their differentiation states: CD4+ effector

memory T cells (CD62L low) are inhibited by CTLA4-Ig

whereas central memory T cells (CD62L high) are not

[53]. In addition, CTLA4-Ig is not modifying the prolifer-

ative renewal and maintenance of memory CD8 T cells.

However, the magnitude of CD8 T-cell memory is

reduced by CTLA4-Ig as it inhibits differentiation of rest-

ing into activated CD8+ T cells [54]. Another study

showed nevertheless that antiviral memory T cells require

costimulation to efficiently clear a persistent viral infec-

tion and that costimulatory pathways can be targeted to

modulate the magnitude of an adoptive immunothera-

peutic regimen [55]. Finally, further studies showed that

CTLA-4 is also able to regulate CD4 and CD8 memory T

cells [56,57]. Therefore CD80/86-mediated strategies, but

not CD28-mediated blockade, could also prevent impor-

tant physiological regulatory signals that kept memory

T cells under control.

Nonhuman primate studies in transplantation

CTLA4-Ig and anti-B7 antibodies were tested in nonhu-

man primate (NHP) kidney allotransplantation and

CTLA4-Ig was tested in islets allotransplantation. These

studies confirmed that anti-CD86 antibodies were more

effective in preventing acute rejection than anti-CD80 and

that a combination of both antibodies was even more

efficient in preventing acute cellular rejection, but without

totally inhibiting alloantibodies and without inducing tol-

erance [58]. Association with rapamycin [59,60] or cyclo-

sporin A (CsA) [61,62] did not improve these data.

Combination induction therapy with anti-B7 and anti-

CD154 or anti-CD40 antibodies inhibited alloantibodies

but did not bring about survival prolongation as com-

pared to anti-CD40L or anti-CD40 therapy alone [63,64].

It was concluded that anti-B7 antibodies are immunosup-

pressive but do not induce specific immune regulation

and therefore do not fully inhibit inflammation

[58,60,65].

Abatacept, a humanized form of CTLA4-Ig (BMS) was

tested in NHP kidney allotransplantation but was ineffec-

tive in preventing acute rejection when administered as

monotherapy (median survival time – MST – of 8 days)

[66]. Abatacept was only efficient in association with a

short treatment of anti-CD40L antibody [67] but still

failed to induce long-term tolerance. A high affinity vari-

ant of CTLA4-Ig, LEA29Y (Belatacept; BMS), was evalu-

ated in kidney allotransplantation and was efficient as

monotherapy (MST of 45 days), as well as in association

with a CNI (calcineurin inhibitor)-free regimen consisting

of a continuous treatment of mycophenolate mofetil

(MMF) plus steroids (MST of 155 days) [66]. In islet

allotransplantation, the association of LEA29Y with an

anti-rIL-2 antibody plus rapamycin was sufficient to

induce long-term graft survival [68] and to prevent allo-

antibody production. However, tolerance induction was

not achieved given that animals still showed in vitro

donor-specific cellular reactivity and because treatment

discontinuation resulted in rejection.

Clinical studies in transplantation

Anti-B7 antibodies did not enter the clinical development

phase in transplantation. Belatacept on the other hand is

still in clinical evaluation for kidney allotransplantation.

A phase II study involving up to 200 patients of de novo

renal allografts showed an equivalent efficacy between

belatacept treatment in association with MMF plus anti-

rIL-2 antibody as compared with CsA with MMF plus

anti-rIL-2 antibody, a current gold standard immunosup-

pressant [14]. Importantly, belatacept-treated patients

showed significantly better renal function and reductions

in histological signs of chronic allograft nephropathy

compared with cyclosporin-treated patients at 1 year, an

effect that could be attributed to CNI-toxicity avoidance.

However, the rate of acute rejection at 6 months tended

to be higher in comparison with the CsA-group, in par-

ticular with the ‘low’ initial dose of Belatacept [14].
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A phase III study, the Belatacept Evaluation of Nephro-

protection and Efficacy as First-line Immunosuppression

Trial (BENEFIT), aimed at evaluating the low and high

belatacept regimens already tested in phase II studies ver-

sus cyclosporin in kidney transplantation over 1 year

[69]. The key findings of the BENEFIT trial confirmed

the phase II studies: similar patient/graft survival, a supe-

rior renal function and better cardiovascular/metabolic

profiles for belatacept-treated patients. The higher inci-

dence and grade of acute rejection episodes already

stressed in phase II studies were also confirmed (22% and

17% for high and low regimens vs. 7% with cyclosporin).

By contrast, in an other study where marginal organ were

transplanted (BENEFIT-EXT), this higher rate of acute

rejection was not confirmed [70]. The finding that the

low-dose regimen was associated with a lower rate of

acute rejection compared with the higher regimen in this

trial suggested that CD80/86 blockade with belatacept

might interfere with the CTLA4-CD80/86 negative signal-

ing that is required for maintaining the function of Tregs

and that may participate in the control of alloresponses.

However, whereas the CD28 pathway was critical for nat-

ural Tregs survival and thymic generation in rodents

[4,50], belatacept-treated patients of the phase II study

did not display any long-term differences in terms of cir-

culating Tregs or Treg expansion when compared with

the CNI-treated group [71,72].

Targeting CD28

Based on their stimulatory activity on T lymphocytes,

antibodies directed against CD28 can be divided into two

classes: firstly, ‘superagonistic’ anti-CD28 antibodies

(CD28SA) induce a nonphysiological CD28 engagement

and a complete activation of T lymphocytes even in the

absence of T-cell receptor (TCR) stimulation [73]. Sec-

ondly, ‘conventional’ anti-CD28 antibodies (CD28CvA),

cross-link CD28 and prompt a costimulatory signal only

in synergy with a TCR stimulation.

Superagonistic anti-CD28 antibodies

CD28SA were defined by their capacity to cause a strong

activation and proliferation of naive T lymphocytes in the

absence of antigenic stimulation [74]. These antibodies

were characterized to bind exclusively to the laterally

exposed C’’D loop of the immunoglobulin-like domain of

CD28. CD28SA cross-link CD28 in such a way that it

transmits an autonomous signal that activates the nuclear

factor jB pathway without inducing any phosphorylation

of either TCRf or ZAP70 [73]. Of interest for transplant

and autoimmune therapeutics, these CD28SA antibodies

were also described to more efficiently activate and

expand in vitro and in vivo natural Tregs than conven-

tional T lymphocytes [3,75–77]. They elicit two qualita-

tively distinct waves of T-cell activation: a first phase of

polyclonal activation of conventional T lymphocytes, fol-

lowed by a second phase of Treg expansion dependent on

paracrine IL-2 secretion from CD28SA-stimulated con-

ventional T cells [78,79]. As a result, CD28SA were

described in rodents as being efficient in preventing auto-

immune disease such as EAE [80–82], protecting from

GVHD [83] and as producing donor-specific tolerance in

a kidney allograft model in rodents [76], whereas a

monotherapy in cardiac allotransplantation only delayed

acute rejection [77]. In these autoimmune and transplant

models, in vitro CD28SA-activated Treg transfer was also

able to confer protection in vivo [76,81,83]. On the other

hand, T lymphocyte depletion and transient lymphopenia

was also observed in rodent models with high doses of

CD28SA [74,78,81]. In rodents, CD28SA-induced lymp-

hopenia was well tolerated and not associated with a mas-

sive release of pro-inflammatory mediators [78,81],

probably controlled and regulated by Treg expansion. For

instance, Treg depletion in mice prior to CD28SA stimu-

lation led to the systemic release of pro-inflammatory

cytokines, indicating that in rodents, Tregs effectively sup-

press the inflammatory response [79].

Regrettably, the humanized CD28SA (TGN1412) did

not behave similarly in man. The phase I clinical trial of

this molecule as a potential immunotherapeutic for the

treatment of chronic lymphocytic B-cell leukemia proved

to be catastrophic because TGN1412, unexpectedly, pro-

voked a rapid and massive cytokine storm that caused

severe and life-threatening adverse effects [84]. No such

toxicity was observed in preclinical studies in monkeys

which received doses of up to 500 times higher. Monkeys

showed only a weak pro-inflammatory cytokine induction

after TGN1412 injection [such as IL-2, IL-4 and IL-5, but

no release of interferon (IFN)-c and tumor necrosis fac-

tor (TNF-a)] and a fourfold expansion of CD4+ and

CD8+ peripheral T lymphocytes (associated with CD25

and CD69 activation markers) over approximately

20 days. The affinity of TGN1412 toward human and

monkey CD28 receptor was found to be comparable [85],

Fcc receptor sequences demonstrated a high degree of

similarity between these species and IgG4 binding to

human and monkey Fcc receptors was virtually the same

[86]. The remaining question is therefore to ascertain

why rodent and monkey T lymphocytes behave differently

when compared with human T lymphocytes upon

CD28SA stimulation. It was shown that TGN1412 induces

calcium responses in human naive and memory CD4+ T

lymphocytes but not in monkey T lymphocytes [87].

Although the TGN1412-binding region is perfectly con-

served between human and monkey, monkey CD28
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sequences diverge from human CD28 in three transmem-

brane residues [85], which could alter CD28 association

with molecular partners, rendering TGN1412-mediated

signaling weaker in monkeys. Finally, a more convincing

explanation could be a relative loss of expression of

inhibitory sialic acid-recognizing Ig-superfamily lectins

(Siglec, CD33) on T and B lymphocytes during human

evolution, in particular Siglec-5 [88,89]. In fact, human T

and B cells were shown to be more reactive than chim-

panzee T cells to a wide variety of stimuli (anti-TCR Abs,

L-phytohemagglutin, Staphylococcus aureus superantigen,

CD28SA and MLRs), suggesting that the CD28SA-

induced cytokine storm is not related specifically to the

CD28 target but rather to an overall over-reactivity of

human lymphocytes in comparison with monkeys.

Conventional anti-CD28 antibodies

Agonistic bivalent antibodies

As a result of its homodimeric nature, the degree of cross-

linking of CD28 is directly correlated to activation. CD28

transmits a molecular signal through its association with

phosphatidylinositol 3-kinase (PI3-kinase) via the cyto-

plasmic domain [90] and consequently to T-cell activation

and proliferation in conjunction with TCR stimulation

[91]. Antibodies being also divalent, the action of

CD28CvA on T cells usually results in CD28 cross-linking

and T-cell costimulation. The process appears to be only

partially dependent on Fc engagement by Fc receptors as

‘silenced’ CD28CvA, with an Fc domain displaying

reduced binding capacities to Fc receptors, still costimu-

late T cells [92]. On the one hand, several CD28CvA were

as immunosuppressive as B7 blockade in rodent models of

GVHD [93,94], EAE [95], experimental autoimmune uve-

oretinitis [96] and in a model of in vivo T-cell responses

to superantigen [93], and therefore behaved like antago-

nists. These antibodies actually induced in vivo a selective

depletion of T lymphocytes that recognized alloantigens

by an IFN-c dependent apoptosis mechanism [94]. On the

other hand, other anti-CD28 antibodies in their IgG for-

mat displayed both agonist and antagonist properties [93].

They could enhance human T-cell transendothelial migra-

tion in vitro and induce migration of memory, but not

naive, T cells to extra-lymphoid tissue independently of

TCR-derived signals or homing-receptors [97].

Bivalent antibody with modulating activity

The mouse anti-rat CD28 monoclonal antibody JJ319 was

described to stimulate T lymphocyte activation in vitro,

but it acted as an antagonist in vivo, as it brings about a

down modulation of the CD28 receptor on the surface of

T lymphocyte without inducing T-cell depletion [98–

100]. Consequently, JJ319 was functionally antagonist

in vivo and prevented acute rejection of heart [98,99,101]

and liver [102] allografts. In renal transplantation, JJ319

monotherapy was sufficient to prevent chronic rejection

and to induce donor-specific tolerance [103,104]. By con-

trast, in heart and liver transplantation, an association

with CsA or with a donor-specific blood transfusion or

with a blockade of the CD40/CD40L pathway was neces-

sary to induce tolerance and to inhibit chronic rejection

[99,101,102]. JJ319 was also efficient in GVHD by block-

ing expansion of alloreactive T cells and promoting their

apoptosis after few divisions [100]. In addition, whereas

very few studies described the induction of regulatory

cells after B7 blockade in transplantation, most of the

reports that assessed selective CD28 blockade described

regulatory cells such as CD4+ CD25+ Foxp3+ [6,104],

CD4+ CD45RC) Foxp3) T lymphocytes [102], CD3)
IDO+ cells [101] and CD3) B7+ INOS+ myeloid-derived

suppressor cells [105].

Fc-silent bivalent antibodies

The binding of CD28CvA to Fcc receptors (FccR) rein-

forces their agonist activity. Therefore, Fc-silent anti-

CD28 antibodies were designed by introducing mutations

into the Fc fragment to reduce or prevent the cross-link-

ing of CD28 through Fc/FccR interactions. A hamster-

mouse chimeric Fc-silent anti-mouse CD28 antibody

(anti-CD28-PV1-IgG3) enabled long-term survival of

heart allografts in rats by reducing the activation of allo-

antigen-mediated key signaling events in T cells [106].

FK734, a humanized Fc-silent anti-human CD28 anti-

body, reduced T-cell-mediated skin allograft rejection in a

humanized severe combined immunodeficient (SCID)

model [92] and reduced epidermis thinning and HLA-

DR-positive lymphocytic infiltrates of human psoriasis

plaques transplanted into SCID mice [107]. However, this

humanized Fc-silent antibody still generated residual ago-

nistic signals leading to T-cell activation and cytokine

release. In vitro, it enhanced proliferation, IL-2 and IFN-c
secretion of CD4+ or CD8+ T lymphocytes when stimu-

lated with monocytes or human endothelial cells [92],

probably as a result of the mechanical cross-linking of

CD28 homodimers by the antibody. However, in the

presence of CD86-transfected monocytes, this Fc-silent

antibody inhibited proliferation and cytokine secretion in

T lymphocytes, a phenomenon that could be attributed

to the engagement by CD86 of the negative costimulatory

CTLA-4 on responding T cells.

Antagonistic monovalent anti-CD28 molecules

Monovalent fragments from CD28CvA can inhibit CD28/

B7 interactions without stimulating CD28. They can be

used as true antagonists to inhibit proliferation and cyto-

kine secretion in T lymphocytes [108] and can induce
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anergy in vitro [28]. In vitro, it was recently found [6]

that in the presence of a CD28 antagonist, T cells cannot

become activated not only because they lack the CD28-

mediated costimulatory signal but also because their

CTLA-4 negative costimulators become engaged and this

inhibits the TCR-induced stop signal that otherwise

allows T-cell immobilization [109]. In the presence of a

CD28 antagonist, therefore, T cells stay motile and cannot

form stable immunological synapses with CD80/86+

APCs [6]. In this respect, selective CD28 blockade differs

from B7-mediated blockade (anti-B7 and CTLA4-Ig) that

also prevents CD28-mediated costimulation but does not

inhibit cell arrest in APC [6]. Shorter T-cell arrest times

when encountering APC has been associated with tolerant

states in vivo by biphotonic studies in rodents [110]

whereas the formation of stable synapses and T-cell

immobilization was associated with immune responses.

Moreover, as Treg suppression activity is dependent on

CTLA-4 [9,111–114], but not CD28 [111,115,116], selec-

tive CD28 targeting does not actually inhibit suppression

by Treg [6]. In vivo, monovalent antagonist anti-CD28

antibodies delayed acute rejection when given as mono-

therapy and synergized with CNIs to prevent acute and

chronic allograft rejection in kidney and heart transplant

models in NHPs [6]. Although CNI decrease the func-

tion/generation of Treg cells [117], the acquisition of

post-transplant donor-specific hyporesponsiveness was

observed and Tregs were found to be increased in the

periphery and accumulated in the allograft where molecu-

lar signatures of immune regulation (HO-1, IDO, TGF-b,

etc.) were observed. Therefore, from the experimental

perspective, the theoretical benefits of selective CD28

blockade depicted in Fig. 1 appear to be a fact. Whether

they also spell out any clinical advantage, however,

remains a subject for future investigation.

Conclusion

T-cell costimulation plays a major role in the molecular

interactions between T cells and APC leading to T-cell

activation, proliferation, survival and cytokine secretion.

While standard immunosuppression (including CNI)

inhibits these features with considerable effectiveness, it

does not induce immune regulation and displays serious

toxicity, predominantly affecting the kidney, the cardio-

vascular system and lipid metabolism. The unmet clinical

need therefore is an alternative less toxic and more selec-

tive immunosuppression strategy. However, whether

inducing antigen-specific regulation is an advantage in

clinical organ transplantation remains to be demon-

strated. B7-mediated blockade, now in the clinic, has been

developed as a nontoxic alternative to CNI. This advan-

tage is offset, however, by a higher incidence of rejection

episodes. As described above, in addition to affecting the

CD28-mediated pathway of costimulation, reagents tar-

geting B7 also inhibit CTLA-4 and PDL-1 inhibitory sig-

nals of T lymphocytes and prevent Treg function which

requires intact CTLA-4/B7 interactions. Finding out

whether selective CD28 blockade bears any significant

practical advantages in relation to B7 targeting, as pre-

dicted in theory, is a matter that requires formal testing.

However, in this respect, the efficacy of CD28 antagonists

in rodents and preclinical models to induce immune-reg-

ulation and inhibit acute and chronic allograft rejection

can be deemed as promising.
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